9. Analyzing Columns

9.1 Introduction

- Buckling: the sudden large deformation of a structure due to a slight increase of an existing compressive load
- Buckling of a column is caused not by failure of the column material but by deterioration of what was a stable state of equilibrium to an unstable one.
- Three equilibrium states of beam deflection:

- The minimum axial compressive load for which a pin-ended column will experience lateral deflections

When the radius of gyration about the axis of beding is set r

$$I = Ar^2, \ \frac{P_{cr}}{A} = \frac{\pi^2 E}{\left(L/r\right)^2} = \sigma_{cr}$$

L/r = slenderness ratio

Euleur buckling condition: L/r > 140 (*steel columns*) *Short compression condition*: L/r < 40 (*steel columns*)

• Example Problem 9-1

An 8-ft long pin-ended timber column [$E = 1.9(10^6)$ psi and $\sigma_e = 6,400$ psi] has a 2 × 4 in. rectangular cross section.

- Slenderness ratio

- Euler buckling load

- The ratio of the axial stress under the action of the buckling load to the elastic strength σ_e of the material

• Example Problem 9-2

A 12-ft long pin-ended column is made of 6061-T6 aluminum alloy [$E = 10(10^6)$ psi and $\sigma_y = 40,000$ psi]. The column has a hollow circular cross section with an outside/inside diameter of 5 in./4in.

- The smallest slenderness ratio for which the Euler buckling load equation is valid

- Critical buckling load

• Example Problem 9-3

Two $51 \times 51 \times 3.2$ mm structural angles (gyration radius: $r_z = 10.1$ mm, $r_x = 15.9$ mm A = 312 mm², E = 200 GPa) 3m long will be used as a pin-ended column. Determine the slenderness ratio and the Euler buckling load if

- The two angles are not connected, and each acts as an independent member.
- The two angles are fastened together to act as a unit.

9.3 Effects of different idealized end conditions

- The effective column length can be used for different end conditions: the distance between successive inflection points or points of zero moments.

9.3 Effects of different idealized end conditions

• Example Problem 9-4

A 10-ft long structural steel column [E = 29,000 ksi] must support an axial compressive load P. The column has a 1×2 -in. rectangular cross section.

- Max. safe load for the column if a factor of safety of 2 with respect to failure by buckling is specified.

- Euler's formula is valid when the axial compressive stress for a column is less than the yield strength.

Euleur buckling condition: L/r > 140 (steel columns)

Short compression condition: L/r < 40 (steel columns)

- Intermediate range: the range between the compression block and the slender ranges

Codo No	Course	Magnitul	Compression-Block and/or Intermediate-Range Formulas and Limitations		
Code No.	Source	Material	(L/r) is the effective ratio L'/r		Slender Range
1	а	Structural steel with a yield	$0 \leq rac{L}{r} \leq C_c$	$\sigma_{\rm all} = \frac{\sigma_{\!\!\! y}}{\rm FS} \Biggl[1 - \frac{1}{2} \Biggl(\frac{L/r}{C_c} \Biggr)^2 \Biggr]$	$rac{L}{r} \ge C_c$
		point σ_y		$C_c^2 = \frac{2\pi^2 E}{\sigma_y}$	$\sigma_{\rm all} = \frac{\pi^2 E}{1.92 (L/r)^2}$
				$FS = \frac{5}{3} + \frac{3}{8} \left(\frac{L/r}{C_c}\right) - \frac{1}{8} \left(\frac{L/r}{C_c}\right)^3$	
2	b	2014-T6 (Alclad) Aluminum alloy	$\frac{L}{r} \le 12$	$\sigma_{all} = 28 \text{ ksi}$ = 193 MPa	$\frac{L}{r} \ge 55$
			$12 \le \frac{L}{r} \le 55$	$\sigma_{\rm all} = \left[30.7 - 0.23 \left(\frac{L}{r}\right)\right] \rm ksi$	$\sigma_{\rm all} = \frac{54,000}{\left(L/r\right)^2} \rm ksi$
				$= \left[212 - 1.585 \left(\frac{L}{r}\right)\right] MPa$	$=rac{372(10^3)}{(L/r)^2}$ MPa
3	b	6061-T6 Aluminum alloy	$\frac{L}{r} \le 9.5$	$\sigma_{\rm all} = 19 \rm ksi$ = 131 MPa	$\frac{L}{r} \ge 66$
			$9.5 \le \frac{L}{r} \le 66$	$\sigma_{\rm all} = \left[20.2 - 0.126 \left(\frac{L}{r}\right)\right] \rm ksi$	$\sigma_{\rm all} = \frac{51,000}{\left(L/r\right)^2} \rm ksi$
			10	$= \left[139 - 0.868 \left(\frac{L}{r}\right)\right] MPa$	$=rac{351(10^3)}{(L/r)^2}$ MPa
4	с	Timber with a rectangular	$\frac{L}{d} \le 11$	$\sigma_{\rm all} = F_c^*$	$k \le \frac{L}{d} \le 50$
		cross section $b \times d$ where $d < b$	$11 \le \frac{L}{d} \le k$	$\sigma_{\rm all} = F_c \left[1 - \frac{1}{3} \left(\frac{L/d}{k} \right)^2 \right]$	$\sigma_{\rm all} = \frac{0.30E}{\left(L/d\right)^2}$
				$k = 0.671 \sqrt{E/F_c}$	

 Table 9-1
 Some Representative Column Codes for Centric Loading

- The strength of materials has little effect on the allowable stress in long columns.

• Example Problem 9-5

Two structural steel C10 × 25 $[r_x = 3.52 \text{ in.}, r_y = 0.676 \text{ in.}, x_c = 0.617 \text{ in.}, A = 7.35 \text{ in.}^2, \sigma_y = 36 \text{ ksi}, E = 29,000 \text{ ksi}$] channels are latticed 5 in. back to back to form a column.

- Max. allowable load for effective lengths of 25 ft and 40 ft. (Use Code 1 for structural steel

• Example Problem 9-6

A Douglas fir [E = 11 GPa, and $F_c = 7.6$ MPa] timber column with an effective length of 3.5 m has a 150×200 -mm rectangular cross section.

- Max. compressive load permitted by Code 4

4 c Timber with a rectangular cross section
$$b \times d$$
 where $d < b$ $\frac{L}{d} \le 11$ $\sigma_{all} = F_c^*$ $k \le \frac{L}{d} \le 50$
 $11 \le \frac{L}{d} \le k$ $\sigma_{all} = F_c \left[1 - \frac{1}{3}\left(\frac{L/d}{k}\right)^4\right]$ $\sigma_{all} = \frac{0.30E}{(L/d)^2}$

• Home work problems: 9-4, 15, 25, 40, 53