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Abstract 

An invserse scheme is developed for reservoir characterization using ensemble Kalman 

filter (EnKF) and non-parametric approach. EnKF has been studied by many researchers due 

to its novelties on easy access to parallel processing, recursive data processing, and 

quantifying the amount of uncertainties on its results. Previous studies have shown poor 

characterization results with non-Gaussian permeability distributions. 

In this study, non-parametric approach is used to characterize permeability distribution 

with strong non-Gaussian characteristics. Normal score transform can be used to transform a 

distribution, which is explained by non-parametric approach, to a Gaussian distribution. The 

Gaussian assumption of EnKF in the assimilation step can be satisfied by using normal score 

transformation.  

For characterization effect of initial ensembles from different distributions, initial 

ensembles with higher similarity to the reference distribution would have more successful 

characterization results than with less similarity. Additional improvement in reservoir 

characterization results is obtained by using normal score transformation to normalize 

permeability values in the EnKF assimilation step.  

Keywords: ensemble Kalman filter, reservoir characterization, non-parametric approach, 
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normal score transformation, highly non-Gaussian distribution 

 

Introduction 

Making a reliable production forecasting of given reservoir is essential for having an 

optimum production schedule, deciding further development plan and accessing reserves. For 

having reliable production forecasting, all available dynamic data, such as production data 

and pressure data of each well, are needed to be fully utilized in reservoir characterization. 

Conventional characterization methods, which are based on gradient of objective function, 

have strengths on quick convergence. However they have deficiencies on converge on local 

minimum and they should re-process all procedures to update and honor additional dynamic 

reservoir data acquired as the reservoir produce more oil, gas, and water.  

Ensemble Kalman Filter (EnKF) is a characterization method based on stochastic approach 

which can conduct characterization by using the difference between estimations on ensemble 

members, equi-potential realizations of parameters including uncertainties, and actual 

observations with covariance and uncertainties of observation. It is characterized by its 

suitability on real-time characterization and to give quantitative assessment on uncertainties 

on produced values by EnKF (Evensen, 1994). It has been mainly studied and utilized on 

Earth Science, especially meteorology on weather forecasting and oceanography on oceanic 

current analysis. Since EnKF is introduced in reservoir engineering as a reservoir 

characterization method in 2002, by Naevdal and Vefring, it is actively discussed and 

researched for real-time reservoir characterization.     

In the previous studies, there are two distinguished problems on reservoir characterization 

using EnKF. First problem is overshooting and undershooting problem which is having 

unreasonable big or small value on permeability or porosity from the result of EnKF 

applications. Second one is the filter divergence problem, forecasting of dynamic values, like 
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production rate or well flowing pressure, is diverged from actual values.  

In the previous studies, there were researches on the effect of number of ensemble 

members on characterization results (Wen and Chen, 2005; Park et al., 2005; Evensen et al., 

2007). However there are little studies on the effect of generation of ensemble members and 

characterization results. There are also no studies for the EnKF application scheme on 

parameters which have distribution characteristics far from Gaussian, which is the main 

assumption on parameter distribution on EnKF.  

In this study, EnKF application for reservoir characterization on a permeability field which 

has highly non-Gaussian distribution on its parameter values is assessed. It mainly consists of 

generation of initial ensemble members which are generated by considering distribution 

characteristic of parameters to characterization and using proper transformation of parameters 

to meet Gaussian assumption on EnKF.  

 

Ensemble Kalman Filter 

Kalman Filter (KF) algorithm is a recursive process which minimizes estimation error in 

linear models and suitable for real time noise filtering (Kalman, 1960). Ensemble Kalman 

Filter was developed to adapt KF algorithm for nonlinear filtering problems (Evensen, 1994). 

EnKF uses ensemble members, multiple equi-potential realizations generated by using 

available data, such as observations, for independent forecasting. It assumes the mean of 

ensemble members as a true value of parameter and considers their covariance as a measure 

of the estimation error. EnKF is consisted in two steps, forecasting step which gives 

estimation and measure of estimation error and assimilation step which gives corrected value 

by considering observations and correction error estimation. Forecasting step can be stated by 

following equations.  
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         (1) 

        (2) 

          (3) 

Equation (1) means forecasting by forward model. In this study, forward model is 2 Phase 

Black Oil IMPES simulator that considers oil and water for two phases. Subscript k is the 

time step, x is the state variable, u is the control variables such as boundary conditions. 

Postscript “^” means the variables which are input in forward model and comes out from 

forward models are not true values, but estimations. Priori covariance matrix of estimation is 

expressed by equation (2). Nୣ means the numbers of ensemble members. Postscript (-) 

means it is priori state vector. Equation (3) is estimate error of ensemble member. Subscript j 

means its identification of j-th ensemble and xത୩ means average of all ensemble members. In 

the circumstance that it is impossible to know the true value of concerning object, 

considering the average of all ensemble as true is one of the most important assumptions on 

EnKF.  

   As observations are available in time step k, EnKF generate updated parameter by 

combining estimated value and observation values and gives quantitative assessment of its 

uncertainties. Equation (4) is Kalman Gain which is calculated by correlation of priori 

estimation error and observation error covariance. Matrix H is consisted by 0 and 1 and it is 

used to correspond priori estimation error matrix and observation error matrix in the situation 

which sizes are not the same.  

         (4) 

         (5) 

        (6) 

By combining Kalman Gain and equation (5), assimilation that reflects observation is 

achieved. As can be seen is equation (5), the assimilation will be small if the difference 

between estimation and observation is small, and assimilation will be achieved in the way to 

reflect observation if estimation error is comparatively bigger than observation error. Left had 
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side of equation (5) has no superscript (-) means it is posteriori state vector that is generated 

as assimilation. Equation (6) is posteriori covariance matrix which assesses the amount of 

uncertainties after assimilation. This whole procedure of EnKF can be summarized in Figure 

1.  

 

Reservoir Characterization using EnKF 

Many of previous studies generate synthetic permeability fields which has lognormal 

distributions under the assumption that the distribution of permeability values would follow 

log-normal distribution (Naevdal, 2003; Wen and Chen, 2005; Park, 2006; Evensen, 2007). 

They generate initial ensemble members by using sample values of permeability from 

injection and production wells by assuming they are acquired by coring from each well. The 

generation of initial ensemble members can be described as Figure 2. To make permeability 

of the generated initial ensemble members following the lognormal distribution, they took the 

logarithm value of sampled permeability to generate the permeability field by geostatistics 

such as Sequential Gaussian Simulation (SGS) and then convert those logarithm values to 

real permeability by using exponential.  

In the assimilation step, to meet the Gaussian assumption on distribution of priori state of 

state vector in EnKF, logarithm permeability values of all ensemble members are used in 

equations (2)~(6) to update parameters to honor the observations on the given time step. After 

the assimilation step, all assimilated parameter should be converted to actual value by 

exponential to be used in forecasting step. The EnKF update procedure is explained by Figure 

3.  

If the distribution of permeability value is highly non-Gaussian in a given reservoir, every 

initial ensemble has less similarity with actual field in terms of distribution characteristics. It 

also uses logarithm value of permeability on the assimilation step which possibly misses the 
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distribution characteristics of given permeability field. Those problems could be possible 

reasons of overshooting problems and filter divergence on previous studies.  

 

Non-parametric Approach and lognormal distribution in EnKF for reservoir with 

highly non-Gaussian distribution of permeability value 

Parametric approaches explain the distribution by mathematical assumptions and some 

parameters, such as mean and variance. In case the distribution could not be simplified by 

parameter approaches, we can explain the distribution by couple of discrete values of it and 

their cumulative possibilities for the given values, nonparametric approach. If we have 

empirical understanding of shape of parameter distribution, we can explain the distribution by 

using non-parametric approach. To apply those parameters explained by non-parametrically 

to methods based on Gaussian assumption, it is possible to use normal score transformation 

to meet the assumption. The procedure for transformation a value explained non-

parametrically to Gaussian distribution can be explained by Figure 4. Left graph is the 

empirical CDF of the distribution which parameters are explained non-parametrically. Right 

graph is CDF of standard normal distribution. The actual transformation is linked by using 

cumulative proportion as seen in Figure 5.  

If we know the rough characteristics of permeability distribution for the reference field, 

empirical CDF which are more representative than normal distribution, it is possible to 

generate initial ensemble members which contain the distribution characteristics of reference 

field. The process to generation of initial ensembles by normal score transformation is as 

same as conventional generation of initial ensembles as explain in Figure 2, except it uses 

normal score transformation, rather than log and exponential transformation.   

If the ensemble members have non-Gaussian permeability distribution, those parameters 

can be transformed to meet Gaussian assumption in the assimilation step by normal score 
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transformation, replacing log and exponential transformation to normal score transformation 

in Figure 3.  

 

Results 

A synthetic reservoir is generated as a reference field with highly non-Gaussian 

permeability distribution. It is 2D synthetic permeability field with size of 1,000 ft by 1,000 ft 

with 25 ft height. It consists by 20 by 20, total 400 grid blocks. Average permeability is 49.5 

md, with standard deviation of 23.9md, 5md as minimum and 100md as its maximum. 

Porosity for all blocks is 0.2. Figure 6(a) is the generated reference field and Figure 7(a) is its 

probability distribution. It can be seen that the reference field is far from normal distribution. 

Table 1 contains default field data of the reference field. The reference field is produced by 

inverted five-spot pattern with waterflooding which has one water injection well inter center 

and four producing wells in the corners. Triangle in the center of Figure 6(a) is injector and 4 

circles in the corners of Figure 6(a) are producers. Observations are made for 7 times, 50, 100, 

200, 300, 400, 500, 600 days from 1st production.  

For the generation of initial ensembles, 9 sampled permeability values from 9 points in 

Figure 6(a) are used in SGS. For the assimilation step, oil and water production rates from 4 

producers and well flowing pressure (Pwf) from injector, total 9 dynamic data, are used. The 

reference production data and Pwf are on Figure 8(a) and (b).  

4 different sets of initial ensembles are generated, Base case which use logarithm values 

(conventional approaches from previous studies), Case 1 with triangle pdf, Case 2 with CDF 

from core samplings, Case 3 with CDF of the reference field. Base case is naturally follows 

lognormal distribution.  

To see the effect of initial ensembles on EnKF characterization results, 4 different initial 

ensembles are used separately in conventional EnKF reservoir characterizations explained in 
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Figures 2 and 3. Characterized fields are shown in Figures 6(b), (c), (e), and (g). Result of 

Base case shows that EnKF figure out the main trend of high-low permeability, but it shows 

typical problems like overshooting on parameter values as seen too many red grids which 

means grids they have bigger permeability than 100md. Case 1 shows worse result than Base 

case. Case 2 and Case 3 show improved results than Base case. It shows less number of grids 

with overshooting. Table 2 compares the sum of square errors (SSE) of characterized 

permeability of each case and the reference values. It can be seen that Case 1 has the worst 

result, Case 2 has 22.4% and Case 3 has 17 % SSE from Base case, which means Case 3 as 

the best result.  

To see the result of meeting the Gaussian assumption on EnKF in the assimilation steps, 

comparisons were made Case A, Case B and Case C which used normal score transformation 

in the assimilation steps. Assimilation steps are conducted as seen in Figure 7 with normal 

score transformation which is explained in Figure 4 and 5. Figures 6(d), (f) and (h) are the 

results of Case A, B, and C, respectively. Table 2 has the SSEs from each case. There are 

additional reductions on SSE which directly mean additional improvements on 

characterization results. Distinguishable reduction on red grids which means the results has 

much less number of grids with overshooting in as a characterization results can be noticed. 

Figure 7 shows the pdf of characterization results. It can be seen that with initial ensembles 

which show higher resemblance with the reference field and proper transformation which 

leads to meet the Gaussian assumption of EnKF could lead improved characterization results. 

To compare the characterization results in terms of dynamic data, such as production rates, 

reservoir simulation by using updated permeability fields of each case is conducted. Table 3 

is SSE of OPR and WPR between those of the reference field and updated fields of each case. 

As same as SSEs of permeability in Table 2, updated field with initial ensembles which has 

more resemblance with probability distribution of the reference field permeability shows less 
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SSE. It also shows additional improved results when it use normal score transformation in 

assimilation steps to meet Gaussian assumption.   

 

Conclusions 

This study presents the EnKF applications using non-parametric approach and normal 

score transformation for fields which have parameters with highly non-Gaussian distribution. 

From the study, it is possible to get improved characterization results.  

1. Using initial ensembles which reflect the distribution characterization of the reference 

field would improve the characterization results. The higher resemblance would lead 

the better results on characterization.  

2. By using non-parametric approach and normal score transformation in the assimilation 

steps, additional improvement on characterization can be achieved. It could prevent the 

tendency of becoming lognormal distribution after adapting conventional EnKF to 

permeability field characterization.  

3. Presented approach shows improved results even in the case when only a part of 

reference distribution is used. Higher similarities on assumed distributions lead better 

characterization results in terms of both characterized permeability values and 

simulated dynamic performances of reservoir, OPR and WPR. It seems possible to 

assess properness of assumed distribution features by comparing the resemblance of 

simulated dynamic data and those of the reference field.     
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Table 1 
The Default data of the reference field 

 
Initial water saturation 0.25 

Initial pressure, psia 2,000 

Productivity index, bbl/day-psi 0.75 

Oil viscosity, cp 3 

Water viscosity, cp 1 

Injection well condition, stb/day 500 

Production well condition, psia 1,000 

 
Table 2 

Sum of square errors(SSE) of permeability values between the reference and updated 
permeability by each cases 

 SSE, 2md  Percentage, % 

Base case 15.8E+5 100 

Case 1 132.0E+5 835.3 

Case A 8.8E+5 55.8 

Case 2 3.5E+5 22.4 

Case B 2.8E+5 17.7 

Case 3 2.7E+5 16.0 

Case C 2.1E+5 13.1 

 
Table 3 

Sum of square errors(SSE) of production data between the reference and updated 
permeability by each cases 

 SSE of OPR, 
2[ ]bbl

day  

SSE of WPR, 
2[ ]bbl

day  

Base case 7.5E+5 (100%) 1.3E+5 (100%) 

Case 1 19.5E+5 (258.4%) 6.0E+5 (471.16%) 

Case A 9.5E+5 (126.5%) 2.2E+5 (172.09%) 

Case 2 1.9E+5 (25.8%) 0.1E+5 (10.76%) 

Case B 0.7E+5 (9.8%) 0.05E+5 (4.66%) 

Case 3 1.5E+5 (19.3%) 0.07E+5 (5.45%) 

Case C 0.2E+4 (3.3%) 0.03E+5 (2.14%) 
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Figure 1. The flow diagram of Ensemble Kalman filter 
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