Reactor Energy Removal

(Reactor Energy Removal)

ullet

- Power Densities for the Reference Reactor and Other System
- Power Peaking Factors for Reactors of Various Geometric Shapes
- Flux shape and Power density
- Power distribution
- Cross section
- Temperature profile
- Axial Temperature profiles
- Heat flux vs. surface temp
- Critical heat flux effects
- Characteristic relationship
- Characteristic relationship
- Effect CR Insertion (Axially)
- Effect CR Insertion (Radially)
- Annular containment structure(LMFBR)
- Radionuclide exposure pathways(Human)
- Radionuclide exposure pathways (Other)
- Fission Products of Significance in Internal Exposure from Reactor Accidents

Table 7-1, Power Densities for the Reference Reactor and Other System

Sustam	Power density (KW/liter)				
System	Core average	Fuel average	Fuel maximum		
Fossil-fuel plant	10	-	-		
Aircraft turbine	45	-	-		
Rocket	20,000	-	-		
HTGR	8.4	44	125		
CANDU	12	110	190		
BWR	56	56	180		
PWR	95-105	95-105	190-210		
LMFBR	280	280	420		

Table 7-2. Power Peaking Factors for Reactors of Various Geometric Shapes

Coopetry	Peaking factor			
Geometry	Total	Constituents		
Sphere, bare	3.29			
Infinite slab, bare	1.57			
Cuboid, bare	3.87	x = 1.57		
		y = 1.57		
		z = 1.57		
Infinite cylinder, bare	2.32			
Cylinder, bare	3.64	r = 2.32		
		z = 1.57		
Cylinder, fully reflected	2.03	r = 1.50		
		z = 1.35		
Cylinder, fully reflected	1.62	r = 1.20		
Enrichment-zoned radially		Z = 1.35		

Figure 7-1 Flux shape and Power density

Figure 7-2 Power distribution

Figure 7-3 Cross section

FIGURE 7-3 Cross section of a typical fuel pin (not drawn to scale).

Basic features of the temperature profile across a clad fuel pin.

Figure 7-5 Axial Temperature profiles

FIGURE 7-5

Axial temperature profiles for the fuel pellet center line, the clad, and the coolant in a reactor with a cosine flux distribution.

Figure 7-6 Heat flux vs. surface temp.

Figure 7-7 Critical heat flux effects

FIGURE 7-7

Critical heat flux effects for (a) pressurized and (b) boiling coolants. (Adapted from L. S. Tong, Boiling Crises and Critical Heat Flux, U.S.A.E.C., TID-25887, 1972.)

Figure 7-8 Characteristic relationship

FIGURE 7-8

Characteristic relationship between the core average $\langle q' \rangle$, average channel $(q')_{ave ch}$, hot channel $(q')_{hot ch}$, and critical q'_c linear heat rates along the core axis of a PWR.

Figure 7-9 Effect CR Insertion (Axially)

NORMALIZED POWER

FIGURE 7-9

Effect of control-rod group insertion on PWR power shape axially for the core as a whole.

100

FIGURE 7-10

Effect of control-rod group insertion on PWR power shape radially in a plane through the control rods.

Figure 17-10 Annular containment structure(LMFBR)

Annular containment structure for an LMFBR. (Courtesy of Clinch River Breeder Reactor Plant.)

Figure 17-11(b) Radionuclide exposure pathways (Other)

FIGURE 17-11

Generalized radionuclide exposure pathways for: (a) human populations and (b) other organisms. (Courtesy of "Nuclear Power in Canada: Questions and Answers," published by the Canadian Nuclear Association, 65 Queen St. W, Toronto, Ontario M5H 2M5.)

Table 17-1, Fission Products of Significance in Internal Exposure from Reactor Accidents

Isotope	Radio- active half-life T _{1/2}	Fission yield (%)	Deposi- tion fraction [‡]	Effective half-life	Internal dose (mrem/ µCi)	Reactor inventory [§] [Ci/kW(th)]	
						400 Days	Equilibrium
Bone			· · · _ · ·				-
⁸⁹ Sr	50 d	4.8	0.28	50 d	413	43.4	43.6
90 Sr-90 Y	28 y	5.9	0.12	18 y	44,200	1.45	53.6
91 Y	58 d	5.9	0.19	58 d	337	53.2	53.6
¹⁴⁴ Ce- ¹⁴⁴ Pr	280 d	6.1	0.075	240 d	1,210	34.7	55.4
Thyroid							
¹³¹ I	8.1 d	2.9	0.23	7.6 d	1,484	26.3	26.3
¹³² I	2.4 h	4.4	0.23	2.4 h	54	40.0	40.0
1 ³³ I	20 h	6.5	0.23	20 h	399	59 <i>.</i> 0	59.0
¹³⁴ I	52 m	7.6	0.23	52 m	25	69.0	69.0
¹³⁵ I	6.7 h	5.9	0.23	6.7 h	124	53.6	53.6
Kidney							
¹⁰³ Ru- ^{103m} Rh	40 d	2.9	0.01	13 d	6.9	26.3	26.3
¹⁰⁶ Ru- ¹⁰⁶ Rh	1.0 y	0.38	0.01	19 d	65	1.8	3.5
^{129 m} Te- ¹²⁹ Te	34 d	1.0	0.02	10 d	46	9.1	9.1
Muscle	· .						
¹³⁷ C ₈ – ¹³⁷ mBa	33 y	5.9	0.36	17 d	8.6	1.2	53.6

TABLE 17-1 Fission Products of Significance in Internal Exposure from Reactor Accidents[†]

[†]Adapted from T. J. Burnett, "Reactors, Hazard vs. Power Level," Nucl. Sci. Eng., vol. 2, 1957, pp. 382-393.

[‡]Fraction of inhaled material that deposits in the indicated tissue.

[§]A somewhat typical average residence time for fuel in an LWR is 400 full-power days; equilibrium inventories are achieved at times that are long compared to the radionuclide half life.