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Table 7-1 , Power Densities for the Reference Reactor and Other System

System

Power density (KW/liter)

Core average

Fuel average

Fuel maximum

Fossil-fuel plant
Aircraft turbine
Rocket
HTGR
CANDU
BWR
PWR

LMFBR

10
45
20,000
8.4
12
56
95-105

280

44

110

56

95-105

280

125

190

180

190-210

420




Table 7-2. Power Peaking Factors for Reactors of Various Geometric Shapes

Peaking factor
Geometry )
Total Constituents
Sphere, bare 3.29
Infinite slab, bare 1.57
Cuboid, bare 3.87 x =1.57
y = 1.57
z=1.57
Infinite cylinder, bare 2.32
Cylinder, bare 3.64 r=2.32
z=1.57
Cylinder, fully reflected 2.03 r=1.50
z=1.35
Cylinder, fully reflected 1.62 r=1.20
Enrichment-zoned radially Z=1.35




Figure 7-1 Flux shape and Power density
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Flux shapes and average power densities for bare and reflected slab geometries.



Figure 7-2 Power distribution
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FIGURE 7-2
Power dijstributions for one- and two-batch fuelmanagement patterns in a bare-slab geometry.



Figure 7-3 Cross section

FIGURE 7-3
Cross section of a typical fuel pin (not drawn to scale).



Figure 7-4 Temperature profile
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Basic features of the temperature profile across a clad fuel pin.



Figure 7-5 Axial Temperature profiles
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FIGURE 7-5

Axial temperature profiles for the fuel pellet center line, the clad, and the coolant in a reactor with
a cosine flux distribution.



Figure 7-6 Heat flux vs. surface temp.
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FIGURE 7-6

Heat flux versus surface temperature for a heated pin in a pool of water at saturation temperature.



Figure 7-7 Ciritical heat flux effects
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Cri?i.ca] hefs\t flux effects for (a) pressurized and (b) boiling coolants. (Adapted from L. S. Tong
Boiling Crises and Cvitical Heat Flux, U.S.A.E.C., TID-25887, 1972.) ’



Figure 7-8 Characteristic relationship
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Characteristic relationship between the core average (¢, average channel (§')ave ch, hot channel
(@' )not ch» and critical g, linear heat rates along the core axis of a PWR,



Figure 7-9 Effect CR Insertion (Axially)
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Effect of control-rod group insertion on PWR power shape axially for the core as a whole.



Figure 7-10 Effect CR Insertion (Radially)
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Effect of control-rod group insertion on PWR power shape radially in a plane through the
control rods.



Figure 17-10 Annular containment structure(LMFBR)
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FIGURE 17-10
Annular containment structure for an LMFBR. (Courtesy of Clinch River Breeder Reacter Plant.)



Figure 17-11(a) Radionuclide exposure pathways(Human)
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Figure 17-11(b) Radionuclide exposure pathways (Other)
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FIGURE 17-11

Generalized radionuclide exposure pathways far: (¢) human populations and () other organisms.
{Courtesy of *““Nuclear Power in Canada: Questions and Answers,” published by the Canadian
Nuclear Association, 65 Queen St. W, Toronto, Ontario MSH 2MS5.)



Table 17-1 , Fission Products of Significance in Internal Exposure from
Reactor Accidents

TABLE 17-1 >
Fission Products of Significance in Internal Exposure from Reactor Accidentst
Radio- Internal Reactor inventory§
active Fission Deposi- dose [Ci/xW(th)]
half-life vyield tion Effective (mrem/
Isotope Tya (%) fraction¥  half-life pCi) 400 Days Equilibrium
Bone
8% Sr 504 4.8 0.28 50d 413 43.4 43.6
0 8r-20Y 28 y 5.9 0.12 18y 44,200 1.45 53.6
Ny 58d 5.9 0.19 58d 337 53.2 53.6
143 Ce-144Pr 280 d 6.1 0.075 240d 1,210 34.7 55.4
Thyroid
17y 8.14 29 0.23 7.6d 1,484 26.3 26.3
1321 24h 4.4 0.23 24h 54 40.0 40.0
1331 20 h 6.5 0.23 20 h 399 59.0 59.0
1341 52 m 7.6 0.23 52 m 25 69.0 69.0
1351 6.7h S§.9 0.23 6.7h 124 53.6 53.6
Kidney
103 Ru~193MRL  40d 29 0.01 13 d 6.9 26.3 26.3
106 Ru~1"¢Rh 1.0y 0.38 0.01 19d 65 1.8 3.5
125MTe-129Te 34 d 1.0 0.02 10d 46 9.1 9.1
Muscle _
137Cs-137MB,y 33y 5.9 0.36 17 4 8.6 1.2 53.6

TAdapted from T. J, Burnett, “Reactors, Hazard vs. Power Level,” Nucl. Sci. Eng., vol. 2, 1957, pp.
382-393.

IFraction of inhaled material that deposits in the indicated tissue.

A somewhat typical average residence time for fuel in an LWR is 400 full-power days; equilibrium
“'inventories are achieved at times that are long compared to the radionuclide half life,



