2009 spring

Advanced Physical Metallurgy "Amorphous Materials"

04. 01. 2009

Eun Soo Park

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1

Contents for previous class

• Measuring Glass Transition Temperature

• Measuring Glass Transition Temperature

(3) Thermomechanical analysis (TMA):

Measure dimension changes under constant load, as function of temperature

• Measuring Glass Transition Temperature

(4) Dilatometry

- Used to monitor change in volume of polymer plus surrounding liquid as a function of temperature by changes in height of liquid level in capillary tube.
- The liquid does not undergo sharp transitions when heated, but the polymer does.
 - Therefore, an abrupt increase in the slope of a volume versus temperature graph is attributed to a T_g transition.

• Measuring Glass Transition Temperature

(5) The Dynamic Mechanical Analysis is a high precision technique for measuring the viscoelastic properties of materials. It consists in applying a sinusoidal deformation to a specimen of material and measuring the resulting force transmitted through the specimen.

- The magnitude of the applied stress and the resultant strain are used to calculate the stiffness of the material under stress.
- The phase lag between the two (or δ) is used to determine Tanδ, the damping factor.

Contents for previous class

- Glass: all types of bonding
- Glass transition: Volumetric measurement

Contents for previous class

- Thermodynamics for glass transition
 - ~ not thermodynamic nature
 - ~ close to second order phase transition

 \implies at $T_g \rightarrow G$ changes continuously.

 \rightarrow V, H. S changes continuously.

- First derivatives of G (V, S, H) are continuous at T_T

$$V = \left(\frac{\partial G}{\partial P}\right)_T \qquad S = -\left(\frac{\partial G}{\partial T}\right)_P \qquad H = G - T\left(\frac{\partial G}{\partial T}\right)_P$$

 $\rightarrow \alpha_T C_P K_T$ changes discontinuously.

- Second derivatives of G (α , β , C_p) are <u>discontinuous</u> at T_T

$$C_P = \left(\frac{\partial H}{\partial T}\right)_P \qquad \alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_P \qquad \beta = \frac{-1}{V} \left(\frac{\partial V}{\partial P}\right)_T$$

Phase Transitions

Thermodynamically: what is possible! Kinetics: speed/rate of the transition.

Thermodynamical classification: first order & second order

$\Delta G = \Delta H - T \Delta S = 0$

• Order (degree) of transition

Continuous phase transitions:

occur when the minimum in the thermodynamic potential evolves smoothly into two equal minima.

An example is seen in the model of phase separation, along the co-existence line.

Aside: the phase transition as one moves across the co-existence line (from liquid to vapour) is fundamentally different. That transition is known as <u>"1st order</u>" and there are 2 minima in the potential throughout. In the transition the lowest minimum changes from liquid to vapour (and vice-versa). • Order (degree) of transition

- CD, DE, DP: Equilibrium of 2 phases
 - → latent heat
 - → Volume change
 - → 1st order transition

- T and P beyond point p
- : vapor and liquid are indistinguishable.
- → Single phase: only property changes.
- \rightarrow No boiling pt. no latent heat
- → Higher order transition 10

First-order transition:

a discontinuity occurs in the first derivative of the free energy with respect to T and P.

Discontinuous enthalpy, entropy and volume

$$\frac{dG}{dT} = -S$$
$$\frac{dG}{dP} = V$$

Examples: CsCl structure to NaCl structure; T =479 C. $\Delta V = 10.3 cm^{3}$ $\Delta H = 2.424 kJ / mol$

Melting, freezing, vaporization, condensation...

First-order transition:

a discontinuity occurs in the first derivative of the free energy with respect to T and P.

Discontinuous enthalpy, entropy and volume

$$\frac{dG}{dT} = -S$$
$$\frac{dG}{dP} = V$$

Examples: CsCl structure to NaCl structure; T =479 C. $\Delta V = 10.3 cm^{3}$ $\Delta H = 2.424 kJ / mol$

Melting, freezing, vaporization, condensation...

First-order transition:

 T_{C}

Second order transition: Discontinuities in the second derivatives of the free energy, i.e. heat capacity, thermal expansion, compressibility.

Enthalpy, entropy and volume, continuous functions of T

$$\frac{\partial^2 G}{\partial P_T^2} = \frac{\partial V}{\partial P_T} = -V\beta(compressibility)$$
$$\frac{\partial^2 G}{\partial P \partial T} = \frac{\partial V}{\partial T_P} = V\alpha(thermal \exp ansion)$$
$$\frac{\partial^2 G}{\partial T^2} = -\frac{\partial S}{\partial T_P} = -\frac{C_P}{T}$$

Measurement of heat capacities (calorimetry)

Order-disorder transition: 2nd order transition

- β -brass.
- ~ Brass is a 50:50, Cu:Zn alloy with a b.c.c structure.
- ~ At low temperatures, T<460K, the Zn and Cu atoms for an ordered structure (eg. Cu atoms in the body-centre sites in top diagram)

- Two types of site call them: A-sites and B-sites.
- At high T, equal probability for any site to be occupied by Cu or Zn.

Order-disorder transition: 2nd order transition

• Transition in β -brass

State of order:

- Above T_c, the order parameter, ω, is zero
 Cu and Zn atoms have random lattice sites.
- ▶ Below T_c , the order parameter increases rapidly and approaches full order as $T \rightarrow 0$.

The order parameter

Mean-field theory

- The mean-field theory ignores fluctuations and spatial variation. Thus a single parameter can be used to describe the average state of the system.
- In the present case, we look for a variable behaving like:

Order parameter

) no order l full order

▶ with n_A as the number of Cu atoms on A sites n_B as the number of Cu atoms on B sites $n_A + n_B = N$. (2N sites in all)

An order parameter with the desired property is

$$\boxed{\omega = \frac{n_A - n_B}{n_A + n_B}} \Rightarrow n_A = \frac{1 + \omega}{2} \quad ; \quad n_B = \frac{1 - \omega}{2}$$

 $\omega = \tanh(T_c \omega/T)$

- The solution can be seen from a graphical construction:
- Plot ω = αx and ω = tanh(x), for different α=T/T_c is varied. Intersection gives the solutions

Order-disorder transition: 2nd order transition

- Transition in β-brass
 - Heat capacity

• Once ω is known, other thermal properties can be calculated. e.g. thermal capacity $C = \partial U / \partial T$

Order-disorder transition: 2nd order transition

Other examples (there are many):

Isotropic – nematic transition in liquid crystals:
 appearance of orientational order (liquid crystals have no long-range, positional order).

 Ferromagnetic - paramagnetic transition: manifests itself as a spontaneous polarisation, in zero external field.

Contents for previous class

derivative of thermodynamic properties

Glass transition defined by typical viscosity n. Arbitrary but convenient

Similar behaviour for relaxation times obtained using different methods (dielectric relaxation, NMR) . α relaxation time τ_{α}

Fragility

• Fragility ~ ability of the liquid to withstand changes in medium range order with temp.

~ extensively use to figure out liquid dynamics and glass properties corresponding to "frozen" liquid state

< Classification of glass >

Angell-plot (Uhlmann)

$$\qquad \qquad \eta = \eta_0 \exp[\frac{E_a}{RT}]$$

Fragile network glass : Vogel-Fulcher relation

$$\eta = \eta_0 \exp[\frac{B}{T - T_0}]$$

< Quantification of Fragility >

$$m = \frac{d \log \eta(T)}{d(T_{g,n}/T)} \bigg|_{T=T_{g,n}} = \frac{d \log \tau(T)}{d(T_g/T)} \bigg|_{T=T_{g,n}}$$

Slope of the logarithm of viscosity, η (or structural relaxation time, τ) at T_{q}

Strong curvature: 'fragile' glass. Organic (OTP: Orthoterphenyl), ionic (CKN: CaK NO3)

Weak curvature : 'strong' glass .covalent bonding, SiO2, ZnCl2, BeF2

NB: Arrhenius law $\tau(T) = \exp(E_a/k_BT)$

Covalent $E_a = 1 \text{eV} T_1 = 300K = (1/40)\text{eV} T_2 = 2000K = (1/6)\text{eV} \rightarrow \log_{10}(\tau_1/\tau_2) = 15$

Organic $E_a = 0$, 1eV $T_1 = 100K = (1/120)$ eV $T_2 = 500K = (1/24)$ eV $\rightarrow \log_{10}(\tau_1/\tau_2) = 4$

Fragility

Strong liquid vs. Fragile liquid

- Strong glass forming liquid
 - \rightarrow covalent bond of SiO₂
 - → small difference of C_p between SCL and glass at T_g (small difference of structure)
 - → SCL: relatively low entropy
- fragile glass forming liquid
 - → non-directional bonding (Van der waals bonding)
 - → large difference of C_p at T_g (relatively large free volume)
 - → SCL: relatively high entropy

Use of Gibbs energy curves to construct a binary phase diagram of the eutectic type.

