2009 spring

Advanced Physical Metallurgy "Amorphous Materials"

04. 13. 2009

Eun Soo Park

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1

Theories for the glass transition

A. Thermodynamic phase transition

- Glass transition
 - **H**, **V**, **S**: continuous $C_p a_T K_T$: discontinuous
- → by thermodynamic origin, 2nd order transition
- → In fact, it appears on some evidences that the glass transition is not a simple second-order phase transition.

B. Entropy

- *Heat capacity* \rightarrow dramatic change at Tg
- Description of glass transition by entropy (Kauzmann)

 $S = \int C_P d \ln T \rightarrow$ The slow cooling rate, the lower $T_g \rightarrow T_K$ or T_g^0

- → Measurement of Kauzmann temp. is almost impossible.
 - (\because very slow cooling rate \rightarrow longer relaxation time \rightarrow crystallization

Theories for the glass transition

relaxation behavior

Theories for the glass transition

C. Relaxation behavior

At high temp. (SCL + Liquid)

Liquid is characterized by equilibrium amorphous structure (metastable to crystalline in SCL).

Below glass transition: frozen-in liquid

→ glass transition is observed when the experimental time scale (1) (2) becomes comparable with the time scale for atom/molecule arrangement

→ If (1) > (2) → liquid/ (1) < (2) → glass/ (1)~(2) → glass transition (A concept of glass transition based on kinetic view point)

Tg depends on the rate at which the liquid is cooled. $T_G(r_3) < T_G(r_2) < T_G(r_1)$ if $r_3 < r_2 < r_1$

If cooling rate become fast, glass transition can be observed in liquid region in case of slow cooling rate.

- * Specific volume $V_3 < V_2 < V_1$
 - max. difference: ~ a few %
- Fast cooling → lower density structure
 → higher transport properties
- If sample is held at glass transition range, its configuration will change toward equil. amorphous structure.

"Relaxation behavior"

In fact, many properties of glass changes depending on relaxation behavior.

• In glass transition region, properties change with time.

* Process of relaxation behavior: stabilization

(equilibrium amorphous structure) \longrightarrow closely related to glass property

Correlation between structural relaxation time and cooling rate

<Specific volume of PdCuSi>

q=-dT/dt : cooling rate Q : activation energy of viscous flow

- Different glass state G₁, G₂ according to different cooling rate
- relaxation ($G_1 \rightarrow G_2$)
- High cooling rate (greater frozen-in structural disorder)
 - \rightarrow short relaxation time
 - \rightarrow high T_{g}
 - → low viscosity, high diffusivity great specific volume & internal energy

C. Relaxation behavior : rate of relaxation behavior

Specific Volume (density) of the glass depends on the time at a given T< T_g At intermediate temp. kinetics relaxation behavior (property change) may be largest.

* Property change for observation of relaxation behavior (by experiment)

• Stress relaxation: stress, pressure, voltage

 \rightarrow strain, volume, polarization

- Creep: constant strain \rightarrow stress
- driven oscillation
- damped free oscillation: decay of free oscillation of displacement

Stress relaxation, volume relaxation, enthalpy relaxation, creep

* Glass transition

• experimental observation time (t_0) • structural relaxation time (τ_r)

$$\rightarrow$$
 $t_0 > \tau_r$: liquid-like structure (S.C.L)

 $t_0 < \tau_r$: solid-like structure (glass)

 $\longrightarrow t_0 \approx \tau_r : \text{glass transition} \longrightarrow \text{liquid equilibrium amor. structure}$ (time scale is comparable)

(property of liquid-like structure suddenly changes to that of solid-like structure)

understanding of glass transition from viewpoints of relaxation
 ex) heat capacity

cf) Kauzmann paradox \longrightarrow Change of C_p in thermodynamic viewpoint

• As temp. decreased, decoupling of vibration mode from relaxation mode