2009 spring

Microstructural Characterization
of

Materials

05. 27. 2009

Eun Soo Park

Office: 33-316

Telephone: 880-7221

Email: espark@snu.ac.kr

Office hours: by an appointment



Diffraction Pattern

Diffraction pattern capability is one of the most important features of the
TEM, because we can relate the crystallography to the images
obtained.

The ability to determine crystallographic orientations locally (down to

the nm level) gives the TEM its great advantage over the SEM and
visible-light microscopes.

The questions that we can address using diffraction patterns obtained
in the TEM include the following:

|s the specimen crystalline? Crystalline and amorphous materials
have very different properties.

If it is crystalline, then what are the crystallographic characteristics
(lattice parameter, symmetry, etc.) of the specimen?

Is the specimen monocrystalline? If not, what is the grain
morphology, how large are the grains, what is the grain-size

distribution, etc?

What is the orientation of the specimen or of individual grains with

respect to the electron beam?
|s more than one phase present in the specimen?



Diffraction Pattern

Since the strength of the TEM is that you can obtain both
crystallographic data and an image from the same part of your

specimen, a method for interpreting the DP is essential.

The first step in any interpretation is to index your DP. Using the
DP, we can identify the crystal and its orientation. The positions
of the allowed hkl reflections are characteristic of the crystal
system.

Indexing associates each spot in the DP with a plane, (hkl), in the
crystal. From indexing of the spots, you can deduce the
orientation of the crystal in terms of the zone axis [UVW] in which
the indexed planes lie. This direction is normal to the plane of the
DP and anti-parallel to the electron beam. It is convention to
define [UVW] as the beam direction.



Diffraction versus the image
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Diffraction pattern
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The reciprocal lattice is important because it may be used as a tool In

conjunction with the Ewald sphere construction to simplify considerably the
Interpretation of electron diffraction patterns.

The reciprocal lattice has the following two properties:

(1) The vector g(hkl) to the point (hkl) of the reciprocal lattice is normal to
the plane (hkl) of the crystal lattice.

(2) The magnitude of g(hkl) is 1/d(hkl) where d(hkl) i1s the interplanar
spacing of the family of (hkl) planes.
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Figure (a) The relationship between crystal planes. (b) The relationship between equivalent reciprocal lattice points



« Thus we have defined the reciprocal lattice as an array of points, each
point corresponding to a particular (hkl) plane and defined by a vector g.
Figure (a) and (b) shows this relationship between planes in the real lattice
and points in the reciprocal lattice for a cubic crystal structure. Each point is
labeled with the particular (hkl) indices of the corresponding reflecting
plane. Note that a point (hkl) in reciprocal space [Figure (c)] is defined by
the steps ha™ along the x axis, kb™ along the y axis and Ic* along the z axis.
Thus, as shown in Figure (c):
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TEM: Experimental visualization of the reciprocal lattice
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Ewald Sphere: 3|4 ¥ 9] g-F 7 A< AAH

The Ewald sphere construction shares the properties of Bragg’s law.
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Figure 2.17 The specimen, transmitted and dif-

fracted beams and the diffraction pattern. Super-

imposed 1s the Ewald sphere construction in recip-
rocal space that describes the diffraction pattern



Ewald sphere construction:
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Bragg’s conditions are satisfied when the Ewald
sphere cuts a reciprocal lattice point specified by
the indices of the reflecting plane.



For diffraction In electron microscope:
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Standard spot pattern

« Example 1: f.c.c




Standard spot pattern

« Example 2: b.c.c




Electron Diffraction Pattern--Spot to Ring
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200 weV electrons - TEM mode
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Ring pattern

« Many fine particles in the illumination area, each of them
Is a single crystal and orientated randomly




Diffraction from polycrystalline phase

100 nm




Ring pattern

« Typical polycrystalline Au diffraction pattern




Amorphous materials

Diffused ring pattern
Reflecting the short range ordered structure

Often seen at contamination layer or on carbon
support film




TEM results for Nd;,Zr; Al ,Co4, alloy
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SADP and Dark-field TEM image



Major Factors affecting TEM Image Contrast
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