Microstructural Characterization of Materials

06. 08. 2009

Eun Soo Park

Office: 33-316

Telephone: 880-7221

Email: espark@snu.ac.kr

Office hours: by an appointment

Today's class contents

- "TEM Sample preparation"
 - Techniques
 - Considerations

Useful links for TEM sample prep.

- http://TEM.snu.ac.kr (김영운 교수님 연구실홈피)
- http://www.biotech.ufl.edu/EM/tips/tem.html
- www.kaker.com

Frequently, Sample Preparation > TEM Work

Materials

Metals Ceramics Semiconductors Powders, Fibers, ...

Purposes of Work

TEM - Microstructure, HREM

SEM - Topography, Microstructure

EPMA - Quantitative, Qualitative

EELS, ...

Preparation Methods

Ion milling, Tripod polishing, FIB, Ultramicrotomy,

TEM specimen must be ...

thin: less than $\sim 1000 \,\text{Å} \, (100 \,\text{nm})$

shape: 3mm disk type

representative of, and unchanged, from bulk

flat, not rugged

amount of transparent area

stable in the electron beam

very clean: free from extraneous particles or debris

(possibly from specimen preparation)

conductive, non magnetic

Methods: depend on both the type of material and the information to obtain.

How thin is thin?

TEM preparation methods

- Powder material
- Plan-view specimens: surface study
- Cross-section specimens: interface study,...

Powder specimen

- 1. Dissolve the powder into a solution, mix.
- Splash one drop of solution onto a copper grid with carbon supporting film
- 3. Wait until the specimen is dry before observing in TEM

- Grid
- ─ 주로 Cu 이고 Ni, Au, CP(Cu/Pd)도 이용

Techniques for Thin Foil

Cut/Grind/Polish

- Cutting
 - Diamond Saw
 - Cleave
- Grinding/Polishing
 - Sand Papers, Diamond Impregnated Disc
 - Lapping films (SiC, Al₂O₃, Diamond)*
- Lapping
 - Tripod Polisher*
- Ultramicrotomy*

^{*} Possible to make thin foils for TEM without further treatment

Cut/Grind/Polish

Diamond saw

• 3mm disc cutter

Ultrasonic Cutter

Slurry circular cutter

Physical cutting

Microtome

Electro-polishing

Basic

- Electrolytic etching/polishing
- Requirement: the specimen must be conductive
 - this process works like a galvanic cell. The applied current forces the anode(sample) into solution to deposit onto the cathode
- Initial condition of specimen surface influences polishing time
 -better the surface at start the higher the current density, the shorter the polishing time
- 전압, 전해액 조성, 반응 온도, 용액 순환 속도에 따라 시간 결정
- Window technique / Jet polishing

Electro-polishing

Jet polisher

* Every lab equipped with Jet polisher has their own know-how solution, but Perchloric acid+Acetic acid+Methanol(or Water) is the most widely used "universal" solution. - Safety First!

Electro-polishing

Ballman method (window technique)

Chemical solution

Tripod Polishing

- 정밀 연마용 치구 및 diamond lapping film을 사용하여 전 자 빔이 투과 가능한 두께까지 균일하게 연마하는 것
- 원래 반도체 소자 제작공정상에서 주사전자현미경 분석 결과 결함이 있다고 여겨지는 수 μ m크기의 특정 부위를 투과 전자현미경으로 정밀 분석하기 위해 고안.
- 저배율로 넓은 부위 동시 관찰에 매우 유리
- 아주 취약한 일부재료를 제외, 적용재료에도 제한이 없다. 비교적 높은 숙련도가 요구
- 시편표면에 최종 연마제 굵기에 해당하는 0.05 m 정도의 미세 흡집들이 남기 때문에 고분해상 획득 등 고배율 분석작 업에는 부적합
- 시편 표면을 짧은시간 동안 이온빔 polishing 하는 과정 필요 100-500Å정도로 얇은 박막층에 대한 평면 시편제작, ion milling 속도 차이가 매우 큰 충상재료의 단면시편 제작 등에 유용.

Advanced method

- * 방법: Tripod Polishing + Sector Speed Control
- * 장 점
 - 연마율 차이 제거
 - 넓은 관찰 영역
 - 저렴한 가격의 시편제작 방법
 - 깨끗한 이미지 관찰 가능 (최소의 이온빔 연마 시간)
- * 단점
 - 숙달 과정 요구

Mechanical Polishing

- * Tripod Polisher
 - Designed to accurately prepare SEM and TEM samples of pre-specified micron-sized regions
 - 이온 연마 시간을 획기적으로 단축
 - 이온 연마에 의한 단점 제거 (연마속도 차이, radiation damage, 오염, 시편의 가열, 평탄하지 않은 표면 등.)

*제작 과정

- 시편 절단 및 접착
- wax를 이용하여 시편을 pyrex에 부착
- 마이크로미터 조절
- Diamond abrasive film을 이용하여 wet polishing (순서 : 60, 30, 15, 6, 3, 1 micron)
- 실리카 현탁액을 뿌린 연마천 위에서 미세 연마
- 시편을 아세톤에 담궈 떼어 냄
- 시편을 pyrex에 부착하고 마이크로미터 조절
- wedge 부분이 1micron 이하가 될 때 까지 같은 순서로 연마
- 실리카 현탁액을 뿌린 연마천 위에서 미세 연마
- 도립 현미경으로 시편 상태 수시로 관찰
- 2 x 1 oval grid에 부착, 시편 떼어냄

Particle size vs. US Grit

Micron size	US Mesh size
9µm	1200
12µm	1000
15µm	600
20μm	500
30µm	400
40μm	320
45µm	280 ^{&}
50μm	240
60µm	220
80µm	180
100µm	150

& Typical diamond grinding tool bits.

Better sample can be obtained when finer grid was used for surface finish (typically, ~ 1 micron before ion milling for Si).

• Damage from grinding 1μm
[Si surface was ground with 1200 grit]

Example of lapping Si(001)

Si(001) plane is transparent when it is less than 10µm thick

Wedge Polishing Technique

- Very flexible with great potential
- Needs extensive training and results vary
- Original tripod polisher idea Proposed by Ron Anderson et al at IBM (EMSA Bulletin, Fall 1989)
- A special mechanical fixture holds the specimen for polishing
 - ◆ Micrometer screws introduce a shallow angle to the sample
 - Shallow polishing angle produces a thin (leading) edge <1um thick
 - Thicker edge of the specimen remains strong for handling
- Hong Zhang at Applied Material introduced the T-Tool
 - Improved design permits sample viewing on optical microscope
 - Same accuracy and precise control of wedge angle as the tripod
 - Light weight reduces the chance of specimen damage.
 - Small size makes it comfortable to hold and use.

T-Tool for Wedge Polishing

T-Tool for Wedge Polishing

T-Tool for Wedge Polishing

Monitoring the specimen thickness until it becomes light transparent

Sample preparation

- Si thickness color chart

J.P. McCaffrey, Micron <u>29</u>, 139 (1998)

Chemical Thinning

- Choice of chemical
 - Should not have preferential etching of grain boundaries,
 embedded second phase, and lattice defects.
 - Can prepare damage-free surface in short time.
 - Time consuming to find literature related to the specific materials or trial-and-error.
 - Good accumulation of materials for Silicon* and Germanium*.
 - * For example, see Thin Film Process First edition (Not that extensive in second edition) by John Vossen, page 438. Academic Press.

Preferential chemical etching

 Remove part of the sample by chemical etching to leave an area which is electron transparent

Ion Beam Sample Preparation

- Two primary ion beam technologies
 - Broad ion beam
 - Focused Ion Beam (FIB)
- Broad Ion Beam
 - Most accepted technique in use today
 - Suitable for all types of sample materials
 - Semiconductors, Ceramics, Metals and Geological materials
 - Requires mechanical pre-preparation of samples
 - ◆ Dimpling technique
 - Wedge technique (Tri-Pod / T-Tool) Semiconductors only
- Focused ion beam (FIB) technique
 - Expensive, but advantage is precision
 - Suited primarily to semiconductors for precision cross sections
 - Produces considerable ion beam damage
 - Samples not suitable for HREM without additional cleanup

Dimpling Technique

Step 1 Preparing Discs

Ultrasonic Cutter

- Starting material must be polished, sliced or cleaved to obtain a slab about 500µm in thickness.
- Ultrasonic Cutter
 - For coring or cutting TEM discs from brittle materials (Ceramics and semiconductors)
- Disc Punch
 - Used to punch TEM discs from metals

Diamond saw

Step 2 Mechanical Pre-thinning

Starting Disc

Disc Grinder

- Mechanically thins TEM samples prior to dimple grinding, ion milling or electropolishing.
- Produces high quality parallel-sided thin samples while reducing the chance of sample damage
- Micrometer dial displays thickness in microns

Finished Disc

Step 3 Dimple Grinding

- Produces large thin area with thick supporting rim
- Reduces ion milling times
- Locates the region of interest to be thinned
- Large thin area in the center surrounded by thick rim helps in handling fragile specimens
- Direct preparation of TEM specimens

Dimple Grinder Application

- Material removal rate
 - Typical thinking is always speed or "throughput"
 - ◆ Increase the load, increase speed or both
 - Fast removal rate is not always the best solution
 - Increasing load or speed can produce a damaged layer
 - Some hard metals may actually work harden
- The better solution
 - Parallel polish sample to about 60um
 - ◆ Course dimple grind to a thickness of 15 20um
 - ◆ 2 4um diamond paste, 20gm load, medium speed
 - Fine dimple grind to a thickness of 5 10um
 - ◆ 0 2um diamond paste, 20gm load, medium speed
 - Fine dimple polish with FELT to a thickness of 5 8um
 - ◆ 0 2um diamond paste, 20gm load, medium speed

Dimple Grinder Applications

Comparison of commercial Al alloy

Over-dimpled

Properly-dimpled

The over-dimpled image shows dislocations
Properly-dimpled image is absent of dislocations
Dislocations caused by excessive load or high speed

Dimple Grinder Application

- Light transparency colors of materials (semiconductors and ceramics) can be used for thickness control
- When Si is used as supporting material for crosssectioning, the transparency color can conveniently be used for thickness control
- Interference fringes can also be used for thickness control

Dimple Grinder Application

Transparency colors vs. thickness in dimpled Si (100) single crystal