Introduction to Biomedical Engineering 19 May 2009

LabVIEW-based Experiment System and Local Field Potential Recording in Brain Slices

Jonghwan Lee

Graduate School of Neuroscience BioElectronic & Systems Laboratory Seoul National University

How to Construct a System using LabVIEW

Introduction to LabVIEW System Overview

Introduction to LabVIEW

Graphical Programming for Test, Measurement, and Control

- Rapid application development with Express VIs and easy-touse graphical environment
- Interactive measurement assistants and powerful redesigned DAQ interface for connecting to all types of I/O
- Expanded targeting options from Real-Time to FPGA to PDA
- Localized in French, German, and Japanese (Korean documentation)

Acquire, Analyze, and Present

Nearly all test, measurement, and control applications can be divided into 3 main components: the ability to acquire, analyze, and present data. LabVIEW is the easiest, most powerful tool for acquiring, analyzing, and presenting real-world data.

Front Panel

- Controls = Inputs
- Indicators = Outputs

Block Diagram

- Accompanying "program" for front panel
- Components "wired" together

VI Front Panel

VI Block Diagram

Dataflow Programming

- Block diagram executes dependent on the flow of data; block diagram does NOT execute left to right
- Node executes when data is available to ALL input terminals
- Nodes supply data to all output terminals when done

서울대학교 초미세생체전?

스템연구센터

Loops, for example

While Loops

- Have Iteration Terminal
- Always Run at least Once
- Run According to Conditional Terminal

While Loop

For Loops

Seoul National University

- Have Iteration Terminal
- Run According to input **N** of Count Terminal

Charts

Waveform chart – special numeric indicator that can display a history of values Controls >> Graph Indicators >> Waveform Chart

Wiring Data into Charts

Single Plot Charts

Multiplot Charts

SubVIs

Sub VIs

Data Acquisition

System Overview

How to Use the System to record LFPs

Electrodes Rat Hippocampal Slice Population Spikes and EPSPs

Electrodes

Hippocampus

Rat Hippocampal Slice

Population Spikes and EPSPs

А

В

Experiment Session

