Embedded Real-time Signal
Processing System Design Issues

i F
L

Ff\ If'\'l'
VUl | L

ents
1. Introduction

2. DSP Code Development
3. Speeding-up

4. Design Experience with
SpeakingPartner

["

1 Tlf'\'l'll' AII 'I'A
1. 111U OUU LIVUI |

OAuC
Hardware: CPU + memory + ADC/DAC

Sampling clock(fg,mpe): clock for ADC/DAC
System clock(fyem): that for CPU

foystem™ >fsample TOr SW based implementation
o fsystem: 100MHz ~ 1GHz
— fample: 8KHz for telephony, 48KHz for MP3, 10MHz for video
Parallel — O —3p0MHz fsystem
g mic or IS
ADC a How are
¥ You?
16kHz CPU
fsample interrupt o
L
= | OSC Memory

Speech recognition system

°
1 v

C nla ET
SIHTIVIT Tl

-F:I-'-f\lﬂ m 7 ra\vV.Vi
1L

D " €1
AN LTy 11TOUVY

« Consider FIR (8tap) filtering

e For each interrupt
— Get new Iinput, xin, from the ADC buffer

— Data move in the tap (new input arrived, so old
one should move to the next tap)
for (iI=7; i>0; i++) X[i] = x[i-1];
x/0] = xin;
— Compute the output
for (1I=0; i<8; i1++) yout += hli]*/i];
— Put the new output, yout, to the DAC buffer

fsamplinJI |—| ﬂ

interrupt interrupt interrupt

x[0] x[1] x[2] ©oo0o0 x[M-1]

-IF ~nA Ff
sample 9! loystem

« Sampling clock (for ADC) is the master of
timing (not the CPU) in real-time systems.

e System clock (for CPU) is needed just for
sequential operation of CPU. In most case,
you can increase the fsystem without
changing the system functionality (this
Increases idle time).

« fsystem/fclock means the number of CPU
clock cycles assigned to each signal sample.

n f\l ra\Wral Mf\lf'\'l'
r U

2. DSP Coade DCVC‘IOpI nent
» By assembly programming

— The code is quite efficient (use less cycles).

— It would take time and hard to debug.

— Not portable (different CPU, different programming)
« By C/C++ programming

— The code can be fairly good.

— C/C++ programming is easier than assembly
programming, but still difficult to maintain and debug.

— The program is portable (independent of CPU).

« By Matlab or Simulink

— The code is very short (easy to develop and maintain)
and portable. You don't consider any HW.

— Still very inefficient (good for simulation purpose)

b=[h0, hl, ...]

y = filter(b, 1, x); Matlab or Simulink

(model based language)

l Parsing, scheduling, code generation

C language
Program

l Compiler

Assembly language
Program

Assembler, Linker

ROM
or
Program memory

Binary code

v\

I:Il'f\ C
I TUILIT O

9 LU d plouyialll

SFG (Signal Flow Graph): shows the sequence
and operations.

SFG conducts the same computation with the
period of sampling clock (single rate system).

— T?e i{\put of the computation: input sample, output
of z-1.

— The output of the computation: output sample,
Input to z-1

— At the end of computation: update z-1 (input data
Is stored)

— The sequence of computation is given by the
directed graph in the SFG.

In 2"9 order IIR filter 5

SO MR L) S
P |
: Qﬁ Q|2 ﬁiz

For each sampling period
f(In, Q1, Q2) -> Output, D1, D2
In

For (every new input sample) {
dl = gl*al +g2*a2 + in;
output = ql*bl+qg2*b2+d1;
d2 = ql;
/* now update the registers */
g2 = d2;

1 =d1;
? D1 Output

!

Adaptive lattice filter

D NnaadiNnA e
. IJ edl Hy-up

* Naive implementation

— ARM9 board with a codec (you can set the
codec frequency in SW).

— ARM compiler

— Download the program into DRAM or flash
memory

NMO
J

AD DI |
M\I\IVI r

e

CFU

« RISC architecture (pipelined instruction
execution) with separate instruction and
data cache

— Only integer multipliers (32*8)
 Many SoC devices from Samsung,
Telechips, ...

—In these days, for a real product
iImplementation, choosing an adequate SoC
that contains the I/O functions that you
need Is very important.

a

f\l I v\ 'Y 2 aVea 'l'
L

7\ N\ If'\ 'I'. "
JOOUU HTTHIVICTTTIC N L

ation
* You operate the system with a minimum
CPU clock frequency.

— It takes less power when lowering the frequency.

* Measure the number of cycles for FIR filter
iImplementation (assume 1,000 taps,
operating at 8KHz) and guess the system
clock frequency needed.

e Think how you can improve the speed (or
lower the needed CPU clock frequency).

Floating-point to integer

conversion

ARMY or many programmable DSPs do not equip
floating-point arithmetic units
(do not need to care when using PC or GPU)

1 floating-point add or mult takes about 100 cycles
when emulated using integer instructions

— 2000 floating mult, add x 100 instr. x 8KHz
e 1,600MHz minimum (too high!)

float -> int, or short (16bit)
What would be the problem?
— Overflow, scaling, quantization error

Now, 2,000 mult, add x 8KHz = 16 MHz, but too
optimistic since we ignored data move, branch
control overhead.

*output = 0;
Jor (j = 0; j < NTAPS; j++)
Youtput += (*data--) * (*coef++);

(a) C code for FIR filtering

st Yogl) [0l] ; Foutput = ()

mov (%07 =0 initinlize loop index
LMGO001

id Tood] tag2 ; hoad data

add %ol 1. %07 [+ loop index++

fd [Peod] kil ¢ load coef

cmp Yh07 253 2 F = 2557 check if loop ends

id (ool], 2oe3 ;load Fouilput

smul %02 %00, %e2 omud

add Y3 %e2 %ael ace

& 2aed. Yo l] - store ¥outpur
add %04 4. %04 ;S coef++

add %e03,-4, %03 :data--

ble LMOOGOT ; branch

(b) Compiled code (assembly) for Sparc CPU

How many instructions for each tap? 11.
How many multiplications among 11 instructions: just 1
How many load, store instructions? 4

L1.28|

RSB rl,r4,#0x64
LDR r0,[r6,rd4,LSL #2]
LDR rl,[r7,r1,LSL #2]
MLA r5,r0,r1,r5

ADR r0,|L1.80]

MOV rl,r5

STR r5,[r8,r4,LSL #2]
ADD r4,r4,#1

CMP r4,#0x64

BLT |L1.28|

ADD sp,sp,#0x4b0
POP {r4-r8,pc}
ENDP

CPU clock freg estimation with
overhead instructions

e The former slide shows that there are 9
overhead instructions (for data move,
branch) besides one mult, one add
operations.

* S0, the realistic estimation: 16 MHz x
11/2 = 88MHZz (it is still too optimistic).
Why, it assumes the CPI of 1.

f- nT :t‘ 'l B VaYe
“rl 1oO0UCOS
e CPL cycle per instruction
— Ideal pipelined RISC CPU: CPI =1
— Memory latency affects the CPI very much
— When many cache misses, CPI goes very high.
— RISC CPU with real cache: CPI = 1.5 ~ 10
— VLIW CPU: CPI < 1.0
« ARM9 CPU equips cache memory, which speeds up in a
probablllstlc way

— It is difficult to guarantee speed (of course you can do safe
real-time implementation by allowing a large idle time).

— Programmable DSPs usually do not have cache memory for
this reason. But, it is costly to have a large fast memory.

e Assume CPI of 2 for this example:

— Needed frequency: 2x88MHz = 176MHz CPU clock freq
needed.

Algorithm or program
optimization

Algorithm opt: use symmetric filter structure to
reduce the number of multiplications.

You may use a recursive (IIR) filter because it
usually needs a much lower order.

Program optimization: use loop unrolling to
remove the overhead of conditional branches.

— This increases the code size.

We can expect to lower the instruction cycles by
a half: 88MHz CPU clock.

Use a parallel processor (SIMD,
VLIW, .))

« We can reduce the CPI below 1 (assume 0.2)

« The needed clock frequency becomes 8.8
MHz.

e Limitations of VLIW/SIMD approaches

— Limited parallelism of DSP algorithm
* Due to dependency problem

— Difficult to increase the number of issues
* Due to increasing complexity of interconnection

e Due to increased number of ports for memory,
registers

Use a better ISA (Instruction Set
Architecture)

* Programmable DSP’s support instructions that can do FIR filtering
very efficiently.
— 1 instruction/ tap

— 1000 cycles x 8KHz + some overhead ~= 10MHz CPU clock
frequency

o Ex1: C2x, C5x FIR filter
zpr; zero product register

rot #FILT_ORDER-1
macd #coef, *- ;ar3=8&z[FILT_ORDER]
apac ; Add the P register to ACC

*To conduct macd instruction, we need a hardware that is much
more complex than a RISC CPU (it should do concurrently
multiplication, accumulation, coefficient read, data read,
coefficient address update, data address update. Branch control
Is done is hardware.)

« Limitation: algorithm dependent speed-up

TMS320C54x Internal Block Diagram

Tl Document

System control

Frogram address generation

Data address generation

interface CPASEM: logic TDASGEM: logic
-
-
i PFC BRC, RC, ARALD, ARALA
- RSA REAIPTR AaRO-ARE
= SP. B, DF, ARP
+ F N N F N F-
FAB I
FEBE I
‘T e moary
cai | <_‘_.> and
external
interface
B I
w
[y =) I
w k.
OB I Feripheral
interface
w
II EXPFP encoder |
——.
a4
Fa3 E
-
T register . -
ry
T| D == T|ale|c [n] IS
- A, b . v - -
Sign ctr Sign ctr | EYalar- T | | AR D | \Sign ctr/ \Sign ctr/
I Multiplier €17 = 173 I o Ul Bl Barrel shifter
AL 40
NARRIvYS v Lz
. Pl =]
MAC unit \
Legend:
A Accumula =]
E Accumulatyr B
Adderians C CBE data bu MW1S W AL S W
O DB data bus select
F PB program bNs
= Barrel shifter
[zeEro | sa7 [rouno | T T register
Ml Ml unit
| U oaAaLU

Multi
SNU

Sy

D
P

Special instructions in DSP are applicable
to only some small kernels (filtering, FFT,
Viterbi decoding). It may not be
effective for other kernels.

e VLIW speed up is more universally
applicable.

* VLIW or other parallel processors provide
a better compiler and development tools.

/I “If\ l

4. Des SIgN C p

([)

« SpeakingPartner
— A handheld English learning device for kids

— Animation, MP3 play, speech recognition,
voice recording (multi-tasking)

e LPE AKIMG PARTHER
ﬂl‘q E

& .

€

<F

v\ sy

C1ToylialiiitidJl r o U u

7\ nC aYalFal 1

e Vo ase esign

» DSP processor is efficient in conducting
MP3, speech recognition, and so on. (x5

efficient).
e Problems:

— It's memory space is too small (1I\/Ib%/tes) for all
the codes. We needed DRAM but TI DSP chip
does not have DRAM controller. We had to
develop FPGA based DRAM controller

(expensive and consumes power)
— It's C compiler is not good.
— TI DSP has no LCD interface.

N/
/

MANIVI S0OCL Dadsed age 9 N
« Samsung developed an ARM7 CPU based SoC
for handheld PDA market.

— It has DRAM and LCD interfaces.
— The code development environment is very good.
— ARM7 CPU takes many cycles for DSP processing.

« We adopt ARM7 SoC and try to develop
efficient DSP codes on ARM CPU.

« System development was successful, but the
power consumption was something large (due

to small cache). (8 hrs with a battery. This needs
rechargeable batteries.)

III

-|- ~Ar 1
|

p |g Ftner iIs r

e ARM9 or ARM11 based SoC

— Support higher clock frequency
— Large cache (good for low-power)

— Good compiler and debugging
tools

— Many suppliers
e TI OMAP based

— ARM9 + TI DSP

« ARM9 for animation, DSP for speech
processing<- very efficient!

« Use two different design environment
* Only from TI

Ve P2
ede

|——|

LQ

C)_

