
Embedded Real time SignalEmbedded Real-time Signal
Processing System Design Issuesg y g

Wonyong Sung

ContentsContents

• 1. Introduction
• 2 DSP Code Development2. DSP Code Development
• 3. Speeding-up
• 4. Design Experience with

SpeakingPartnerSpeakingPartner

1 Introduction1. Introduction
• Hardware: CPU + memory + ADC/DAC• Hardware: CPU + memory + ADC/DAC
• Sampling clock(fsample): clock for ADC/DAC
• System clock(fsystem): that for CPU

f f f SW b d i l i• fsystem>>fsample for SW based implementation
– fsystem: 100MHz ~ 1GHz
– fsample: 8KHz for telephony, 48KHz for MP3, 10MHz for video

How areADC

Parallel
or I2Smic

100MHz fsystem

CPU
How are

You?
ADC

interrupt

16kHz
fsample

MemoryOSC

Speech recognition system

Simple FIR filtering flowSimple FIR filtering flow

C id FIR (8) fil i• Consider FIR (8tap) filtering
• For each interrupt

– Get new input, xin, from the ADC buffer
– Data move in the tap (new input arrived, so old p p

one should move to the next tap)
for (i=7; i>0; i++) x[i] = x[i-1];
[0] ix[0] = xin;

– Compute the output
for (i=0; i<8; i++) yout += h[i]*x[i];for (i=0; i<8; i++) yout += h[i]*x[i];

– Put the new output, yout, to the DAC buffer

fsampling

interrupt interrupt interrupt

p g

fsystemfsystem

x[1] x[M-1]x[0] x[2]

xin

h[0] h[1] h[M-1]h[2]

yout

f and ffsample and fsystem

• Sampling clock (for ADC) is the master of
timing (not the CPU) in real-time systems.

• System clock (for CPU) is needed just for
sequential operation of CPU In most casesequential operation of CPU. In most case,
you can increase the fsystem without
changing the system functionality (thischanging the system functionality (this
increases idle time).
f /f l k h b f CPU• fsystem/fclock means the number of CPU
clock cycles assigned to each signal sample.

2 DSP Code Development2. DSP Code Development
B bl i• By assembly programming
– The code is quite efficient (use less cycles).
– It would take time and hard to debug.g
– Not portable (different CPU, different programming)

• By C/C++ programming
Th d b f i l d– The code can be fairly good.

– C/C++ programming is easier than assembly
programming, but still difficult to maintain and debug.

– The program is portable (independent of CPU).
• By Matlab or Simulink

The code is very short (easy to develop and maintain)– The code is very short (easy to develop and maintain)
and portable. You don’t consider any HW.

– Still very inefficient (good for simulation purpose)

b=[h0 h1]
Matlab or Simulink

(model based language)

b=[h0, h1,]
y = filter(b, 1, x);

Parsing, scheduling, code generation

C language
Program

Compiler

Assembly language
Program

ROM

Assembler, Linker

Bi d or
Program memory

Binary code

From SFG to a programFrom SFG to a program

SFG (Si l Fl G h) h th• SFG (Signal Flow Graph): shows the sequence
and operations.

• SFG conducts the same computation with theSFG conducts the same computation with the
period of sampling clock (single rate system).
– The input of the computation: input sample, output

f 1of z-1.
– The output of the computation: output sample,

input to z-1input to z 1
– At the end of computation: update z-1 (input data

is stored)
Th f t ti i i b th– The sequence of computation is given by the
directed graph in the SFG.

2nd order IIR filter 2In Output

z-1

+ +1

3 4 5
6

p

D1

1

z-1

+ +3 4 5
6

Q1
D2

a1

b1

z
87

Q2
For each sampling period

a2
b2

For each sampling period
f(In, Q1, Q2) -> Output, D1, D2

In Q1 Q2
D2

+

4 5

7 83

D2
For (every new input sample) {
d1 = q1*a1 +q2*a2 + in;
output = q1*b1+q2*b2+d1;

+

+

+

8

6

3

1

output q1 b1+q2 b2+d1;
d2 = q1;
/* now update the registers */
q2 = d2; + 2

OutputD1
q d ;
q1 = d1;
};

Adaptive lattice filterAdaptive lattice filter

3 Speeding up3. Speeding-up

• Naïve implementation
– ARM9 board with a codec (you can set the 9 boa d t a codec (you ca set t e

codec frequency in SW).
– ARM compilerARM compiler
– Download the program into DRAM or flash

memorymemory

ARM9 CPUARM9 CPU

RISC hi (i li d i i• RISC architecture (pipelined instruction
execution) with separate instruction and
d hdata cache
– Only integer multipliers (32*8)y g p

• Many SoC devices from Samsung,
Telechips, …Telechips, …
– In these days, for a real product

implementation, choosing an adequate SoCimplementation, choosing an adequate SoC
that contains the I/O functions that you
need is very important.y p

Good implementationGood implementation

• You operate the system with a minimum
CPU clock frequency.
– It takes less power when lowering the frequency.

• Measure the number of cycles for FIR filterMeasure the number of cycles for FIR filter
implementation (assume 1,000 taps,
operating at 8KHz) and guess the systemoperating at 8KHz) and guess the system
clock frequency needed.
hi k h i h d• Think how you can improve the speed (or

lower the needed CPU clock frequency).

Floating-point to integer g g
conversion

ARM9 bl DSP d t i• ARM9 or many programmable DSPs do not equip
floating-point arithmetic units
(do not need to care when using PC or GPU)

• 1 floating-point add or mult takes about 100 cycles
when emulated using integer instructions

2000 floating mult add x 100 instr x 8KHz– 2000 floating mult, add x 100 instr. x 8KHz
• 1,600MHz minimum (too high!)

• float -> int, or short (16bit)
• What would be the problem?

– Overflow, scaling, quantization error
• Now 2 000 mult add x 8KHz = 16 MHz but too• Now, 2,000 mult, add x 8KHz = 16 MHz, but too

optimistic since we ignored data move, branch
control overhead.

(a) C code for FIR filtering

(b) C il d d (bl) f S CPU(b) Compiled code (assembly) for Sparc CPU

How many instructions for each tap? 11.
How many multiplications among 11 instructions: just 1How many multiplications among 11 instructions: just 1
How many load, store instructions? 4

|L1.28|
RSB r1 r4 #0x64RSB r1,r4,#0x64
LDR r0,[r6,r4,LSL #2]
LDR r1,[r7,r1,LSL #2]
MLA r5 r0 r1 r5MLA r5,r0,r1,r5
ADR r0,|L1.80|
MOV r1,r5
STR r5 [r8 r4 LSL #2]STR r5,[r8,r4,LSL #2]
ADD r4,r4,#1
CMP r4,#0x64
BLT |L1.28|BLT |L1.28|
ADD sp,sp,#0x4b0
POP {r4-r8,pc}
ENDP

CPU clock freq estimation with
overhead instructions

• The former slide shows that there are 9
overhead instructions (for data move, (,
branch) besides one mult, one add
operationsoperations.

• So, the realistic estimation: 16MHz x
11 2 88 i i ill i i i11/2 = 88MHz (it is still too optimistic).
Why, it assumes the CPI of 1. y

CPI issuesCPI issues
CPI: cycle per instruction• CPI: cycle per instruction
– Ideal pipelined RISC CPU: CPI = 1
– Memory latency affects the CPI very much
– When many cache misses, CPI goes very high.
– RISC CPU with real cache: CPI = 1.5 ~ 10
– VLIW CPU: CPI < 1.0

• ARM9 CPU equips cache memory, which speeds up in a
probabilistic way
– It is difficult to guarantee speed (of course you can do safeIt is difficult to guarantee speed (of course you can do safe

real-time implementation by allowing a large idle time).
– Programmable DSPs usually do not have cache memory for

this reason. But, it is costly to have a large fast memory. y g y
• Assume CPI of 2 for this example:

– Needed frequency: 2x88MHz = 176MHz CPU clock freq
needed.

Algorithm or program g g
optimization

Al ith t t i filt t t t• Algorithm opt: use symmetric filter structure to
reduce the number of multiplications.
Y i (IIR) filt b it• You may use a recursive (IIR) filter because it
usually needs a much lower order.

• Program optimization: use loop unrolling to
remove the overhead of conditional branchesremove the overhead of conditional branches.
– This increases the code size.

• We can expect to lower the instruction cycles byWe can expect to lower the instruction cycles by
a half: 88MHz CPU clock.

Use a parallel processor (SIMD,
VLIW, ..)

W d h CPI b l 1 (0 2)• We can reduce the CPI below 1 (assume 0.2)
• The needed clock frequency becomes 8.8

MHz.
• Limitations of VLIW/SIMD approaches/ pp

– Limited parallelism of DSP algorithm
• Due to dependency problem

– Difficult to increase the number of issues
• Due to increasing complexity of interconnection
• Due to increased number of ports for memory,

registers

Use a better ISA (Instruction Set
Architecture)

• Programmable DSP’s support instructions that can do FIR filtering• Programmable DSP s support instructions that can do FIR filtering
very efficiently.
– 1 instruction/ tap
– 1000 cycles x 8KHz + some overhead ~= 10MHz CPU clock– 1000 cycles x 8KHz + some overhead ~= 10MHz CPU clock

frequency

• Ex1: C2x, C5x FIR filter
d i

,
zpr; zero product register
rpt #FILT_ORDER-1
macd #coef, *- ;ar3=&z[FILT_ORDER]

Add th P i t t ACCapac ; Add the P register to ACC

*To conduct macd instruction, we need a hardware that is much
more complex than a RISC CPU (it should do concurrentlymore complex than a RISC CPU (it should do concurrently
multiplication, accumulation, coefficient read, data read,
coefficient address update, data address update. Branch control
is done is hardware.)

• Limitation: algorithm dependent speed-up

TMS320C54x Internal Block Diagram
TI Document

MAC unit

Wonyong Sung
Multimedia Systems Lab
SNU Multimedia Systems
Lab.

Special function unit

Difference between DSP and VLIWDifference between DSP and VLIW

• Special instructions in DSP are applicable
to only some small kernels (filtering, FFT, y (g, ,
Viterbi decoding). It may not be
effective for other kernelseffective for other kernels.

• VLIW speed up is more universally
li blapplicable.

• VLIW or other parallel processors provideVLIW or other parallel processors provide
a better compiler and development tools.

4 Design Experience4. Design Experience

• SpeakingPartner
– A handheld English learning device for kidsa d e d g s ea g de ce o ds
– Animation, MP3 play, speech recognition,

voice recording (multi-tasking)voice recording (multi tasking)

Programmable DSP based designProgrammable DSP based design

DSP i ffi i t i d ti• DSP processor is efficient in conducting
MP3, speech recognition, and so on. (x5
efficient)efficient).

• Problems:
– It’s memory space is too small (1Mbytes) for all– It s memory space is too small (1Mbytes) for all

the codes. We needed DRAM but TI DSP chip
does not have DRAM controller. We had to
d l FPGA b d DRAM t lldevelop FPGA based DRAM controller
(expensive and consumes power)

– It’s C compiler is not goodIt s C compiler is not good.
– TI DSP has no LCD interface.

ARM7 SoC based designARM7 SoC based design

S d l d ARM7 CPU b d S C• Samsung developed an ARM7 CPU based SoC
for handheld PDA market.

It has DRAM and LCD interfaces– It has DRAM and LCD interfaces.
– The code development environment is very good.

ARM7 CPU takes many cycles for DSP processing– ARM7 CPU takes many cycles for DSP processing.
• We adopt ARM7 SoC and try to develop

efficient DSP codes on ARM CPUefficient DSP codes on ARM CPU.
• System development was successful, but the

power consumption was something large (duepower consumption was something large (due
to small cache). (8 hrs with a battery. This needs
rechargeable batteries.)

If SpeakingPartner is redesignedIf SpeakingPartner is redesigned,

ARM9 ARM11 b d S C• ARM9 or ARM11 based SoC
– Support higher clock frequency

Large cache (good for low power)– Large cache (good for low-power)
– Good compiler and debugging

toolstools
– Many suppliers

• TI OMAP basedTI OMAP based
– ARM9 + TI DSP

• ARM9 for animation, DSP for speech
i ffi i t!processing<- very efficient!

• Use two different design environment
• Only from TIy

