
TMS320C54x 55x ArchitectureTMS320C54x, 55x Architecture
and Programmingg g

Wonyong SungWonyong Sung

School of Electrical Engineering
Seoul National University

Contents

1. Introduction
2 C54 A hit t d I t ti S t2. C54x Architecture and Instruction Set
3. Application Specific Instructions
4 C55 A hi d I i4. C55x Architecture and Instructions
5. Compiler
6. Conclusion

Wonyong Sung
Multimedia Systems Lab SNU

1. Overview

C25, C50 DSP
Optimized for FIR filtering, intended for 1 cycle Optimized for FIR filtering, intended for 1 cycle
operation for each tap of FIR filter
Poor performance for some special kind of DSP
algorithmsalgorithms

Coefficient update for adaptive filtering
Viterbi decoding
FFT linear phase FIR filterFFT, linear phase FIR filter

Pipelining register between the multiplier and
accumulator complicates the programming
O AGU d d t b hi h lt i One AGU and one data bus, which results in poor
performance when not using ‘RPT’

Wonyong Sung
Multimedia Systems Lab SNU

Enhancements in C54x
Multi-bus architecture: 3 data buses and one Multi-bus architecture: 3 data buses and one
program bus
One multiplier, two ALU (40bit), structure

Conduct 2-tap linear-phase FIR filtering per cycleConduct 2 tap linear phase FIR filtering per cycle
Easier programming

No pipelining register between the multiplier and adder
Guard bit for Accumulator (easier scaling)Guard bit for Accumulator (easier scaling)

Compare-select-store unit
A special function unit for Viterbi decoding, pattern
recognition (speech recognition)recognition (speech recognition)
N vector square distance : N cycle + alpha
Viterbi decoding : 4 cycle/bfy

OthOthers
Exponent encoder for block fixed-point arithmetic
Arithmetic instructions with parallel store and parallel
l dload

*Although C54x architecture is more complex, its
programming is easier than that using C25, 50 (less
pipelining enough data bus)

Wonyong Sung
Multimedia Systems Lab SNU

pipelining, enough data bus)

Enhancements in C55x

32bit instruction bus and 24bit addr bus
Mostly two parallel execution of 16-bit instructions Mostly two parallel execution of 16 bit instructions
(except for resource conflicts)

A unified program/data memory map. Program
supports upto 16MB (24bit), data 8MBsupports upto 16MB (24bit), data 8MB
Two MAC (mul-acc) architecture (+40bit ALU, 16bit
ALU, 40bit shifter)
Three read bus and two write bus for dataThree read bus and two write bus for data
An instruction buffer and a separate fetch
mechanism – decoupled instruction fetching
Encouraging C based program developments

C compiler friendly architecture (multiple
accumulators,..),)

Wonyong Sung
Multimedia Systems Lab SNU

Many different versions

Wonyong Sung
Multimedia Systems Lab SNU

2. C54x Architecture and Instruction Set

16bit fixed-point DSP
One 16bit multiplierp
Two 40bit accumulators (A and B)
Accumulator based architecture

Four busesFour buses
Three read buses: program, data, coefficient
One write bus: write back

Memory blocks (actual memory sizes differ)Memory blocks (actual memory sizes differ ..)
ROM in 4K blocks
Dual access RAM in 2k blocks
Single access RAM in 8k blocksSingle access RAM in 8k blocks

Two clock cycles per instruction cycle

Wonyong Sung
Multimedia Systems Lab SNU

TMS320C54x data path

C
PB

TMS320C54x data path

DB
CB

EXP
encoder

Treg

Multiplier
(17x17) ACCA(40) ACCB(40)

0 Barrel
Shifter

Adder (40)

Fractional

ALU (40)

Shifter

CMP MSW/LSW
select

Zero, Sat., Round
TRN

TC

EB

Wonyong Sung
Multimedia Systems Lab SNU

Notable C54 instructions

Single and block repeat
V t i t ti tili i tVector instructions utilizing repeat
Special instructions utilizing two ALU
S i l i i ili i CSS iSpecial instructions utilizing CSS unit
Instructions with 2- or 3-operand
simultaneous readssimultaneous reads
Arithmetic instructions with parallel store
and parallel loadand parallel load

Wonyong Sung
Multimedia Systems Lab SNU

C54x addressing modes (1)

Immediate addressing
Operand is part of the instruction, and it can be short (3, 5, 8, 9
bits) or long 16bits (two words instruction)bits) or long 16bits (two words instruction)
LD #20, DP ; #20 -> DP
RPT #0FFFFh

Absolute addressingg
Address of the operand is part of the instruction. The address can
be for a data memory (dmad), a program memory (pmad), a port
(PA), or a location in the data space specified directly.

MVKD 1000h, *AR5; 1000h -> *AR5 (??), ; ()
LD *(1000h), A; *(1000h) -> A

Direct addressing
Address of operand is part of the instruction (added to implied
memory page) The 16 bit address of the data memory location is memory page). The 16 bit address of the data memory location is
formed by combining the lower 7 bits of the data memory address
contained in the instruction with a base address given by the data-
page pointer (DP, when CPL=0) or stack pointer (SP, when CPL=1)

ADD 010h, A,

Wonyong Sung
Multimedia Systems Lab SNU

Addressing modes (2)

Indirect addressing
Address of operand is stored in a register
Use 16bit auxiliary registers (AR0 ~ AR7), two ARAU (ARAU0, ARAU1)Use 16bit auxiliary registers (AR0 AR7), two ARAU (ARAU0, ARAU1)
Offset addressing

ADD *AR1(10)
Register offset (AR1+AR0)

ADD *AR1+0ADD *AR1+0
Auto increment and auto decrement

ADD *AR1+
Bit reversed addressing

ADD *AR1+B
Circular addressing

ADD *AR1+0%
Examplesp

*AR3+ (= addr<- AR3, then AR3 <- AR3 + 1)
*+AR3(-40h) (= AR3 <- AR3 - 40h,then addr<-AR3)
AR3 + % (= AR3 <- circ(AR3+1))
AR3 +0 % (= AR3 <- circ(AR3 + AR0))(())
*(lk) (= addr <- lk)
*+AR3(lk)% (=AR3<- circ(AR3+lk), addr<- AR3)

Wonyong Sung
Multimedia Systems Lab SNU

Addressing modes (3)

Circular buffer
BK specifies the buffer size -1
A circular buffer must start on N-bit boundary; that is the
N LSBs of the based address of the circular buffer must be
00.

e.g. a 48 word circular buffer must start at an address whose
six LSBs are 0, BK<-47.

E l A AR3 1020h BK 40h AR0 025h Example: Assume AR3=1020h, BK=40h, AR0=025h.
What’ll be the AR3 after the execution of LD *AR3 + 0%

Ans: circ (1020h + 25h)=1045h – 40h = 1005h (?? 1004h)

Wonyong Sung
Multimedia Systems Lab SNU

Bit reversed addressing for FFT

FFTs start or end with data in bufferfly order
0 (000) => 0 (000)0 (000) => 0 (000)
1 (001) => 4 (100)
2 (010) => 2 (010)
3 (011) => 6 (110)
4 (100) => 1 (001)

() ()5 (101) => 5 (101)
6 (110) => 3 (011)
7 (111) => 7 (111)7 (111) => 7 (111)

“Bit reverse” address addressing mode for use with
autoincrement addressing

AR0 specifies one half the size of the FFT
The next address is calculated by adding in a bit-
reversed manner

Wonyong Sung
Multimedia Systems Lab SNU

reversed manner.

Addressing modes (examples)

MPY 13, B
Multiply of T reg with data in data address 13, and the result p y g
is in ACC B.

MPY #01234, A
Multiply of T reg with constant 1234, result is in ACC A.

MPY *AR2-, *AR4 + 0, B
*(AR2)-> T || *(AR2)**(AR4) -> ACC B, then AR2 -1 ->
AR2, AR4+AR0->AR4

MAS *AR3-, *AR4+, B, A
*(AR3)->T || B - *(AR3)* *(AR4) -> A and then AR3 post
dec, AR4 post inc.
This instruction is useful for FFT computation

Wonyong Sung
Multimedia Systems Lab SNU

Other features

SSBX SSM

Wonyong Sung
Multimedia Systems Lab SNU

Program control

Conditional execution
XC d [d[d]] 23 ibl XC n, cond [,cond[,cond]]; 23possible
conditions
Execute next n (1 or 2) words if conditions Execute next n (1 or 2) words if conditions
are met
Takes one cycle to executeTakes one cycle to execute

XC 1, ALEQ ; test for acc a<= 0
Mac *ar1+, *ar2+, a ; perform mac if a<= 0, , ; p
Add #12, a, a ; always perform add

Wonyong Sung
Multimedia Systems Lab SNU

Program control (2)

Repeat single instruction or block
O h d 1 l f RPT/RPTS d 4 l Overhead: 1 cycle for RPT/RPTS and 4 cycles
for RPTB
HW loop counters count downHW loop counters count down
Ex
rptz a #39 ; zero acc arptz a, #39 ; zero acc a
Mac *ar2, *ar3, a ; a+= a[n]*x[n]

Wonyong Sung
Multimedia Systems Lab SNU

Programming examples(1)

A = dmad(410h)+ dmad(411h) +..dmad(41fh)
STM #10H AR2 ; AR2 = 10HSTM #10H, AR2 ; AR2 = 10H
STM #410H, AR1; AR1 = 410H
LD #0H,A; ACC A = 0
SSBX SXM; Select sign extension mode

Start: ADD *AR1+, A;
*BANZ Start, *AR2-

Homework modify the code using RPTHomework, modify the code using RPT

Wonyong Sung
Multimedia Systems Lab SNU

Programming examples(2)

y[n] = h[0]*x[n]+h[1]*x[n-1]+h[2]*x[n-2]
the lower 16bits is stored in y, and higher 16bits in y+1

SSBX SXM
STM #x, AR2
STM #h, AR3
LD #0H, A
RPT #2
MAC *AR2+, *AR3+, A
STM #y *AR2STM #y, AR2
STL A, *AR2+
STH A, *AR2+
NOP
.end

Wonyong Sung
Multimedia Systems Lab SNU

3. Application Specific Instructions

Vector arithmetic acceleration
Each instruction operates on one element at a timeEach instruction operates on one element at a time
ABDIST absolute difference of vectors
SQDIST squared distance between vectors
SQURA f f t l tSQURA sum of squares of vector elements
SQURS difference of squares of vector elements
Ex:

Rptz a, #39 ; zero accumulator a, repeat next instr.
over 40 elements
Squra *ar2+, a ; a += x[n]**2q , ; []

Wonyong Sung
Multimedia Systems Lab SNU

L1 norm calculation (ABDST)

ABDST Xmem, Ymem
ABDST *AR3 *AR4ABDST *AR3+, *AR4
Operation: (B) + |A(32-16)| -> B

((Xmem) (Ymem))<<16 > A((Xmem) – (Ymem))<<16 -> A
This instruction adds the absolute value of
Acc A to B while storing the difference of Acc A to B, while storing the difference of
(Xmem) and (Ymem) to Acc A. 1word,
1cycle instruction.y

Wonyong Sung
Multimedia Systems Lab SNU

L2 norm calculation (SQDST)

SQDST Xmem, Ymem
SQDST *AR3 *AR4SQDST *AR3+, *AR4+
Operation:
(A(32 16)) (A(32 16)) B B(A(32-16))x(A(32-16))+B->B
((Xmem)-(Ymem)) << 16 -> A

Accumulates the square distance. 1 word,
1cycle.

Wonyong Sung
Multimedia Systems Lab SNU

TMS320C54x data path

C
PB

TMS320C54x data path

DB
CB

EXP
encoder

Treg

Multiplier
(17x17) ACCA(40) ACCB(40)

0 Barrel
Shifter

Adder (40)

Fractional

ALU (40)

Shifter

CMP MSW/LSW
selectXmem-Ymem

Zero, Sat., Round
TRN

TC

EB

Xmem-Ymem

Wonyong Sung
Multimedia Systems Lab SNU

Symmetric FIR filtering (FIRS)

FIRS xmem, ymem, pmadd(16bit)
Ex: FIRS *AR3, *AR4, coeffsEx: FIRS AR3, AR4, coeffs

Operation:
pmad -> PAR
Whil (RC) 0While (RC) .ne. 0
(B) + A(32-16)*(Pmem) -> B
((Xmem) + (Ymem) << 16 -> A
() ()(PAR)+1 -> PAR, (RC)-1 -> RC

This is a 2word, 3cycle instruction, but from 2nd repeat,
this becomes a single cycle instr. Program counter
points the coefficient address.

Wonyong Sung
Multimedia Systems Lab SNU

LMS: LMS coefficients update

Lms(Xmem, Ymem, Acx, Acy)
P f lti l d l t (MAC) Performs a multiply-and-accumulate (MAC)
operation and, in parallel, an addition with
rounding (which would do the storage of rounding (which would do the storage of
updated coefficients)
Acy = Acy + (Xmem*Ymem), Acy Acy + (Xmem Ymem),
Acx = rnd (Acx + (Xmem << #16)

Wonyong Sung
Multimedia Systems Lab SNU

Instructions using CSSU

Dedicated to add/compare/select (ACS)
operation in the Viterbi operationoperation in the Viterbi operation.
CMPS B, *AR3

If (B(31 16)>B(15 0)) then B(31 16) >*Ar3; If (B(31-16)>B(15-0)) then B(31-16)->*Ar3;
TRN<<1; 0->TRN(0); 0->TC
..

Wonyong Sung
Multimedia Systems Lab SNU

Block Floating-point Implementation

Many signal processing algorithms are processed for a block of
data
Ex: A frame of 10 to 20ms is used for speech processing Ex: A frame of 10 to 20ms is used for speech processing.
80~160samples per frame.
Block floating-point arithmetic method normalizes this input
data before processing, which reduces the effects of
quantization noise when the signal level is low (block adaptive quantization noise when the signal level is low (block adaptive
normalization).
Can be understood as a block based AGC (automatic gain
control).

1.0
X 22 1 0

1.0

0.25

X 22 1.0

0 25

Wonyong Sung
Multimedia Systems Lab SNU

Block 1
Block 1

0.25

Block floating-point implementation procedure

For a block of data, find out the maximum signal or its exponent
(integer word-length)
Determine the number of shifts for normalization (integer Determine the number of shifts for normalization (integer
wordlength =0) from the integer wordlength of the maximum
signal
Normalize the signal by using barrel shifter, where the same
number of shifts is applied for all the data in the blocknumber of shifts is applied for all the data in the block
After processing, denormalize using the IWL previously
determined.
Supporting instruction: EXP src (A or B)

number of leading bits of src > Tnumber of leading bits of src -> T,
When (src) = 0, T = 0

Result: T becomes -8 to 31. (0 corresponds to normalized one, -
corresponds to overflowed signal occupying the guard bit area)

Wonyong Sung
Multimedia Systems Lab SNU

4. C55x Architecture and Instructions

Architecture consists of
Instruction buffer unit (IU)Instruction buffer unit (IU)

Loads, parses, queues and decodes instructions
Program flow unit (PU)

Coordinates program actions among multiple parallel CPU
functional units
Resource check, protected execution, p

Address data flow unit (AU)
Data address generation

()Data computation unit (DU)
40bit ALU, two MAC, a shifter, CSSU

Wonyong Sung
Multimedia Systems Lab SNU

Wonyong Sung
Multimedia Systems Lab SNU

Memory

Dual access RAM (DARAM) supporting two
memory accesses per cyclememory accesses per cycle
Single access RAM (SARAM)
ROMROM
Configurable instruction cache
EMIF (External Memory Interface)EMIF (External Memory Interface)

SRAM, SDRAM

Wonyong Sung
Multimedia Systems Lab SNU

Instruction buffer unit (IU)

The CPU fetches 32bit packets from
memory into the instruction buffer memory into the instruction buffer
queue(IBQ)
IBQ holds 64bytes of instructions to be
decoded and provides 6 bytes (3 words) to
the instruction decoder
Speculative fetching of instructions while a Speculative fetching of instructions while a
condition is being tested for conditional
goto, call, and return

Wonyong Sung
Multimedia Systems Lab SNU

Program flow unit (PU)

Interpreting conditions for conditional
instructionsinstructions
Determining branch (goto)instructions
Initiating interruptInitiating interrupt
Managing single and block repeat
operationsoperations
Managing execution of parallel instructions

Wonyong Sung
Multimedia Systems Lab SNU

Address data flow unit (AU)

Generating addresses for data read and
writeswrites
Eight auxiliary registers and AGU’s
Circular bit reversed addressingCircular, bit-reversed addressing..
Also contains 16-bit ALU capable of
performing arithmetical logical shift and performing arithmetical, logical, shift, and
saturation operations.

Wonyong Sung
Multimedia Systems Lab SNU

Data computation unit (DU)

Two MAC units, a 40-bit ALU (can do dual
16 bit operations) a shifter16-bit operations), a shifter.
Four 40-bit accumulator

source/destination for MAC and ALUsource/destination for MAC and ALU
Optional 32/40 bit saturation.

Two transition registers (TRN0 TRN1) for Two transition registers (TRN0, TRN1) for
Viterbi algorithm.

Wonyong Sung
Multimedia Systems Lab SNU

Instruction pipeline (7 stages)

Fetch stage – reads program
Decode stage – decodes instructions and dispatches
tasks to the other primary functional units
Address stage – computes addresses for data

 d b h ddaccesses and branch addresses
Access1/Access2 stages – send data read addresses
to memory
Re d t e t fe o e d d t o B C D bRead stage – transfers operand data on B, C, D bus
Execute stage – executes operation in the A, D unit
and performs writes on the E and F bus

Wonyong Sung
Multimedia Systems Lab SNU

Tips for efficient memory allocation

Plan your SARAM vs DARAM data allocation
For random access variables use direct For random access variables, use direct
addressing and allocate them in the same
128-word page
Reserve CPU resources for the exclusive
use of interrupts

D di t d ili i t f l f Dedicated auxiliary registers are useful for
servicing interrupts

Wonyong Sung
Multimedia Systems Lab SNU

Parallelism in C55x

Built-in parallelism (intra instruction parallelism)
Perform two different operations using one instruction, p g
separated by ::
EX: MPY … :: MPY, MAC

User-defined parallelism (inter instruction parallelism)
Two instructions may be placed in parallel to have them both
executed in a single cycle
Separated by “||”

Ex
MPY *AR3+, *CDP+, AC0 :: MPY *AR4+, *CDP+, AC1 ||
RPT CSR

Wonyong Sung
Multimedia Systems Lab SNU

Restrictions in multiple instruction issues

Mainly resource conflicts
F ti l it bFunctional units, buses

Maximum instruction length
Th bi d l h f h i i i The combined length of the instruction pair
cannot exceed 6 bytes

OthersOthers
Parallel enable bit is present for parallel
executionexecution

Wonyong Sung
Multimedia Systems Lab SNU

Parallelism tips

Place all load and store instructions in
parallel.parallel.

MOV *AR2, AC1 || MOV BRC0, *AR3
The A unit ALU can handle (un)saturated e u t U ca a d e (u)satu ated
16-bit processing in parallel with the D-
unit (ALU, MAC, Shift)
A l t hift t t t Accumulator shift, saturate, store
operations can be placed in parallel with D-
unit ALU or MACunit ALU or MAC
Control operations (block repeat ..) can be
placed in parallel with DSP operations.
Instructions to be executed conditionally
can be placed in parallel with the if
instruction

Wonyong Sung
Multimedia Systems Lab SNU

instruction.

Process for applying user-defined parallelism

1. Write assembly code without
parallel optimization and test code parallel optimization, and test code
for functional correctness (serial
assembly code development)assembly code development)

2. Identify and place in parallel all
potential parallel pairspotential parallel pairs

3. Assemble code and check
assembler errors. If errors, goto assembler errors. If errors, goto
step 2

4. Test code for functional correctness.4. Test code for functional correctness.

Wonyong Sung
Multimedia Systems Lab SNU

5. Compiler

Why compiler?
Easy code development, good portability,..y p g p y

Why are the compilers for programmable DSP’s
inefficient?

Due to many parallel operations, distributed registers,
d ff d h (f d)

g
different data-path structure (fixed-point DSP),
application specific hardware

How is it worth trying?
d bl dYou can mix C and assembly codes.

80%/20% rule. 20% of code (loops) takes 80% of
execution time. In reality, it would be more!

S 80% d C d 20% ti i d bl So, 80% code use C code, 20% use optimized assembly
language would be a compromise.
Many DSPLIB (very efficient) available for frequently used
DSP kernels and algorithms (TI’s very important asset)DSP kernels and algorithms (TI s very important asset)
Use intrinsics

Fast execution hardware speed, large memory
If the resources are not short, who cares for using

Wonyong Sung
Multimedia Systems Lab SNU

If the resources are not short, who cares for using
inefficient programs (but fast delivery)?

Code development flow

C code development
F ti l Functional
verification
Profiling (CCS)

Problem specification

Algorithm
Functional

Profiling (CCS)
Assembly code
development

Algorithm

C code develop

Simulation

debuggingTest data

development
Loop or large
execution time

Assembly code
Design validationcompilation

di f i i l iexecution time
Hardware
dependent features

Product-quality
assembly code profilling

Recoding of critical sections

Verification integrationp
Final product

Verification integration

Wonyong Sung
Multimedia Systems Lab SNU

How to improve the C code in programmable
DSP

Know the difference of data types and arithmetic
operations in C and programmable DSP

If you try saturated arithmetic, circular buffer in
conventional C programming style, the results will be poor.
(Portability is best.)

Try to utilize the special hw features and see how the Try to utilize the special hw features, and see how the
features are supported.

Automatically supported (pointer increment..)
Needs to use macros or intrinsics Needs to use macros or intrinsics

Saturated arithmetic, …
Try to tell as much as possible to the compiler using
pragma (compiler directives) or memory models the pragma (compiler directives) or memory models, the
range of loop counts and so on.
Needs to know how to integrate C and assembly codes

Compile and assemble in different programs and link laterCompile and assemble in different programs and link later
Use macro or inline assembly programs

Wonyong Sung
Multimedia Systems Lab SNU

Complier optimization

C compiler: parser, optimizer, code
generatorg

Assembler: generates a relocatable (COFF)
object file
Linker: creates executable object fileLinker: creates executable object file

The linker defines the memory map and
allocate code and data into target memory g y
(such as internal fast). You use linker to
allocate global variables into the internal
RAM and allocate executable code to
external ROM. The compiler assumes
nothing about the types of memory
available, it just produces relocatable code., j p

Wonyong Sung
Multimedia Systems Lab SNU

C compiler optimization options

Level 0:
performs control flow graph simplification, eliminates performs control flow graph simplification, eliminates
unused code, expand inline function calls

Level 1:
Performs local copy/constant propagation removes Performs local copy/constant propagation, removes
unused assignments, eliminates local common
expressions

Level 2: Level 2:
Performs loop optimization, loop unrolling, eliminates
global common sub-expressions

Level 3:
removes functions that are never called, performs file
level optimizationp

Wonyong Sung
Multimedia Systems Lab SNU

Autoincrement and hardware repeat

Auto increment addressing: for pointer expressions
of the form *p++, the compiler uses efficient C55x
autoincrement addressing modes. The loop

ti i ti t th f t i di t optimization convert the array references to indirect
references through autoincremented register
variable pointers. Also hardware repeat is used.

int a[10], b[10]
void scale (int k)
{ {

int i;
for (i=0; i<10; ++i)
a[i] = b[i]*k

}}

MOV #9, BRC0
RPTBLOCAL L2-1
MPYM *AR2+, T0, AC0
MOV AC0, *AR3+
L2:
RET

Wonyong Sung
Multimedia Systems Lab SNU

RET

Circular addressing in C

Original method is using the modulus
operator (%) but this is not efficiently operator (%) – but this is not efficiently
supported yet, so need to use macros
CIRC UPDATE CIRC REFCIRC_UPDATE, CIRC_REF

This macros utilize the hw circular addressing
feature.feature.

Wonyong Sung
Multimedia Systems Lab SNU

Data types

16bits – char, short, int
32bits long float double long double32bits – long, float, double, long double
40bits – long long
Pointers – small memory mode 16bitsPointers small memory mode 16bits

Large memory mode 23bits
Function 24bitsFunction 24bits

C54x, C55x byte (minimum addressable
size) is 16bits, sizeof(int)==1
Saturated arithmetic: Conventional
implementation in C is very inefficient

Add o e flo he k (if o e flo) m min Add, overflow check, (if overflow) max, min
check, …
Use intrinsic

Wonyong Sung
Multimedia Systems Lab SNU

Use intrinsic

Saturated arithmetic(1)
Intrinsics are specified with a leading underscore, and are
accessed by calling them as you do a function.
The saturation is controlled by setting the saturation bit,
ST1 SATDST1_SATD.
int _sadd(int src1, int src2); -> ADD
long _lsadd(long src1, long src2); -> ADD

Int x1, x2, y;
y = _sadd (x1, x2);

sadd:
BSET ST3_SATA
ADD T1, T0
BCLR ST3_SATA
RETURN

ETSI FUNCTIONS
#include <gsm.h>
Int sadd(int a, int b)(,)
{

Return add(a, b)
}

Wonyong Sung
Multimedia Systems Lab SNU

Rounded arithmetic

Long _round(long src) -> ROUND
t th l f d d b ddi returns the value of src rounded by adding

2**15 using unsaturating arithmetic and
clearing the lower 16bitsclearing the lower 16bits.

Wonyong Sung
Multimedia Systems Lab SNU

Other intrinsics

long _lsadd(long src1, long src2); adds two
32-bit integers, producing a saturated 32 bit integers, producing a saturated
32bit result (SATD bit set)
int _smpy(int src1, int src2); multiplies
src1 and src2, and shifts the result left by 1,
produces a saturated 16-bit result (SATD,
FRCT bit set)FRCT bit set)
Long _lsmpy(int src1, int src2); …
produces a saturated 32bit result
Long _smac(long src, int op1, int op2);
multiplies op1 and op2, shifts the result
left by 1 and adds it to src Produces a left by 1, and adds it to src. Produces a
saturated 32-bit result.

Wonyong Sung
Multimedia Systems Lab SNU

Efficient loop code

Encourage the use of the HW repeat (local
repeat (only forward control flow insdie), repeat (only forward control flow insdie),
blockrepeat, ..)

Avoid function calls within the loop body
the loop count should be int, not long (16bit

HW)
K l ll thi ill lt i l l Keep loops small, this will result in local
repeat code (less power consumption)
Use MUST ITERATE pragmaUse MUST_ITERATE pragma

No check whether the loop count is 0.

Wonyong Sung
Multimedia Systems Lab SNU

Multiplication and MAC in C54/55

For single repeat, use local variables for
the summation Global variable needs an the summation. Global variable needs an
intervening storage. This prevents from a
single repeat. s g e epeat
Returning Q15 result for Multiply-
accumulate
--;
long sum=0;
for (i=0; i<=n 1;i++)for (i=0; i<=n-1;i++)

sum += (long) x[i] * y[i];
return (int) ((sum>>15) & 0x0000FFFFL);

Wonyong Sung
Multimedia Systems Lab SNU

Generating dual MAC operations for C55

The code must have two
ti MAC i t ti d consequative MAC instructions and

the two operations must not write
th i lt t th i bl their results to the same variable or
location.
l 1 2long s1, s2
…
s1 = s1 + (*a++ * *c);();
s2 = s2 + (*b++ *c++);
The memories are in the on-chip. Int onchip b[10]; …

Wonyong Sung
Multimedia Systems Lab SNU

FIR filter

Single MAC based FIR
short i, j; long y0;
for (j=0; j<m; j++){
y0 = 0;

for (i=0; i<n; i++)
y0 += (long) x[i+j]*h[i];y0 += (long) x[i+j]*h[i];

y[j] = (short) (y0 >> 16);
}

Dual MAC FIR – after unroll-and-jam Dual MAC FIR after unroll and jam
transformation

for (j=0; j<m; j+=2){
y0 = 0; y1=0;y ; y ;

for (i=0; i<n; i++) {
y0 += (long) x[i+j]*h[i];
y1 += (long) x[i+j+1]*h[i];}

y[j] (short) (y0 >> 16);y[j] = (short) (y0 >> 16);
y[j+1] = (short) (y1 >> 16);

}

Wonyong Sung
Multimedia Systems Lab SNU

Memory models

Small memory model: compiler uses 16-bit
data pointers The upper 7bit of XARn is data pointers. The upper 7bit of XARn is
determined by the .bss page (reserves .
Large memory model: data pointers are Large memory model: data pointers are
23bits and occupy two words when stored
in the memoryy

Wonyong Sung
Multimedia Systems Lab SNU

Summary of C/C++ code optimization
techniques

Optimization Potential Easy of Opportuni Issues
tech. gain implem. ties
Efficient
loop code

high Easy Many
p

Use MAC
efficiently

High Moderate Many

I t i i Hi h M d t M R d d Intrinsics High Moderate Many Reduced
portability

Avoid Moderate Easy Some
modulus in
circular
Use long for Low Moderate Few Two 16bit g
16bit words using

32bit bus
Efficient Low Easy Few

Wonyong Sung
Multimedia Systems Lab SNU

Efficient
control code

Low Easy Few

6. Conclusion

C54x/C55x contains application specific
functional units and instructions.
C54x/C55x has three to five data buses to
increase the throughput
C55x supports multiple execution of C55x supports multiple execution of
instructions (a kind of VLIW).
C54x/C55x considers the easy of
programming and compiler support in mind programming and compiler support in mind
by eliminating the pipelining register in the
MAC units, and increase the number of

l t t 4 (C55)accumulators to 4 (C55)
The use of C compiler is encouraged, and
recent versions utilize the hardware
architecture fairly well. The difference of
data types and arithmetic operations (such
as 40bit addition, 16*16bit -> 40bit,

Wonyong Sung
Multimedia Systems Lab SNU

as 40bit addition, 16 16bit > 40bit,
saturated arithmetic) would be something
that needs careful consideration.

Wonyong Sung
Multimedia Systems Lab SNU

