The VelociTl Architecture of
the TMS320C6x DSP

T1 slide + some addition

-
L
-
o
—

- _{iffﬂ-‘”school of Electrical Ef

TMS32

Data RAN
32-Bit Address

Program R& M Cache
32-Bit Address

256-Bit Data 8-, 16-, 32-Bit Data LI % 1600 MIPS@200 MHz ->
512K Bits RAM 512K Bits RAIM Emulation
Control 1GHz
A % 5 nscycle time -> 1ns
D % Up to 8 32-bit inst./cycle
.(ﬁg Multic hannel e 3.3V I/O, 2.5V internal
— e {T1'ET) i
— [F;t'-"_ Cantral Serial Poit % 0.25 micron, 5-layer metal
nstruction ispatch Registers
— Contro — < 1 Mbit on-chip RAM
Test JTVED <% SRAM, SB-SRAM, SDRAM
E,::f:;: interface
. <+ 4 channel DMA
- % 2 multi-channel T1/E1 serial
mcmkenmmur % 16-bit DMA host port
% 352-pin BGA
> Wonyong Sung
Multi Systems Lab SNU

C62xx Datapaths

>

s 2 Datapaths
8 Functional units
= orthogonal/Zindependent
m 6 Arithmetic units
» 2 Multipliers
s Control
= Independent
s Up to 8 32-bit inst. in parallel
% Registers
m 2 Files
n 32, 32-bit Registers Total
s Cross paths (1X, 2X)

L)

K/
0’0

By

I

Lo

Regkter
i TRA

o 15

nad

DAz

LDz2

ST2 %

Co2xx P

High Performance

Advanced VLIW CPU

Max 8 instructions per cycle.

300 MHz (‘*C6203) -> 1GHz

Low Power/Performance (?))

Ease of Use
s Orthogonal RISC-like architecture 250

= Low code density, no micro-parallelism witF
an instruction. (<-> traditional DSP) 1E;WIP5J

= Development Environment 200 MHz
= Efficient C compiler

= Assembly Optimizer (automatic parallelizer]
Newest semiconductor technology emplo
s Low price even for small quantities
= Large on-chip memory
» Continuous update

Wonyong Sung
Multi Systems Lab SNU

VLIW vs. Su

Memory Instruction Execution Units
scheduling,
NS 2 — D INS 1/INS 2
INS 3 "
- INS 3 INS 4

&

. VLIW: using off-linNS 6({INS 5

¢ Software
INS n Superscalar: HW

At the execution time

Wonyong - Surg
Multi Systems Lab SNU

Supers

% Superscalar:
s Scheduling at the execution time
s Code scheduling scope is limited to a basic block
= Complex HW scheduler — speed bottleneck
s Code compatibility

% VLIW
= Scheduling at the compile time (by SW)

s Code scheduling scope is very wide
= Virtually no scheduling boundary in a program

= HW is simple (no scheduling operation)

= No code compatibility (recompile needed)

Wonyong Sung
Multi Systems Lab SNU

why VLIW (Very Lon

% Superscalar disadvantages:
= Energy consumption is a major challenge
= Dynamic behavior complicates software development

= Execution-time variability can be a hazard
“ VLIW disadvantages:

= New kinds of programmer/compiler complexity

= Programmer (or code-generation tool) must keep track of
instruction scheduling

= Deep pipeline, long latencies can be confusing, may make
peak performance elusive

s Code size bloat -> larger energy consumption
= High program memory bandwidth requirements

“ VLIW lends well to DSP algorithms and offers possibilities
for very high performance!

Wonyorng - Sung
Multi Systems Lab SNU

Why

» Characteristics:

= Multiple independent operations per cycle, packed into single
large "instruction” or "packet"

= More regular, orthogonal, RISC-like operations
s Large, uniform register sets
s Compiler-friendly: orthogonal, deterministic, 100%
conditional RISC-like instruction set
= Advanced compiler and optimization technologies
= Long history of VLIW compiler in the computer research area.

* Examples of current & upcoming VLIW

architectures for DSP applications:
m TI TMS320C6xxx, Siemens Carmel, ADI TigerSHARC

Wonyorng - Sung
Multi Systems Lab SNU

RISC | Super VLIW Prog a
Scalar DSP ware
DSP low high Very high medium Very high
performance
Hardware simple Very complex complex medium Simple~co
mplex
Application high high High Medium Low
developmen (efficient (assembly, (VHDL
t efficiency compiler) inefficient programmin
(Compiler) compiler))
Code Good Good Recompile Good? low
compa- needed
embedded
systems)
Clock high Medium~low high Medium~low
frequency
) Wonyorng - Sung
Multi Systems Lab SNU

C62xx Target

 Multi-Channel: multiple channels of same
application

m Cellular base-stations, Pooled modems, Central office
switches, Multi-channel line echo cancellation, Multi-
channel vocoders, Head end cable modem, Central
office xDSL

* Multi-Function: multiple applications
= Modem + Voice + Sound + ...
= Pooled modem data pump + Control
= Multimedia

s Performance driven
s cable modem
m XDSL
s advanced terminals

Wonyorng - Sung

LY Multi Systems Lab SNU

TMS32

Program R& M Cache Data RAM
32-Bit Address 32-Bit Addvess
256-Bit Data 8-, 16-, 32-Bit Data
512K Bits RATA 512K Bits RATA

ITAG Testf
Emulation
Control

"'CE200 CPU Coie
Frogram Fetch Contral

Instruction Dispatch Reqgisters
Instruction Decode _

RMultic kannel
{T1/E1)}
Seiial Port

Data Path 1 Data Pathz ~ Control
A Register File]| [E Register File

Test
Emulation

Interupts

Multic kaninel
[T1ET)
Seiial Por

Powrer IManage ment .

Timey

PLL C lock Generator .

1600 MIPS@200 MHz

5 ns cycle time

Up to 8 32-bit inst./cycle
3.3V I/0, 2.5V internal
0.25 micron, 5-layer metal
1 Mbit on-chip RAM

SRAM, SB-SRAM, SDRAM
interface

4 channel DMA

2 multi-channel T1/E1 serial
ports

16-bit DMA host port
352-pin BGA

11

Wonyong Sung
Multi Systems Lab SNU

C62xx Datapaths

>

s 2 Datapaths
8 Functional units
= orthogonal/Zindependent
m 6 Arithmetic units
» 2 Multipliers
s Control
= Independent
s Up to 8 32-bit inst. in parallel
% Registers
» 2 Files (why two, not one or
four?)
n 32, 32-bit Registers Total
s Cross paths (1X, 2X)

L)

K/
0’0

12

By

I

Lo

Regkter
i TRA

o 15

nad

DAz

LDz2

ST2 %

C62xx Datapaths

% L-unit (L1, L2)
» 40-bit integer ALU
» Comparisons
= Bit counting
= Normalization
% S-unit (81, S2)
s 32-bit ALU
» 40-bit shifter
= Bitfield operations
= Branching
¥ M-unit (M1, M2)
s 16x16 -> 32
* D-unit (D1, D2)
s 32-bit add/subtract
= Address calculation

L)

L)

13

By

Lo

1H

Regkter
i TRA

o 15

nad

DAz

LDz2

ST2 %

Weakness of

** High instruction bandwidth
= Max 32bit*8 = Max 256 bit/cycle
s L1, L2 cache/memory

s There are researches on code compression of

VLIW CPU
** Low code density
= The instruction set is RISC style, no
application specific, powerful, instructions
s General purpose register based
= This seems for good compiler.

Wonyorng - Sung

14 Multi Systems Lab SNU

Co2xXx Inst

X/

s Up to 8 instructions executed in parallel

X/

s Determined at assembly or compile time

AO = Bl * A2;
B3 = (unsigned) B4 * (signed) B5;
A6 = A7 << 17;
B9 = B10 - Al1l;
Signifies a parallel A-side M-unit using an _ _
operation operand from B-side B-side M-unit

<- left operations are
all independent

MPY .M1X B%, A2, AO
Tl MPYUS _M2“ B4, B5, B3
| SHL .S1_ A7, 17, A6
|1 SUB .L2X 810, All, B9

B-side L-unit using an

operand-from A-side A-side S-unit

U Multi

Wonyong Sung
Systems Lab SNU

Co2xXx Instru

1+

X/

s All Instructions can be conditional (predicate instructions)
» Al, A2, BO, B1, B2 can be used as conditions
» Based on Zero or Non-Zero value
s Compare instructions can allow other conditions (<, >, etc.)
% Reduces branching

X/

% Increases parallelism

if (A1) A2 = A3 + A4; Note: branches are

if (B1) B2 B3 * B4; . .

else A5 = A4 + B3- Very exp_ens_lve N
deeply pipelined arch.

Conditionalon A1 =0
Done in parallel /

\\\\5 [A1] ADD .L1 A3, A4, A2

"Il [B1] MPY .M2 B3, B4, B2
Il ['BIJADD .S1X A4, B3, A5

- 4

16 b Conditionalon BT =0 Woryong Surg
Multi Systems Lab SNU

))
L X X4

X3

*¢

)
A X4

)
A X4

)
A X4

,

Co2xXx Inst

r
A

Load-Store architecture
2 addressing units (D1, D2)
Orthogonal: Any register can be used for addressing or indexing
Signed/Unsigned byte, half-word, word addressable
s Indexes are scaled by type
Register or 5-bit unsigned constant index
Indirect addressing modes

» Pre-Increment *++R[index], Post-Increment *R++[index]
s Pre-Decrement *--R[index], Post-Decrement *R--[index]
» Positive Offset *+R[index], Negative Offset *-R[index]

15-bit positive/negative constant offset from B14 or B15
Circular addressing
s Fast and low cost: Power of 2 sizes and alignment
s Up to 8 different pointers/buffers
s Up to 2 different buffer sizes
Dual Endian Support

No bit-reversed
addressing!

17

Wonyong Sung
Multi Systems Lab SNU

C6201 Internal

s Separate internal program and data spaces
% Program
s 16K x 32-bit instructions (2K fetch packets)
s 256-bit fetch width

= configurable as either
= directed mapped cache
= memory mapped program memory
s Data
m 32K X 16-bit
» Single ported accessible by both CPU data buses
s 8 X 2K 16-bit banks
= 2 memory spaces (4 banks each)
= 4-way interleave
= spaces and interleave minimize bank conflicts

Wonyong Sung

Lis Multi Systems Lab SNU

C6201 Me

4 channel DMA w/bootloading capability

32-bit external memory interface supporting
m 26-bit external byte address space
s 32-bit width with byte-strobes
» asynchronous & synchronous SRAM
= synchronous DRAM
n 8-bit/16-bit external ROM

16-bit host access port
32K x 16 data memory
16K x 32 program memory/Zinstruction cache

Peripherals
m 2 timers
» 2 enhanced buffered T1/E1 serial ports

<

D)

*

<

D)

*

*e

%

b

%

e

%

*e

%

Wonyong Sung

L Multi Systems Lab SNU

Phase 1 Mirite C code
¥

Enmplle

Code Generation Flow

F"r-:-flle

< Compiler-friendly: @ —
= start with C-level coding

= optionally hand optimize i Refie G ouds
only most critical functions .:c.mpne
% Tool suit support e

optimizing:
= Use C compiler to
optimize and software
pipeline
s Use Assembly Optimizer

Mo
optimization™,
to automatically schedule 2

and Optlmlze Serlal Wirite = erial as=embly
Phass= 3
assembly code :

A55embh.r oplimize
= Debug code through
intuitive Windows-based

source code (C and
assembly) debugger

Complete _}

PerI|E

20 Complete

Usi

s Intrinsic:
m Special function that maps directly to inlined C programs

e e.g.
» int _add2(int srcl, int src2); /* 16 x 2 Add */
» int _sadd(int srcl, int src2);/* Saturated Add */
m int _sat(int src2); /* Saturation */

_mpyhl, _mpyhuls, mpyhslu, mpyluhs...

Int _sadd(int a, int b) /* saturated add */
{

int result = a+b;

if(((a"b) & 0x80000000)==0) >

{ _sadd(a,b)

if((result*a) & 0x80000000)
result = (a<0)? 0x80000000:0x 7{ffffff;

}

return result;

}

51 Wonyong Sung
Multi Systems Lab SNU

Code Generation Flow

Typical Coding

Flow/Tools Efficiency Effort
Compiler

C > Optimizer > 70-80% Low
Intrinsics

ASM | Assembly - 95100% Medium

Optimizer

ASM > 100% High

2 Multi - Systerme Lab SN

Optimizin

+» Dot-Product C Code

int dotp(short a[], short b[])
t _
int sum, i;
sum = 0;
for(n = 0; 1<100; &1++)
sum += a[i] * b[i];
return sum;

23

Multi

Wonyong-Sung
Systems Lab SNU

Serli

* Dot-Product Serial Assembly

MVK .Sl 100,A1 ;set up loop counter

ZERO -L1 A7 ;zero out accumulator
LOOP:

LDH .D1 *Ad++,A2 ;load ai from memory

LDH .D1 *A3++,A5 ;load bi from memory

NOP 4 ;delay slots for LDH

MPY -M1 A2,A5,A6 ;ai * bi

NOP ;delay slot for MPY

ADD L1 A6,A7,A7 ;sum += (ai*bi)

SUB .S1 Al,1,A1 ;decrement loop counter
[Al] B .S2 LOOP ;branch to loop

NOP 5 ;delay slots for branch
; Branch occurs here

< 100 lterations: 2+100x16 = 1602

Wonyong Sung

Z Multi Systems Lab SNU

* Dependency Graph for Dot-Product

1 cntr
(A1) S1
1
Y
LOOP) g1
25 Mult Systems Lab SNU

Pa

* Dependency Graph for Parallel Assembly

LDH LDH
9N\ MPY SUB
2 1

Y ADD Y B

1 sum L1 LOOP) g1

Wonyong Sung

— Multi Systems Lab SNU

** Dot-Product Parallel Assembly

MVK
11 ZERO
LOOP:
LDH
11 LDH
SUB
[Al] B
NOP
MPY
NOP
ADD

-S1
-L1

.D1
.D2
-S1
-S2

2

-M1X

-L1

: Branch occurs here

100,A1
A7

*Ad++,A2
*B4++,B2
Al,1,Al1
LOOP

A2,B2,A6

A6 ,AT7 ,AT7

;set up loop counter
;zero out accumulator

;load ai from memory
;load b1 from memory
;decrement loop counter
;branch to loop

;delay slots for LDH
;al * bi

;delay slot for MPY
;sum += (ai*bi)

< 100 lterations: 1+100x8 = 801

27

Multi

Wonyong Sung
Systems Lab SNU

U

<+ Unrolled Dot-Product C Code

int dotp(short a[], short b[])
{
int sumO, suml, sum, 1;
sumO = O;
suml = O;
for(r = 0; 1<100; 1+=2){
sum0 += aJi1] * b[1];
suml += aji+l] * bji+l];
ks
sum = sumO + suml;
return sum;
ks

28

Multi

Wonyong Sung
Systems Lab SNU

* Dot-Product Assembly with LDW

Unrolled Loop

MVK
| ZERO
| ZERO

LOOP:

LDW
| LDW
suB

[Al] B

NOP
MPY
| MPYH
NOP
ADD
| ADD

ADD

-S1
-L1
L2

-D1
.D2
-S1
-S1
2
-M1X
-M2X

-L1
L2

- Branch occurs here

-L1IX

50,A1
A7
B7

*Ad++,A2
*B4++,B2
Al,1,Al1
LOOP

A2,B2,A6
A2,B2,B6

A6 ,AT7 ,AT7
B6,B7,B7

A7,B7,A4

;set up loop counter

;zero out sumO accumulator
;zero out suml accumulator

;load a1 & ai+l from memory
;load bi & bi+l from memory

;decrement loop counter
;branch to loop

;al * bi
;(ai+l) * (bi+l)

;sum0 += (ai*bi)

;suml += ((ar+l) * (bi+l))

> sum = sumO + suml

/7
0.0

100 lterations: 1+50x8+1 = 402

29

Multi

Wonyong Sung
Systems Lab SNU

Unrolled Lo

 Dependency Graph for Dot-Product with LD

PY><
r DD f DD
1 sumO i 1 suml

_ \

1

30 Multi

Wonyong Sung
Systems Lab SNU

Software Pip

<+ Dot-Product Modulo lteration Interval Tab

Unit/Cycle

0,8,...

1,9,...

2,10,...

3,11,...

4,12,...

5,13,...

6,14,...

7,15,...

D1

LDW

.D2

LDW

M1

MPY

M2

MPYH

L1

L2

Sl

SUB

S2

**Resource?t2 2 = [1 iteration/cycle 7=

31

Multi

Wonyorng - Sung
Systems Lab SNU

Softwar

s Software pipelining is a technique used to schedule
iInstructions from a loop so that multiple iterations

of the loop execute in parallel.

* What is pipelining? Supplying the input
before the processing of the previous input
IS not completed.

Ad
=] Az
i = AT Pipelined-loo i prolog
D [B3 Ad
E1 CZ i3 B4 A5 kernel
EX [i_sd BS
E3 [4 | &5 | PipelinecHloo pepilog
E4 D5
E5
= Wonyorng - Sung

Multi Systems Lab SNU

Software Pip

<+ Dot-Product Modulo lteration Interval Ta

Unit/Cycle
.D1 LDW LDW

(5) (6)

D2 W | LDW LDW
(5) (6)

M1

M2

L1

L2

.S1 SuUB

(5) (6)

.S2 B

(5) __(6)

< 100 lterations: 7+50+1 = 58

Wonyong Sung

€ Multi Systems Lab SNU

Software Pi

LOOP:
ADD L1 A6,A7,A7 ;sumO += (ar * bi)
11 ADD -L2 B6,B7,B7 ;suml += (ai+l * bi+l)
11 MPY -M1X A2,B2,A6 ;ai * bi
11 MPYH -M2X A2,B2,A6 ;ai+l * bi+l
|1[A1] SUB .S1 Al,1,A1 ;decrement loop counter
|I[A1] B .S2 LOOP ;branch to loop
11 LDW .D1 *A4++,A2 ;load a1 & ai+l from memory
11 LDW .D2 *B4++,B2 ;load bi & bi+l from memory

017|0i| * Prologue Code

<pipelined-loop prolog snipped here>

ADD -L1X A7,B7,A4 ;sum = sumO+suml

042|0) *Epilogue Code———————

34

Wonyong Sung
Multi Systems Lab SNU

Compa

¢ Comparison of Dot-Product Code Examples

Example 100 lterations Cycle
Count

Serial Assembly 2+100x16 1602

Parallel Assembly 1+100x8 801

Unrolled Loop Assembly with LDW 1+ 50x8+ 1 402

Software Pipelined Assembly 7+ 50+1 58

=5

Wonyong Sung
Multi Systems Lab SNU

Disadvantages of S

s Contains prologue and epilogue codes.

** Loop size needs to be large to hide the
effects of the prologue and epilogue codes.

* May need non-pipelined code for the short
loop length.

* _nassert statement: give information so
that non-pipelined code is generated or not.
__nassert(N>=10); this means N>= 10.

Wonyorng - Sung

— Multi Systems Lab SNU

Software p

< Instrinsic allowed, function call not
allowed

* Conditional break (early exit) not allowed
* Loop must count down, and terminates at O.

* When the code size is too large and,
therefore, requires more than 32 registers.
-= no pipeline possible.

* A register value is too long. -= no pipeline.

Wonyorng - Sung

=i Multi Systems Lab SNU

Loop

% Conventional processor: reducing the over
of loop count (decrease and conditional jump).

“* VLIW: devise the loop so that there exist
enough number of instructions in the loop.

s EX: FIR filtering — one multiplication for each tap,
which means only utilize half of the resource. So, itis
needed to change the code so that two taps, or more,
are processes at each iteration.

38 Wonyorng - Sung
Multi Systems Lab SNU

Basi

void vecsum(short *sum, short *inl1, short *in2,
unsigned int N)

{ inti;

for (i=0; i<N; i++)
suml[i] = inl[i] + in2[i];

¥

Condition for parallelization: sum does not affects inl,
IN2. (no dependency from sum to inl, in2)

Resource dependency problem.

Wonyong Sung
Multi Systems Lab SNU

40

Multi

Wonyong Sumng
Systems Lab SNU

s Solution: const keywords

void vecsum(short *sum, const short *inl, const short
*INn2, unsigned int N)

{ inti;

for (i=0; i<N; i++)
suml[i] = inl[i] + in2[i];

¥

a1 Wonyong Sung
Multi Systems Lab SNU

L 4

L 4

L 4

Developm

Identify loops and time consuming portions.

Reduce memory dependency, arithmetic
dependency. It should be known to the compiler.

Limitation due to resource

= Mmemory: two 32bit data/cycle
= mul: two 16*16

= ALU etc.

Instrinsic, software pipelining, loop unrolling,
count down loop

Short loops do not get benefit from the software
pipelining. Big array consumes the internal
memory.

Wonyorng - Sung
Multi Systems Lab SNU

F

/7

< Input data, coefficients should not overlap with
output storage.

s Conventional code: 1 tap/loop
16 bit data,coef fetch, 1 multiplier, 1 add
-=> do not fully utilize the resources.

% Loop unrolling: 2 tap/loop
two LDW (1 upper, 1 lower 16-bit), 2 multiplier, 2
add, 1 count sub and jump

s Intrinsic (mul, mulh), software pipelining (when
tap length is not small.)

Wonyong Sung
Multi Systems Lab SNU

Load &

< Why important?
s C6x has a RISC style instruction set (load store
machine), memory access is expensive.

s Aligned (16byte boundary) memory load: 128 bit
supported, non-aligned memory load: 64 bit.

s Usually load-store reduction can be conducted by
= loop fusion
= function merging
= Multi-block processing

Wonyong Sung

44 Multi Systems Lab SNU

Example of func
ofe)

Fig. 3. Merging X-zooming and Vector error diffusion.

Halftoning Halftoning
Neighbor's Neighbor's : ;
_/ Quantization Error _»/ Quantization Error L
Packing Packing ‘ Load 2 pixel ‘
X-Zooming + * +
. Calculate Calculate -
‘ Load 2 pixel ‘ Total Neighbor's Load Total Neighbor's ‘ Interpolation ‘
* Quan. Error Quantizing Pixel Quan. Error
Interpolation v Y P
‘ g ‘ + | Subtract T ﬁ> | Subtract |
‘ Store pixel ‘ \/ ! v
Table-based Table-based
Multi-level Quantizer Multi-level Quantizer
L Calculate Store L Calculate Store
Quantization Error Quantized Pixel Quantization Error Quantized Pixel

Wonyong Sung

45 Multi Systems Lab SNU

Example of multi-blo

% Motion estimation: 4x4 SAD (Sum of Absolute Difference)
computation intensive with non-aligned memory accesses

inevitable
s Each data unit is just 1 byte (8bit) so SIMD computation is
needed
One Two Four
Number of blocks block blocks blocks
for each loop of 4x4 of 4x4 of 4x4
Non-aligned 4byte load 4 - -
Aligned 4byte load 5 1 1
Non-aligned 8byte load - 4 8
Aligned 8byte load - 4 8
Aligned 4byte store 1 - -
Aligned 8byte store - 1 2
SUBABS4 4 8 16
DOTPU4 4 8 16
Parallelism of 5 67 5 33 6.07
the loop kernel
Number of cycles per
pixel for SAD computation 0.562 0.375 0.234
16 VVOTTyOoTrig Surtg
Multi Systems Lab SNU

Condition

<&

D)

*

C64x iIs intended for repetitive execution of
arithmetic intensive algorithms

= But what if not?
» 1t’s unavoidable to handle control intensive code
Branch penalty is very big
s It needs to flush the pipeline
= May have to wait until the conditions are known.

= The penalty is proportional to the number of
simultaneously executable instructions

» C6X provision
= Conditional execution — program flow is linear (do not

destroy the pipeline), just some instruction may or
may not be executed according to the conditions

m However the condition, and the conditional execution
body need to be simple.

4

L)

L)

4

L)

*

L)

L)

47 Wonyorng - Sung
Multi Systems Lab SNU

C language b

s C/C++ source file
* Parser: generate .if file
s Optimizer: generate .opt file
s Optimization levels (-O1 — -0O3)
*» Code generator: generate .asm file
s Conduct processor specific optimizations

Wonyong Sung

ae Multi Systems Lab SNU

% Optimization levels (-00, -01, ..)
s -00: performs flow graph simplification
= Allocate variables to registers
= Performs loops rotation, eliminates unused code...
m -O1: performs local copy/constant propagation
= Eliminates local common expressions
m -02: performs software pipelining and loop opt.
= Performs loop unrolling, eliminates global common subexpressions

= -0O3: Removes functions that are never called, inlines calls to small
functions, identifies file-level variable characteristics

s Program level optimizatin (-pm and —O3 options)
= All of the source files are compiled into one intermediate file called a

mndriila
(B AVAG LW § L ws

= If a function is not called directly or indirectly, the compiler removes the
function

= return value of a function is never used, the compiler deletes the return
code

Wonyorng - Sung

N Multi Systems Lab SNU

X/

o0

*

K/

o0

*

Turn off sw pipelining for dubugging..: -mu

Software pipelining
progra

To reduce the code size: use —-ms2, -ms3

Terms define in the SW pipelining information

Loop unrolling factor: the factor that the loops is unrolled to
iIncrease the performance based on the resource bound
constraint. Odd case

Known minimum (maximum) trip count: the number of times
the loop was executed

Loop carried dependency bound: the distance of the largest
loop carry path, one iteration writes a value that must be
read in a future iteration. Marked with ™ symbol.

Iteration interval: the number of cycles between the initiation
of successive iterations

Resource bound: the most used resource constrains the min
iteration interval. Unpartitioned and partitioned (A and B)

Resource partition: .L, .S, .D, .M

50

Wonyorng - Sung
Multi Systems Lab SNU

SW pipelining

s Too small trip count — sw useless
s The best is let it be known

s Other techniques that compiler does
= Multi-version code generation

= One sw pipelined and the other not

= Check the trip count in the run time and determines which code
to execute.

= Increase the code size

m Prolog and epilog collapsing — relieve the requirements of
min trip count

Wonyong Sung

>1 Multi Systems Lab SNU

loop: 1nal

ina2z || decn ; n=n-1
inaz3 || [n]l br loop ; branch to loop
i 1f n=0
locp: sub n,2,n

insl ; prolog stage 1
ins2 || insl || dec n ; prolog stage 2
kernsl: 1ina3 || ins2 || insl || [n] dec n || [n] br kernel ; kernel n>: 3
in=3 || insz ; apllog stage 1
ins3 i epllog stage 2
Figure 1: Software-pipelined Loop
loop: aub n, 1, n ; exeo. kernal n-2+41 tCilmes
in=l ;i prolog stage 1
in=2 || inel || dec n ; prolog stags 2
e el R It were safe
kernel: ins2 || ina2 || insl || [n] dec n || [n] br kernel to execute insl
§ e
ins3 i epllog stage 2 extratime
Figure 2: Software-pipelined loop with one epilog stage collapsed.
loop: ; exeo. kernsl n-2+42 tilmes
aub n, 1, p i p=n-1
£ m e
in=l ;7 prolog stagse 1
in=2 || insl || dec n ; prolog stags 2
£ m e
karnal : ine? || [pl ime2 || insl || [p] dec p || [n] dec n || [n] br kernel

Figure 3: Software-pipelined loop with both epilog stages collapsed oTTy g s g
. pip P priogstag i Systems Lab SNU

0

D)

0

0

0

Investigati

Loop carried dependency bound is much larger than
unpartitioned resource bound

= May be memory alias disambiguation needed

Two loops are generated one not sw pipelined: when the
trip count can be too low. One is a nhon-pipe version

Uneven resource: loop unrolling helps

Larger outer loop overhead in nested loops: inner count is
small -=> loop unrolling of inner most loop

Memory bank conflicts: two memory accesses are
32bytes apart on C64 and both accesses reside within the
same memory block, a memory bank stall will occur.

Wonyorng - Sung
Multi Systems Lab SNU

Compiler optimiz

s Cost based register allocation

s Variables used within loops are weighted to have
priority over others, variables do not overlap can be
allocated to the same reg.

s Strength reduction
= Turns the array references into efficient pointer
references with autoincrements
s Alias disambiguation
= two or more pointer (or structure) references refer to
the same memory location. In this case, this aliasing

of memory locations prevents compiler from
retaining values in registers

54 Wonyorng - Sung
Multi Systems Lab SNU

Compiler optim

 Branch optimizations and control flow simplificati

= Compiler analyzes the branching behavior and
rearranges the linear sequences (basic blocks) to
remove branches

= When the value of a condition is determined at the
compile time, the compiler can delete a cond branch.

= Simple control flow constructs are reduced to
conditional instructions

Wonyong Sung

=9 Multi Systems Lab SNU

Compiler opti

s Data flow optimization
s Copy propagation
= Common subexpression elimination
 Expression simplification
s A=(b+4)-(c+1) -> a=b-c+3
* Loop invariant code motion

o
"‘ L B]

56

Multi

Wonyong-Sung
Systems Lab SNU

Advanced technique

* Speculative execution

= When the branch probability is not equal, e.g.
loop
= Branch prediction is implemented in HW for some
CPU’s.
s Execute assuming the higher probability path,
and then (if the assumption is wrong) undo
the job.

Wonyong Sung

>/ Multi Systems Lab SNU

< Example of run-length code part

CMPLT .l2 B6,2,B0
[B0] B St L2
for(coeff_ctr=0 ; coeff_ctr<16; coeff_ctr++) || [!1B0] LDW .D2T?2 =*B13,B4
{ || [B0] SUB .D1 A11,1,A0
ij = %2z ++; || [!BO] ZERO .L1 A0
i =1 &0x3; | =1ij >>2; %gg% SHL .s; UA74A3
run++; ilev=0; ' .
o [BO] ADD .D1 A8,A3,A3
level = level_buflil[j];
i [B0O] ADDAH .D1 A4,A3,A5
{n‘(level >1) || [!B0] SHL .S1 A7,4A3
|| [BO] ZERO .L1 A6
xcoeff_cost += MAX_VALUE;
level = sign2(level,img->m7[i1[i1); ”[[!BE?(}] SATg'D '?S11T1 ﬁg"z\g’f’m
ACLlevel[scan_pos] = level; || ['1BO] ADD .D2 B12,B4,B4
ACRun [Scan_pos] =run; || [BO] SUB L1 A11,1,A11
++scan_pos;
run=-1;
nonzero=TRUE: Loop LHOI branch @& X It AFE => software
1 pipeline ot&
} Cycles/ Instructions = 633 / 714
58 Wonyong Sumng

Multi Systems Lab SNU

for(coeff_ctr=0 ; coeff_ctr<16; coeff_ctr++)

{

ij = %7z ++;
=803] =1 >>2 Branch 019 AFRO| Z2A2 LIS 21AH0| =& GH
runt+s - dlev=0; M 20Tt 2 NS HEX L0t XASS 2
level = |€V€|_bUf[|] [J]’ ASH A, AU HHAS T =L}
if(level >1) {
xcoeff_cost += MAX_VALUE; Cycles/Instructions = 607/625
level = sign2(level,img->m7[il[j]);
}
if(level>1) {
ACLlevel[scan_pos] = level;
ACRun [scan_pos] = run;
++scan_pos;
run=-—1;
nonzero=TRUE.
F}
59 _ Wonyong Sumng
Multi Systems Lab SNU

CBH2xX

Algorithm ‘Cox @ | Typical DSP | Cox/Typical Clock
200 MHz | @ 60 MHz Ratio Norm’d Ratio

256 FFT 14.0 us 199 us 14 :1 42:1

8x8 DCT 1.14 us 15.3 us 134 :1 4.02:1

Viterbi 1S54 | 29.5 us 315 us 10.7 : 1 321:1
(89 terms)

24 tap LMS 0.21 us 1.9 us 9:1 2.7:1

8 biquads 0.15 us 1.3 us 89:1 2.67 .1

IR

64 point 3.9 us 31 us 8:1 2.4 .1

24 tap FIR

60

Multi

Wonyong Sung
Systems Lab SNU

st1orunm

Cumulative Cycles of 8 Typical DSP Benchmarks
(Data Courtesy EDN)

DSP Group OakDSP Core
Hitachi SH-DSP

M otorola 56002 8666

Motorola 56300
TI C54x

TI C6x

Analog Devices SHARC

TIC30

0 50000 100000 150000 200000

Wonyong Sumng
Multi Systems Lab SNU

s C62xx: Basic fixed-point VLIW
s C67xx: Floating-point VLIW

o C64xx: SIMD VLIW + Telecommunication
acceleration unit (Turbo decoder).

Wonyong Sung

ez Multi Systems Lab SNU

Su

% ‘C6x VelociTl Advanced VLIW enables:
= Delivering 10x performance of any DSP on the market
today
s Shifting development paradigm from a hardware focus
to a software focus

= Reducing development time by half with new-
generation tools designed for greatest ease of use and
maximum optimization

s Reducing system cost by half for multi-channel/multi-
function applications

* Reference:
http://www.ti.com/sc/docs/products/dsp/c6000/1ndex.htm

63 Wonyorng - Sung
Multi Systems Lab SNU

< Schedule

s April 16: Multiprocessor DSP, due of HW
#H4

s April 18: OpenMP (by Youngjune)

s April 23: Midterm, Homework 5 will be
given (C64 programming)

s April 25: DSP_VLSI

Wonyong Sung

S5, Multi Systems Lab SNU

% 64 tap linear phase FIR filter

Linear phase

data arrangement — store two 16 bit data into a
32bit memory.

Software pipelining, loop unrolling.
Intrinsic (saturation, rounding)

C code programming (use instrinsic), after
compilation, compare with the theoretical bounds.
Discuss the theoretical bounds from the resource
l[imitation.

Show the number of cycles as a function of the filter
order (16, 32, 64, 128)

Wonchul gives the Naive C code.
Coefficients are constant

65

Wonyorng - Sung
Multi Systems Lab SNU

Ho

% 64 tap adaptive filter
» data arrangement
» dependency problem for coefficients update
m Software pipelining, loop unrolling.
» Intrinsic (saturation, rounding)

m C code programming (use instrinsic), compile and compare
with the theoretical limit.

= Show the number of cycles as a function of the filter order
(16, 32, 64, 128)

= Wonchul gives the Naive C code.
Coefficients are constant

Wonyong Sung
Multi Systems Lab SNU

