
The VelociTI Architecture ofThe VelociTI Architecture of
the TMS320C6x DSP

TI slide + some additionTI slide + some addition

School of Electrical Engineering
Seoul National University2hr presentation time

TMS320c6201 Architecture

1600 MIPS@200 MHz ->
1GHz
5 ns cycle time -> 1ns
Up to 8 32-bit inst./cycle
3.3V I/O, 2.5V internal
0 25 i 5 l t l0.25 micron, 5-layer metal
1 Mbit on-chip RAM
SRAM, SB-SRAM, SDRAM
interfaceinterface
4 channel DMA
2 multi-channel T1/E1 serial
portsp
16-bit DMA host port
352-pin BGA

Wonyong Sung
Multimedia Systems Lab SNU2

C62xx Datapaths

2 Datapaths
8 Functional units

orthogonal/independent
6 Arithmetic units
2 Multipliersp

Control
Independent
Up to 8 32-bit inst. in parallelp p

Registers
2 Files
32, 32-bit Registers Total32, 32 bit Registers Total

Cross paths (1X, 2X)

Wonyong Sung
Multimedia Systems Lab SNU3

C62xx Product Objectives

High Performance
Advanced VLIW CPU
Max 8 instructions per cycleMax 8 instructions per cycle.
300 MHz (‘C6203) -> 1GHz
Low Power/Performance (?)

Ease of Use
Orthogonal RISC-like architecture

Low code density, no micro-parallelism within
an instruction. (<-> traditional DSP)

Development Environmentp
Efficient C compiler
Assembly Optimizer (automatic parallelizer)

Newest semiconductor technology employed
Low price even for small quantitiesLow price even for small quantities
Large on-chip memory
Continuous update

Wonyong Sung
Multimedia Systems Lab SNU4

VLIW vs. Superscalar

VLIW: using off-line
Software
Superscalar: HW
At the execution time

Wonyong Sung
Multimedia Systems Lab SNU5

At the execution time

Superscalar vs VLIW
Superscalar:

Scheduling at the execution time
Code scheduling scope is limited to a basic blockCode scheduling scope is limited to a basic block
Complex HW scheduler – speed bottleneck
Code compatibilityp y

VLIW
Scheduling at the compile time (by SW)
Code scheduling scope is very wide

Virtually no scheduling boundary in a program
HW is simple (no scheduling operation)HW is simple (no scheduling operation)
No code compatibility (recompile needed)

Wonyong Sung
Multimedia Systems Lab SNU6

Why VLIW (Very Long Instruction Word) ?

Superscalar disadvantages:
Energy consumption is a major challenge
Dynamic behavior complicates software development

Execution-time variability can be a hazard

VLIW disadvantages:
New kinds of programmer/compiler complexity

Programmer (or code-generation tool) must keep track of Programmer (or code-generation tool) must keep track of
instruction scheduling
Deep pipeline, long latencies can be confusing, may make
peak performance elusive peak performance elusive

Code size bloat -> larger energy consumption
High program memory bandwidth requirements

VLIW lends well to DSP algorithms and offers possibilities
for very high performance!

Wonyong Sung
Multimedia Systems Lab SNU7

Why VLIW?

Characteristics:
Multiple independent operations per cycle packed into single Multiple independent operations per cycle, packed into single
large "instruction" or "packet"
More regular, orthogonal, RISC-like operations
Large, uniform register sets
Compiler-friendly: orthogonal, deterministic, 100%
conditional RISC-like instruction setconditional RISC like instruction set

Advanced compiler and optimization technologies
Long history of VLIW compiler in the computer research area.

Examples of current & upcoming VLIW
architectures for DSP applications:

TI TMS320C6xxx, Siemens Carmel, ADI TigerSHARC

Wonyong Sung
Multimedia Systems Lab SNU8

RISC Super
Scalar

VLIW Prog
DSP

Hard-
ware

DSP
performance

low high Very high medium Very high

Hardware simple Very complex complex medium Simple~co
mplex

Application high high High Medium LowApplication
developmen
t efficiency
(Compiler)

high high High
(efficient
compiler)

Medium
(assembly,
inefficient
compiler)

Low
(VHDL
programmin
g)(Compiler) compiler) g)

Code
compa-
tibility

Good Good Recompile
needed
(for

Good? low

y (for
embedded
systems)

Clock high Medium~low high Medium~low

Wonyong Sung
Multimedia Systems Lab SNU9

frequency
g g

C62xx Targeted Applications
Multi-Channel: multiple channels of same
application

C ll l b t ti P l d d C t l ffi Cellular base-stations, Pooled modems, Central office
switches, Multi-channel line echo cancellation, Multi-
channel vocoders, Head end cable modem, Central
office xDSL

Multi-Function: multiple applications
Modem + Voice + Sound + Modem + Voice + Sound + ...
Pooled modem data pump + Control
Multimedia

Performance driven
cable modem
xDSL
advanced terminals

Wonyong Sung
Multimedia Systems Lab SNU10

TMS320c6201 Architecture

1600 MIPS@200 MHz
5 ns cycle time
Up to 8 32-bit inst./cycle
3.3V I/O, 2.5V internal
0.25 micron, 5-layer metal
1 Mbit on-chip RAM
SRAM, SB-SRAM, SDRAM
interface
4 channel DMA4 channel DMA
2 multi-channel T1/E1 serial
ports
16-bit DMA host port16 bit DMA host port
352-pin BGA

Wonyong Sung
Multimedia Systems Lab SNU11

C62xx Datapaths

2 Datapaths
8 Functional units

orthogonal/independent
6 Arithmetic units
2 Multipliersp

Control
Independent
Up to 8 32-bit inst. in parallelp p

Registers
2 Files (why two, not one or
four?))
32, 32-bit Registers Total

Cross paths (1X, 2X)

Wonyong Sung
Multimedia Systems Lab SNU12

C62xx Datapaths

L-unit (L1, L2)
40-bit integer ALU
Comparisons
Bit counting
Normalization

S-unit (S1 S2)S-unit (S1, S2)
32-bit ALU
40-bit shifter
Bitfield operationsp
Branching

M-unit (M1, M2)
16 x 16 -> 32
i ()D-unit (D1, D2)

32-bit add/subtract
Address calculation

Wonyong Sung
Multimedia Systems Lab SNU13

Weakness of the architecture

High instruction bandwidth
M 32bit*8 M 256 bit/ lMax 32bit*8 = Max 256 bit/cycle
L1, L2 cache/memory
Th h d i f There are researches on code compression of
VLIW CPU

Low code densityLow code density
The instruction set is RISC style, no
application specific powerful instructionsapplication specific, powerful, instructions
General purpose register based
This seems for good compilerThis seems for good compiler.

Wonyong Sung
Multimedia Systems Lab SNU14

C62xx Instruction Set Features
Parallel InstructionsParallel Instructions

Up to 8 instructions executed in parallel
Determined at assembly or compile timeDetermined at assembly or compile time

A0 = B1 * A2;

l ft tiB3 = (unsigned) B4 * (signed) B5;
A6 = A7 << 17;
B9 = B10 - A11;

Si ifi ll l A id M it i

<- left operations are
all independent

MPY .M1X B1, A2, A0

Signifies a parallel
operation

A-side M-unit using an
operand from B-side B-side M-unit

|| MPYUS .M2 B4, B5, B3
|| SHL .S1 A7, 17, A6
|| SUB .L2X B10, A11, B9

Wonyong Sung
Multimedia Systems Lab SNU15

B-side L-unit using an
operand from A-side A-side S-unit

C62xx Instruction Set Features
Conditional InstructionsConditional Instructions

All Instructions can be conditional (predicate instructions)
A1, A2, B0, B1, B2 can be used as conditions
Based on Zero or Non-Zero value
Compare instructions can allow other conditions (<, >, etc.)

Reduces branchingg
Increases parallelism

if (A1) A2 = A3 + A4;
if (B1) B2 = B3 * B4;
else A5 = A4 + B3;

Note: branches are
Very expensive in
deeply pipelined arch

Done in parallel
Conditional on A1 != 0

deeply pipelined arch.

[A1] ADD .L1 A3, A4, A2
|| [B1] MPY .M2 B3, B4, B2
|| [!B1]ADD S1X A4 B3 A5

Wonyong Sung
Multimedia Systems Lab SNU16

|| [!B1]ADD .S1X A4, B3, A5

Conditional on B1 == 0 Conditional on B1 != 0

C62xx Instruction Set Features
AddressingAddressing

Load-Store architecture
2 addressing units (D1, D2)
Orthogonal: Any register can be used for addressing or indexing
Signed/Unsigned byte, half-word, word addressable

Indexes are scaled by type
Register or 5-bit unsigned constant indexRegister or 5-bit unsigned constant index
Indirect addressing modes

Pre-Increment *++R[index], Post-Increment *R++[index]
Pre-Decrement *--R[index], Post-Decrement *R--[index][], []
Positive Offset *+R[index], Negative Offset *-R[index]

15-bit positive/negative constant offset from B14 or B15
Circular addressing

Fast and low cost: Power of 2 sizes and alignment
Up to 8 different pointers/buffers
Up to 2 different buffer sizes

Dual Endian Support No bit-reversedDual Endian Support
addressing!

Wonyong Sung
Multimedia Systems Lab SNU17

C6201 Internal Memory Architecture

Separate internal program and data spaces
ProgramProgram

16K x 32-bit instructions (2K fetch packets)
256-bit fetch width
configurable as either

directed mapped cache
memory mapped program memorymemory mapped program memory

Data
32K x 16-bit
single ported accessible by both CPU data buses
8 x 2K 16-bit banks

2 memory spaces (4 banks each)
4-way interleave
spaces and interleave minimize bank conflicts

Wonyong Sung
Multimedia Systems Lab SNU18

spaces a d te ea e e ba co cts

C6201 Memory/Peripherals
4 channel DMA w/bootloading capability
32-bit external memory interface supporting

26-bit external byte address space26 bit external byte address space
32-bit width with byte-strobes
asynchronous & synchronous SRAM
synchronous DRAMsynchronous DRAM
8-bit/16-bit external ROM

16-bit host access port
32K x 16 data memory
16K x 32 program memory/instruction cache
PeripheralsPeripherals

2 timers
2 enhanced buffered T1/E1 serial ports

Wonyong Sung
Multimedia Systems Lab SNU19

Code Generation FlowCode Generation Flow

Compiler-friendly:
t t ith C l l distart with C-level coding

optionally hand optimize
only most critical functions

Tool suit support
optimizing:

Use C compiler to p
optimize and software
pipeline
Use Assembly OptimizerUse sse b y Opt e
to automatically schedule
and optimize serial
assembly codey
Debug code through
intuitive Windows-based
source code (C and

Wonyong Sung
Multimedia Systems Lab SNU20

(
assembly) debugger

Using Intrinsics

Intrinsic:
Special function that maps directly to inlined C programs

e.g.
int _add2(int src1, int src2); /* 16 x 2 Add */
int _sadd(int src1, int src2);/* Saturated Add */_ (,);/ /
int _sat(int src2); /* Saturation */
_mpyhl, _mpyhuls, _mpyhslu, _mpyluhs...

Int _sadd(int a, int b) /* saturated add */
{

int result = a+b;
if(((a^b) & 0x80000000)==0)
{

if((result^a) & 0x80000000)
_sadd(a,b)

(())
result = (a<0)? 0x80000000:0x7fffffff;

}
return result;

}

Wonyong Sung
Multimedia Systems Lab SNU21

Code Generation Flow

Flow/Tools Typical
Efficiency

Coding
Effort

C
Compiler
Optimizer
Intrinsics

y

70-80% Low
Intrinsics

A blASM Assembly
Optimizer

95-100% Medium

ASM 100% High

Wonyong Sung
Multimedia Systems Lab SNU22

Optimizing Assembly Code

Dot-Product C Code

int dotp(short a[], short b[])
{

i t iint sum, i;
sum = 0;
for(i = 0; i<100; i++)for(i 0; i<100; i++)

sum += a[i] * b[i];
return sum;

}

Wonyong Sung
Multimedia Systems Lab SNU23

Serial Assembly

Dot-Product Serial Assembly

MVK S1 100 A1 ;set up loop counterMVK .S1 100,A1 ;set up loop counter
ZERO .L1 A7 ;zero out accumulator

LOOP:
LDH .D1 *A4++,A2 ;load ai from memory
LDH D1 *A3++ A5 ;load bi from memoryLDH .D1 *A3++,A5 ;load bi from memory
NOP 4 ;delay slots for LDH
MPY .M1 A2,A5,A6 ;ai * bi
NOP ;delay slot for MPY
ADD L1 A6 A7 A7 ;sum += (ai*bi)ADD .L1 A6,A7,A7 ;sum += (ai*bi)
SUB .S1 A1,1,A1 ;decrement loop counter

[A1] B .S2 LOOP ;branch to loop
NOP 5 ;delay slots for branch

; Branch occurs here; Branch occurs here

Wonyong Sung
Multimedia Systems Lab SNU24

100 Iterations: 2+100x16 = 1602

Serial Assembly

Dependency Graph for Dot-Product

ai
(A2)

bi
(A5)

LDH LDH

.D1 .D1

i t

MPY SUB
5 5

pi
(A6)

cntr
(A1) .S1.M1

2 1

1

sum
(A7)

LOOP

ADD B

.S1.L11

Wonyong Sung
Multimedia Systems Lab SNU25

Parallel Assembly

Dependency Graph for Parallel Assembly

LDH LDH

ai bi

LDH LDH

.D1 .D2

MPY SUB
5 5

1pi i

ADD B

.S1.M1X

2 1

1

sum LOOP

ADD B

.S1.L11

Wonyong Sung
Multimedia Systems Lab SNU26

Parallel Assembly

Dot-Product Parallel Assembly

1 100 1 lMVK .S1 100,A1 ;set up loop counter
|| ZERO .L1 A7 ;zero out accumulator
LOOP:

LDH .D1 *A4++,A2 ;load ai from memory
|| LDH D2 *B4 B2 l d bi f|| LDH .D2 *B4++,B2 ;load bi from memory

SUB .S1 A1,1,A1 ;decrement loop counter
[A1] B .S2 LOOP ;branch to loop

NOP 2 ;delay slots for LDH
MPY M1X A2 B2 A6 i * biMPY .M1X A2,B2,A6 ;ai * bi
NOP ;delay slot for MPY
ADD .L1 A6,A7,A7 ;sum += (ai*bi)

; Branch occurs here

100 Iterations: 1+100x8 = 801

Wonyong Sung
Multimedia Systems Lab SNU27

100 Iterations: 1+100x8 = 801

Unrolled Loop

Unrolled Dot-Product C Code

iint dotp(short a[], short b[])
{

int sum0, sum1, sum, i;
sum0 = 0;su 0 0;
sum1 = 0;
for(i = 0; i<100; i+=2){

sum0 += a[i] * b[i];
1 [i 1] * b[i 1]sum1 += a[i+1] * b[i+1];

}
sum = sum0 + sum1;
return sum;;

}

Wonyong Sung
Multimedia Systems Lab SNU28

Unrolled Loop Assembly with LDW

Dot-Product Assembly with LDW

MVK .S1 50,A1 ;set up loop counter
|| ZERO .L1 A7 ;zero out sum0 accumulator
|| ZERO .L2 B7 ;zero out sum1 accumulator
LOOP:LOOP:

LDW .D1 *A4++,A2 ;load ai & ai+1 from memory
|| LDW .D2 *B4++,B2 ;load bi & bi+1 from memory

SUB .S1 A1,1,A1 ;decrement loop counter
[A1] B S1 LOOP ;branch to loop[A1] B .S1 LOOP ;branch to loop

NOP 2
MPY .M1X A2,B2,A6 ;ai * bi

|| MPYH .M2X A2,B2,B6 ;(ai+1) * (bi+1)
NOPNOP
ADD .L1 A6,A7,A7 ;sum0 += (ai*bi)

|| ADD .L2 B6,B7,B7 ;sum1 += ((ai+1) * (bi+1))
; Branch occurs here

ADD L1X A7 B7 A4 ; sum = sum0 + sum1

100 Iterations: 1+50x8+1 = 402

ADD .L1X A7,B7,A4 ; sum = sum0 + sum1

Wonyong Sung
Multimedia Systems Lab SNU29

100 Iterations: 1+50x8+1 402

Unrolled Loop Assembly with LDW

Dependency Graph for Dot-Product with LDW

ai,ai+1 bi,bi+1

LDW LDW

D1 D2ai,ai+1

pi

bi,bi+1

pi+1
MPY MPYH

5
5 5

5

.D1 .D2

M1X M2Xp

sum0

p

sum1
ADD ADD

2 2

11 .L1

.M1X

.L2

.M2X

cntr
SUB

11

1 .S1

.L1 .L2

LOOP

B
1

.S2

Wonyong Sung
Multimedia Systems Lab SNU30

Software Pipelined Assembly

Dot-Product Modulo Iteration Interval Table

Unit/Cycle 0,8,... 1,9,... 2,10,... 3,11,... 4,12,... 5,13,... 6,14,... 7,15,...

.D1 LDW

.D2 LDW

.M1 MPY

.M2 MPYH

L1 ADD.L1 ADD

.L2 ADD

.S1 SUB

.S2 B

Wonyong Sung
Multimedia Systems Lab SNU31

**Resource만으로 볼 때 1 iteration/cycle 가능

Software Pipelining

Software pipelining is a technique used to schedule
instructions from a loop so that multiple iterations instructions from a loop so that multiple iterations
of the loop execute in parallel.

What is pipelining? Supplying the input p p g pp y g p
before the processing of the previous input
is not completed.

Wonyong Sung
Multimedia Systems Lab SNU32

Software Pipelined Assembly

Dot-Product Modulo Iteration Interval Table

U n it/C yc le 0 1 2 3 4 5 6 7 8
.D 1 L D W

(0)
L D W

(1)
L D W

(2)
L D W

(3)
L D W

(4)
L D W

(5)
L D W

(6)
L D W

(7)
L D W

(8)() () () () () () () () ()
.D 2 L D W

(0)
L D W

(1)
L D W

(2)
L D W

(3)
L D W

(4)
L D W

(5)
L D W

(6)
L D W

(7)
L D W

(8)
.M 1 M P Y

(0)
M P Y

(1)
M P Y

(2)
M P Y

(3)
.M 2 M P Y M P Y M P Y M P Y.M 2 M P Y

H
(0)

M P Y
H

(1)

M P Y
H

(2)

M P Y
H

(3)
.L 1 A D D

(0)
A D D
(1)

L 2 A D D A D D.L 2 A D D
(0)

A D D
(1)

.S 1 S U B
(0)

S U B
(1)

S U B
(2)

S U B
(3)

S U B
(4)

S U B
(5)

S U B
(6)

S U B
(7)

.S 2 B
(0)

B
(1)

B
(2)

B
(3)

B
(4)

B
(5)

B
(6)(0) (1) (2) (3) (4) (5) (6)

Wonyong Sung
Multimedia Systems Lab SNU33

100 Iterations: 7+50+1 = 58

Software Pipelined Assembly

<pipelined-loop prolog snipped here>
LOOP:

여기에 * Prologue Code
LOOP:

ADD .L1 A6,A7,A7 ;sum0 += (ai * bi)
|| ADD .L2 B6,B7,B7 ;sum1 += (ai+1 * bi+1)
|| MPY .M1X A2,B2,A6 ;ai * bi
|| MPYH M2X A2 B2 A6 ;ai+1 * bi+1|| MPYH .M2X A2,B2,A6 ;ai+1 bi+1
||[A1] SUB .S1 A1,1,A1 ;decrement loop counter
||[A1] B .S2 LOOP ;branch to loop
|| LDW .D1 *A4++,A2 ;load ai & ai+1 from memory
|| LDW D2 *B4++ B2 ;load bi & bi+1 from memory|| LDW .D2 B4++,B2 ;load bi & bi+1 from memory
; Branch occurs here

ADD .L1X A7,B7,A4 ;sum = sum0+sum1

여기에 *Epilogue Code

Wonyong Sung
Multimedia Systems Lab SNU34

Comparing Performance

Comparison of Dot-Product Code Examples

Example 100 Iterations Cycle

CountCount

Serial Assembly 2+100x16 1602

Parallel Assembly 1+100x8 801

Unrolled Loop Assembly with LDW 1+50x8+1 402

Software Pipelined Assembly 7+50+1 58

Wonyong Sung
Multimedia Systems Lab SNU35

Disadvantages of Software Pipeline Code

Contains prologue and epilogue codes.
Loop size needs to be large to hide the Loop size needs to be large to hide the
effects of the prologue and epilogue codes.
May need non-pipelined code for the short ay eed o p pe ed code o t e s o t
loop length.
_nassert statement: give information so
th t i li d d i t d t that non-pipelined code is generated or not.
_nassert(N>=10); this means N>= 10.

Wonyong Sung
Multimedia Systems Lab SNU36

Software pipeline code

Instrinsic allowed, function call not
allowedallowed
Conditional break (early exit) not allowed
Loop must count down and terminates at 0Loop must count down, and terminates at 0.
When the code size is too large and,
therefore requires more than 32 registerstherefore, requires more than 32 registers.
-> no pipeline possible.
A register value is too long. -> no pipeline.A register value is too long. > no pipeline.

Wonyong Sung
Multimedia Systems Lab SNU37

Loop Unrolling

Conventional processor: reducing the overhead
of loop count (decrease and conditional jump).p (j p)
VLIW: devise the loop so that there exist
enough number of instructions in the loop.

Ex: FIR filtering – one multiplication for each tap,
which means only utilize half of the resource. So, it is
needed to change the code so that two taps or more needed to change the code so that two taps, or more,
are processes at each iteration.

Wonyong Sung
Multimedia Systems Lab SNU38

Basic Vector Sum

void vecsum(short *sum, short *in1, short *in2,
unsigned int N)g)

{ int i;
for (i=0; i<N; i++)

sum[i] = in1[i] + in2[i];sum[i] = in1[i] + in2[i];
}
Condition for parallelization: sum does not affects in1,

i (d d f i i)in2. (no dependency from sum to in1, in2)
Resource dependency problem.

Wonyong Sung
Multimedia Systems Lab SNU39

In1[i] In2[i]

?

5
5

sum[i]
?

?
1 1

1

mem

Wonyong Sung
Multimedia Systems Lab SNU40

Solution: const keywords

void vecsum(short *sum, const short *in1, const short
*in2, unsigned int N)

{ int i;
for (i=0; i<N; i++)

sum[i] = in1[i] + in2[i];sum[i] = in1[i] + in2[i];
}

Wonyong Sung
Multimedia Systems Lab SNU41

Development strategies

Identify loops and time consuming portions.
Reduce memory dependency, arithmetic
dependency. It should be known to the compiler.
Limitation due to resourceLimitation due to resource

memory: two 32bit data/cycle
mul: two 16*16
ALU tALU etc.

Instrinsic, software pipelining, loop unrolling,
count down loop
Short loops do not get benefit from the software
pipelining. Big array consumes the internal
memory.

Wonyong Sung
Multimedia Systems Lab SNU42

FIR filter

Input data, coefficients should not overlap with the
output storage. p g
Conventional code: 1 tap/loop
16 bit data,coef fetch, 1 multiplier, 1 add
-> do not fully utilize the resources.y
Loop unrolling: 2 tap/loop
two LDW (1 upper, 1 lower 16-bit), 2 multiplier, 2
add 1 count sub and jumpadd, 1 count sub and jump
Intrinsic (mul, mulh), software pipelining (when
tap length is not small.)

Wonyong Sung
Multimedia Systems Lab SNU43

Load & store reduction

Why important?
C6x has a RISC style instruction set (load store C6x has a RISC style instruction set (load store
machine), memory access is expensive.
Aligned (16byte boundary) memory load: 128 bit
supported non-aligned memory load: 64 bitsupported, non aligned memory load: 64 bit.

Usually load-store reduction can be conducted by
loop fusion
ffunction merging
multi-block processing

Wonyong Sung
Multimedia Systems Lab SNU44

Example of function merging in the digital
copier program

Fig. 3. Merging X-zooming and Vector error diffusion.

Halftoning

Neighbor`s
Quantization Error

Packing
X-Zooming

Halftoning

Neighbor`s
Quantization Error

Packing
X-Zooming

Load 2 pixel

Calculate
Total Neighbor`s

Quan. Error

Subtract

Load
Quantizing Pixel

X Zooming

Load 2 pixel

Interpolation +
Calculate

Total Neighbor`s
Quan. Error

Subtract

Interpolation

Table-based
Multi-level Quantizer

Store
Q anti ed Pi el

Calculate
Q anti ation Error

Store pixel
Table-based

Multi-level Quantizer

Store
Q anti ed Pi el

Calculate
Q anti ation ErrorQuantized PixelQuantization Error Quantized PixelQuantization Error

Wonyong Sung
Multimedia Systems Lab SNU45

Example of multi-block processing in ME

Motion estimation: 4x4 SAD (Sum of Absolute Difference)
computation intensive with non-aligned memory accesses
inevitableinevitable

Each data unit is just 1 byte (8bit) so SIMD computation is
needed

Number of blocks
One

block
Two

blocks
Four

blocksNumber of blocks
for each loop

block
of 4x4

blocks
of 4x4

blocks
of 4x4

Non-aligned 4byte load 4 - -

Aligned 4byte load 5 1 1Aligned 4byte load 5 1 1

Non-aligned 8byte load - 4 8

Aligned 8byte load - 4 8

Aligned 4byte store 1Aligned 4byte store 1 - -

Aligned 8byte store - 1 2

SUBABS4 4 8 16

DOTPU4 4 8 16

Parallelism of
the loop kernel 5.67 5.33 6.07

Wonyong Sung
Multimedia Systems Lab SNU46

Number of cycles per
pixel for SAD computation 0.562 0.375 0.234

Conditional or branch

C64x is intended for repetitive execution of
arithmetic intensive algorithmsarithmetic intensive algorithms

But what if not?
It’s unavoidable to handle control intensive code
Branch penalty is very big

It needs to flush the pipeline
May have to wait until the conditions are knownMay have to wait until the conditions are known.
The penalty is proportional to the number of
simultaneously executable instructions

C6x provision
Conditional execution – program flow is linear (do not
destroy the pipeline) just some instruction may or destroy the pipeline), just some instruction may or
may not be executed according to the conditions
However the condition, and the conditional execution

Wonyong Sung
Multimedia Systems Lab SNU47

body need to be simple.

C language based development 1

C/C++ source file
P t if filParser: generate .if file
Optimizer: generate .opt file

O i i i l l (O1 O3)Optimization levels (-O1 ~ -O3)
Code generator: generate .asm file

Conduct processor specific optimizations

Wonyong Sung
Multimedia Systems Lab SNU48

C program based developments

Optimization levels (-O0, -O1, ..)
-O0: performs flow graph simplification

All t i bl t i tAllocate variables to registers
Performs loops rotation, eliminates unused code…

-O1: performs local copy/constant propagation
Eliminates local common expressions

-O2: performs software pipelining and loop opt.
Performs loop unrolling, eliminates global common subexpressions

-O3: Removes functions that are never called, inlines calls to small
functions, identifies file-level variable characteristics,

Program level optimizatin (-pm and –O3 options)
All of the source files are compiled into one intermediate file called a
modulemodule

If a function is not called directly or indirectly, the compiler removes the
function
return value of a function is never used, the compiler deletes the return
code

Wonyong Sung
Multimedia Systems Lab SNU49

Software pipelining related issues in C
programmingprogramming

Turn off sw pipelining for dubugging..: -mu
To reduce the code size: use –ms2 -ms3To reduce the code size: use ms2, ms3

Terms define in the SW pipelining information
Loop unrolling factor: the factor that the loops is unrolled to p g p
increase the performance based on the resource bound
constraint. Odd case
Known minimum (maximum) trip count: the number of times
the loop was executedthe loop was executed
Loop carried dependency bound: the distance of the largest
loop carry path, one iteration writes a value that must be
read in a future iteration. Marked with ^ symbol.
I i i l h b f l b h i i i i Iteration interval: the number of cycles between the initiation
of successive iterations
Resource bound: the most used resource constrains the min
iteration interval. Unpartitioned and partitioned (A and B)iteration interval. Unpartitioned and partitioned (A and B)
Resource partition: .L, .S, .D, .M ….

Wonyong Sung
Multimedia Systems Lab SNU50

SW pipelining with unknown trip counts

Too small trip count – sw useless
The best is let it be known

Other techniques that compiler does
Multi-version code generation

One sw pipelined and the other not
Check the trip count in the run time and determines which code Check the trip count in the run time and determines which code
to execute.
Increase the code size

Prolog and epilog collapsing – relieve the requirements of
i t i t min trip count

Wonyong Sung
Multimedia Systems Lab SNU51

n>= 3

It were safe
to execute ins1
extratime

Wonyong Sung
Multimedia Systems Lab SNU52

Investigative feedback

Loop carried dependency bound is much larger than
unpartitioned resource bound

May be memory alias disambiguation needed
Two loops are generated one not sw pipelined: when the
trip count can be too low. One is a non-pipe version
Uneven resource: loop unrolling helps
Larger outer loop overhead in nested loops: inner count is
small -> loop unrolling of inner most loop
Memory bank conflicts: two memory accesses are
32bytes apart on C64 and both accesses reside within the
same memory block, a memory bank stall will occur.

Wonyong Sung
Multimedia Systems Lab SNU53

Compiler optimization techniques (1)

Cost based register allocation
V i bl d ithi l i ht d t h Variables used within loops are weighted to have
priority over others, variables do not overlap can be
allocated to the same reg.

S h d iStrength reduction
Turns the array references into efficient pointer
references with autoincrements

Alias disambiguation
two or more pointer (or structure) references refer to
the same memory location. In this case, this aliasing the same memory location. In this case, this aliasing
of memory locations prevents compiler from
retaining values in registers

Wonyong Sung
Multimedia Systems Lab SNU54

Compiler optimization techniques (2)

Branch optimizations and control flow simplification
Compiler analyzes the branching behavior and Compiler analyzes the branching behavior and
rearranges the linear sequences (basic blocks) to
remove branches

h h l f d d d hWhen the value of a condition is determined at the
compile time, the compiler can delete a cond branch.
Simple control flow constructs are reduced to Simple control flow constructs are reduced to
conditional instructions

Wonyong Sung
Multimedia Systems Lab SNU55

Compiler optimization techniques (3)

Data flow optimization
C tiCopy propagation
Common subexpression elimination

E i i lifi iExpression simplification
A=(b+4)-(c+1) -> a=b-c+3

Loop invariant code motion
…

Wonyong Sung
Multimedia Systems Lab SNU56

Advanced techniques for conditional or branch

Speculative execution
Wh th b h b bilit i t l When the branch probability is not equal, e.g.
loop

Branch prediction is implemented in HW for some Branch prediction is implemented in HW for some
CPU’s.

Execute assuming the higher probability path, g g p y p ,
and then (if the assumption is wrong) undo
the job.

Wonyong Sung
Multimedia Systems Lab SNU57

Example of run-length code part

for(coeff_ctr=0 ; coeff_ctr<16; coeff_ctr++)
{

…
CMPLT .L2 B6,2,B0
[B0] B .S1 L2
|| [!B0] LDW .D2T2 *B13,B4
|| [B0] SUB .D1 A11,1,A0
|| [!B0] ZERO L1 A0

ij = *zz ++;
i = ij &0x3; j = ij >>2;
run++; ilev=0;
level = level_buf[i][j];
()

|| [!B0] ZERO .L1 A0

[A0] B .S2 L1
[B0] SHL .S1 A7,4,A3
[B0] ADD .D1 A8,A3,A3

[B0] ADDAH D1 A4 A3 A5if(level >1)
{
*coeff_cost += MAX_VALUE;
level = sign2(level,img->m7[i][j]);

[]

[B0] ADDAH .D1 A4,A3,A5
|| [!B0] SHL .S1 A7,4,A3
|| [B0] ZERO .L1 A6

[B0] STH .D1T1 A6,*A5
|| [!B0] ADD .S1 A8,A3,A3

ACLevel[scan_pos] = level;
ACRun [scan_pos] = run;
++scan_pos;
run=-1;

|| [] , ,
|| [!B0] ADD .D2 B12,B4,B4
|| [B0] SUB .L1 A11,1,A11

…

Loop 내에 branch 명령어가 사용 => softwarenonzero=TRUE;
}

}

Loop 내에 branch 명령어가 사용 => software
pipeline 안됨

Cycles/ Instructions = 633 / 714

Wonyong Sung
Multimedia Systems Lab SNU58

for(coeff_ctr=0 ; coeff_ctr<16; coeff_ctr++)
{{

ij = *zz ++;
i = ij &0x3; j = ij >>2;
run++; ilev=0;
level = level buf[i][j];

Branch 명령어의 사용이 조건문 내의 연산이 복잡해
서 컴파일러가 잘 지원을 해주지 않는다. 조건문을 간
소화 시켜 컴파일러의 작업을 도와준다level level_buf[i][j]

if(level >1) {
*coeff_cost += MAX_VALUE;
level = sign2(level,img->m7[i][j]);
}

소화 시켜, 컴파일러의 작업을 도와준다.

Cycles/Instructions = 607/625

}
if(level>1) {
ACLevel[scan_pos] = level;
ACRun [scan_pos] = run;
++scan_pos;_p
run=-1;
nonzero=TRUE;

} }

Wonyong Sung
Multimedia Systems Lab SNU59

C62xx Performance

Algorithm ‘C6x @
200 MHz

Typical DSP
@ 60 MHz

C6x/Typical
Ratio

Clock
Norm’d Ratio

256 FFT 14.0 us 199 us 14 : 1 4.2 : 1

8x8 DCT 1.14 us 15.3 us 13.4 : 1 4.02 : 1

Viterbi IS54 29.5 us 315 us 10.7 : 1 3.21 : 1
(89 terms)

24 tap LMS 0.21 us 1.9 us 9 : 1 2.7 : 1

8 biquads
IIR

0.15 us 1.3 us 8.9 : 1 2.67 : 1

64 point 3.9 us 31 us 8 : 1 2.4 : 1p
24 tap FIR

Wonyong Sung
Multimedia Systems Lab SNU60

C6201 Compiler Efficiency (ver 1.0)
Cycle counts for unmodified C benchmark resultsy

Cumulative Cycles of 8 Typical DSP Benchmarks
(Data Courtesy EDN)

68621DSP Group OakDSP Core

188666

81982

Motorola 56002

Hitachi SH-DSP

11988

41269

94163

TI C6x

TI C54x

Motorola 56300

22000

26427

11988

TI C30

Analog Devices SHARC

TI C6x

0 50000 100000 150000 200000

Wonyong Sung
Multimedia Systems Lab SNU61

C6x family

C62xx: Basic fixed-point VLIW
C67 Fl ti i t VLIWC67xx: Floating-point VLIW
C64xx: SIMD VLIW + Telecommunication
acceleration unit (Turbo decoder)acceleration unit (Turbo decoder).

Wonyong Sung
Multimedia Systems Lab SNU62

Summary

‘C6x VelociTI Advanced VLIW enables:
Delivering 10x performance of any DSP on the market Delivering 10x performance of any DSP on the market
today
Shifting development paradigm from a hardware focus
to a software focus
Reducing development time by half with new-
generation tools designed for greatest ease of use and generation tools designed for greatest ease of use and
maximum optimization
Reducing system cost by half for multi-channel/multi-g y y /
function applications

Reference:
http://www.ti.com/sc/docs/products/dsp/c6000/index.htm

Wonyong Sung
Multimedia Systems Lab SNU63

Schedule
A il 16 M lti DSP d f HW April 16: Multiprocessor DSP, due of HW
#4
April 18: OpenMP (by Youngjune)April 18: OpenMP (by Youngjune)
April 23: Midterm, Homework 5 will be
given (C64 programming)given (C64 programming)
April 25: DSP_VLSI

Wonyong Sung
Multimedia Systems Lab SNU64

HW1

64 tap linear phase FIR filter
Linear phase
data arrangement – store two 16 bit data into a
32bit memory.
Software pipelining, loop unrolling.Software pipelining, loop unrolling.
Intrinsic (saturation, rounding)
C code programming (use instrinsic), after
compilation compare with the theoretical bounds compilation, compare with the theoretical bounds.
Discuss the theoretical bounds from the resource
limitation.
Sh th b f l f ti f th filt Show the number of cycles as a function of the filter
order (16, 32, 64, 128)
Wonchul gives the Naïve C code.
C ffi i t t tCoefficients are constant

Wonyong Sung
Multimedia Systems Lab SNU65

Homework2

64 tap adaptive filter
data arrangementg
dependency problem for coefficients update
Software pipelining, loop unrolling.
Intrinsic (saturation rounding)Intrinsic (saturation, rounding)
C code programming (use instrinsic), compile and compare
with the theoretical limit.
Show the number of cycles as a function of the filter order Show the number of cycles as a function of the filter order
(16, 32, 64, 128)
Wonchul gives the Naïve C code.
Coefficients are constant

Wonyong Sung
Multimedia Systems Lab SNU66

