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1. Introduction
Why DSP processing using RISC CPU?

Performance increase of RISC CPU’s
B  l k d iBy clock speed increase
By including multiple buses (separate cache and 
data buses)
Multiplier included

Diversified applications
M  li ti  d  t f Many applications need some amount of 
control style programs, which are not 
efficient in DSPefficient in DSP

Large memory size needed
Good compiler needed

b dd d SOC i SC (Many embedded SOC using RISC core (ARM 
or MIPS)

ARM based SOC from Intel  Samsung  Motorola
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ARM based SOC from Intel, Samsung, Motorola
MIPS based SOC from Toshiba, NEC



Disadvantages of RISC CPU
Limited number of buses (one unified bus or 
only one data bus) -> Harvard architecture, 
64 bit buses
General purpose orthogonal instructionsGeneral purpose orthogonal instructions

Code density is usually poor. 
No specific data format for signal processing p g p g
(no saturation or rounding…)
No direct memory accesses (except for load, 
t  i t )store instr.)

Large delay in context switching (interrupt 
service)service)
Large power consumption (unified register 
file, large instruction width…)
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Comparison of RISC and DSP CPU’s

RISC CPU
- Small number of 

Programmable DSP
- Many and application - Small number of 

instructions. 
- Simple instruction 

f

- Many and application 
specific instructions
ex) FFT (bit reversed 

dd iformat. 
- Small number of 

addressing modes

addressing.
Viterbi (CSSU)

- Zero-loop overheadaddressing modes
- Mostly single cycle 

instructions  (>75%)
d/ hi

- Zero-loop overhead
ex) RPT,RPB

- Address generation 
- Load/store machine
- Hardwired controller
- Good compiler

units
ex) circular addressing
MACGood compiler - MAC

- Distributed registers 
and special functional 
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ARM 7TDMI CPU block diagram

- Von Neumann Architecture
( Unified Instruction/Data BUS)
- Multiplier ( 32*8)

( l i l d dd )- MAC(Multiply and Add :MLA)
- Barrel Shift
- 32bit ARM/16bit Thumb Instruction
- 31 32-bit general purpose register31 32 bit general purpose register

Wonyong Sung
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Write Data Read Data



TMS320C54x block diagram

- Harvard Architecture
( Separate Instruction /Data Bus)

- Multiplier (17*17)
MAC Unit
17*17 MPY
40bit addr

Shifter
40bit barrel(-16,31) p ( )

- two independent 40 bit accumulators
- 40 barrel shift
- single cycle MAC(Multiply and Add)

CSSU ( l t d t it) f Vit bi

40bit addr
RND,SAT

( )

ALU
40bit ALU Accumulators - CSSU (compare, select and store unit) for Viterbi

- single-instruction repeat and block-repeat operations
(RPT, RPTB)

- circular addressing (BK: block size)  

40bit ALU
CMPS operator(VITERBI)

EXP Encoder
40bit ACC A
40 bit ACC B

g ( )

8 Auxiliary registers
2 Addressing Units

54x block diagram
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2. DSP Algorithm Optimization using RISC CPU

For FIR filtering with RISC CPU, What are 
needed?needed?

Reducing the loop overhead
By loop unrolling

Reduce memory accesses
Use register data as much as possible to reduce the 
number of loads and storesnumber of loads and stores
Loop fusion and array merges

Multiply minimizationp y
Now many RISC contain HW multipliers

Word-length optimization (16bit if possible)
multiply cycle reduction according to the 
coefficients accuracy

Use RISC CPU specific instructions

Wonyong Sung
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Use RISC CPU specific instructions
LDM, STM (load multiple, store multiple)



2.1 Loop unrolling

Conduct multiple iterations in one loop 
cycle to reduce the number of loop repeats cycle to reduce the number of loop repeats 
-> less loop overhead (less number of 
conditional jumps, counter decrease)co d t o a ju ps, cou te dec ease)
Less number of loads and stores possible 
when the bus width is bigger than the data gg
width, especially for MMX based 
implementation

Tv : short (2bytes)

f ( i 0 i < S bF L i ++ )
for ( i = 0 ; i < SubFrLen/4 ; i ++ ){

T V t[I*4] T [i]

( y )
int(4bytes)

for ( i = 0 ; i < SubFrLen ; i ++ )
TmpVect[i] = Tv[i] ;

TmpVect[I*4] = Tv[i] ;
TmpVect[I*4+1] = Tv[I*4+1] ;
TmpVect[I*4+2] = Tv[I*4+2] ;
TmpVect[I*4+3] = Tv[I*4+3] ;
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p [ ] [ ] ;
}



2.2 Loop fusion

Merges multiple loops having the same loop length, and 
(possible) reusing the loaded variables. 
DSP implementation does not care about the number of p
loads and stores.
RISC CPU needs to reduce the number of loads and 
stores – register based implementation
PrevLsp : load (3 >1)  store (2 >1)PrevLsp : load (3->1), store (2->1)
LspDcTable: load (3->1), Lsp : load (2->1) , store(2->1)

for ( j = 0 ; j < LpcOrder ; j ++ )
PrevLsp[j] = sub(PrevLsp[j], LspDcTable[j] ) ;

for ( j = 0 ; j < LpcOrder ; j ++ ){
for ( j = 0 ; j < LpcOrder ; j ++ ){

z=LspDcTable[j];( j ; j p ; j ){
Tmp = mult_r( PrevLsp[j], Lprd ) ;
Lsp[j] = add( Lsp[j], Tmp ) ;}

for ( j = 0 ; j < LpcOrder ; j ++ ) {
Pre Lsp[j] add(Pre Lsp[j] LspDcTable[j] );

p [j]
x = sub(PrevLsp[j], z ) ;
Tmp = mult_r( x, Lprd ) ;
y = add( Lsp[j], Tmp ) ;
PrevLsp[j]= add( x z ) ;PrevLsp[j]=add(PrevLsp[j],LspDcTable[j] );

Lsp[j] = add( Lsp[j], LspDcTable[j] ) ;}

* Good for memory addressing based

PrevLsp[j]= add( x, z ) ;
Lsp[j] = add( y, z ) ; }

*Good for register based implementation

Wonyong Sung
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2.3 Merging arrays

Rearrange the data in the order of 
accesses
Reducing cache misses by increasing the 
spatial locality (reduce the number of 
working sets)working sets)

FirCoef[10],IirCoef[10] -> Fir_IirCoef[20]

FirCoef[0]

FirCoef[1]

FirCoef[0]

IirCoef[0]
for ( i = 0 ; i < LpcOrder ; i ++ ) {

FirCoef[i] = mult r( Lpc[i], PostfirFiltTable[i] ) ;
FirCoef[2] FirCoef[1]

FirCoef[i] mult_r( Lpc[i], PostfirFiltTable[i] ) ;
IirCoef[i] = mult_r( Lpc[i], PostiirFiltTable[i] ) ;
}

IirCoef[7]

IirCoef[8]

IirCoef[8]

FirCoef[9]

for ( i = 0 ; i < LpcOrder ; i ++ ) {
Fir_IirCoef[i*2] = mult_r( Lpc[i], PostFiltTable[i*2] ) ;
Fir_IirCoef[i*2+1] = mult_r( Lpc[i], PostFiltTable[i*2+1] ) ;
}
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IirCoef[8]

IirCoef[9]

FirCoef[9]

IirCoef[9]
}



2.4 Circular addressing method 

0 1 2 3 4 5 6 7 98

0 1 2 3 4 5 6 7 D18

0 1 2 3 4 5 6 7 D1d2

D10 D9 D8 D7 D6 D5 D4 D3 D1D2

D10 D9 D8 D7 D6 D5 D4 D3 D11D2D10 D9 D8 D7 D6 D5 D4 D3 D11D2

for ( j = 0 ; j < LpcOrder ; j ++ )
Acc0 = L mac( Acc0, Lpc[j], SyntIirDl[j] ) ;Acc0  L_mac( Acc0, Lpc[j], SyntIirDl[j] ) ;

for ( j = LpcOrder-1 ; j > 0 ; j -- )
SyntIirDl[j] = SyntIirDl[j-1] ;
SyntIirDl[0] = round( Acc0 ) ;

for ( j =LpcOrder-1 ; j >= 0 ; j-- )
Acc0 = L mac( Acc0, Lpc[j],SyntIirDl[j] ) ;

Wonyong Sung
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_ ( , p [j], y [j] ) ;
SyntIirDl[0] = round( Acc0 ) ;



2.5 Other methods 

B M l i l bA. Data Alignment 
- efficient memory use

B. Multiply by constant

char A;
short B;
h C

char A;
char C;
h t B

- Multiply by 6
ADD Ra,Ra,Ra,LSL #1 ;Ra*3
MOV R R LSL #1 R *2char C;

int  D;
short B;
int  D;

MOV Ra,Ra,LSL #1      ;Ra*2
-Multiply by 10 and Add(Rc)
ADD Ra,Ra,Ra,LSL #2 ;Ra*5

A PAD B
C PAD

D

ADD Ra,Rc,Ra,LSL #1 ;Ra*2+Rc

D

A C B
D

Wonyong Sung
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Example 1: FIR-IIR filtering(C)

- Formant postfilter (ARMA) 

for(i=0;i < SubFrLen;i++)
{{

sum = In_data[i];
/* Fir Part */

for(j=0;j<LpcOrder;j++) -Loop fusion,
sum -= FirCoef[j]*PostFir[j]; MAC operation

for(j=LpcOrder-1;j>0;j--)
PostFir[j]=PostFir[j-1]; Data delay

PostFir[0] = In data[i];

-Merging arrays
-Loop unrolling 
-Circular addressing

PostFir[0]  In_data[i];
/* Iir part */

for(j=0;j<LpcOrder;j++)
sum += IirCoef[j]*PostIir[j];

for(j=LpcOrder-1;j>0;j--)
PostIir[j]=PostIir[j-1];

PostIir[0] = sum;
}

Wonyong Sung
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Combined method
(Loop fusion,circular addressing,loop unrolling,merging array)

/* FIR part */
for ( j = 0 ; j < LpcOrder ; j ++ )

Acc0 = L_msu( Acc0, FirCoef[j], PostFirDl[j] ) ;
f ( j L O d 1 j 0 j )for ( j = LpcOrder-1 ; j > 0 ; j -- )

PostFirDl[j] = PostFirDl[j-1] ;
/* IIR part */

for ( j = 0 ; j < LpcOrder ; j ++ )
A 0 L ( A 0 Ii C f[j] P Ii Dl[j] )Acc0 = L_mac( Acc0, IirCoef[j], PostIirDl[j] ) ;      

for ( j = LpcOrder-1 ; j > 0 ; j -- )
PostIirDl[j] = PostIirDl[j-1] ;

for ( j = LpcOrder-1 ; j >= 0 ; j -- ) {for ( j  LpcOrder 1 ; j >  0 ; j ) {
Acc0=L_msu( Acc0, Fir_IirCoef[j*2], PostFir_IirDl[j*2] ) ; 
Acc0= L_mac( Acc0, Fir_IirCoef[j*2+1], PostFir_IirDl[j*2+1] ) ;

}

Wonyong Sung
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Example1 : FIR -IIR filtering(ASM) 

° ARM7TDMI

Spf5
LDRSH    a2,[v8]

Spf6 
LDR    a3,[v6],#-4
MOV a4,a3,ASR #16
MOV a3 a3 LSL #16

CMP                     lr,v3
BLT Spf6

MOV a3,a3,LSL #16
MOV a3,a3,ASR #16
LDR      v1,[v3],#-4
MOV v2,v1,ASR #16
MOV v1,v1,LSL #16
MOV v1,v1,ASR #16

ADD v3,lr,#0x28
;***** Load DecStat.PostIir[1]
MOV v1,v6
ADD v2,v4,#0x28
CMP v2,v1
SUBEQ v2 v2 #0x22 -Loop Fusion,

MUL v1,a3,v1
SUB a2,a2,v1
MLA a2,v2,a4,a2
CMP v4,v6
ADDEQ v6,v6,#0x28
LDR a3 [v6] #-4

SUBEQ v2,v2,#0x22
ADDNE v2,v6,#0x6
LDRSH a4,[v2]
MLA a3,a4,v5,a3
MOV a3,a3,LSL #1
;***** Store PostFir[0],PostIir[0]
MOV 2 2 LSL #16

-Merging Array,
-Loop Unrolling (x2)
-Circular Addressing

LDR a3,[v6],# 4
MOV a4,a3,ASR #16
MOV a3,a3,LSL #16
MOV a3,a3,ASR #16
LDR      v1,[v3],#-4
MOV v2,v1,ASR #16
MOV 1 1 LSL #16

MOV a2,a2,LSL #16
BIC ip,ip,#0xFF000000
BIC ip,ip,#0x00FF0000
ORR a2,a2,ip
STR a2,[v6],#-4
CMP v4,v6

MOV v1,v1,LSL #16
MOV v1,v1,ASR #16
MUL v1,a3,v1
SUB a2,a2,v1
MLA a2,v2,a4,a2
CMP v4,v6

ADDEQ v6,v6,#0x28
STRH a4,[v8],#2
CMP                     v8,a1        
BLT                      Spf5

Wonyong Sung
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ADDEQ v6,v6,#0x28



° TMS320C54x

;AR3=&iir_coef,AR4=&Fir_coef,AR5=&Post_Fir,AR6=&Post_iir

STM #_DecStat+190,AR5
STM #_DecStat+200,AR6
STM #(LpcOrder-1),BK
STM #SubFrLen,BRC
RPTB L25-1 RPT RPTBRPTB L25 1
RPT #LpcOrder-1
MAS *AR4+%, *AR5+%,A
RPT #LpcOrder-1

RPT,RPTB,
circular addressing 

MAC *AR3+%, *AR6+%,A
L25:

STH B,*(_DecStat+181)
STM # DecStat+182 AR3STM              #_DecStat+182,AR3  

MVMM SP,AR4
MAR *+AR4(#12)

STH A,*AR2+

Wonyong Sung
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Example : ADPCM
(Quantizer Scale factor Adaptation Part)

if(ap > (1 << 13)) al = (1 << 14);if(ap > (1 << 13)) al = (1 << 14);
else al = (ap << 1) ;    
y = (al * yu + ((1 << 14) - al) * yl) >> 14;

° TMS320C54x° ARM7TDMI

2 3 l 1 2 l
;AR1=ap,AR2=al,AR3=yu,AR4=yl
LD #0x2000 A;a2=ap , a3=al,v1=yu,v2=yl

MOV           a1,#0x2000           ;1 <<13
CMP            a2,a1                     ;if(ap>(1<<13)) ??
MOVGT      a3,#0x4000          ;if(ap>al) al =1<<14

LD   #0x2000,A
SUB  *AR1,A
BC      L1,AGEQ
ST      #0x4000,*AR5
B L2, ; ( p )

MOVLE      a3,a2,LSL #1        ;else al=ap <<1
SUB             a2,v1,v2               ;a2=yu-yl
MUL           a1,a2,a1                ;a1=al*(yu-yl)
ADD 1 1 2 LSL #14 1 1+ l*(1<<14)

B       L2
L1:

ADD  *AR1,1,B
ST      BL,*AR5

L2:ADD           a1,a1,v2,LSL #14 ;a1=a1+yl*(1<<14)
MOV          a1,a1,ASR #14     ;a1>>14

L2:
LD *AR3,A
MPY *AR2,*AR3,A
MPY  *AR2,*AR4,B
ADD B A

Wonyong Sung
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ADD   B,A
SUB    #0x4000,A

ADD    A,14,B



Comparison of ARM CPU and TI DSP
TI DSP(Tms320c54x) ARM(7TDMI)

C
Code

Assembly
Code

C
Code

Assembly
CodeCode Code Code Code

Code size(b) 3.2k 3.1k 5k 2kADPCM
Cycle/
Sample

12000 3200 4369 799

Code size* 22 16 60 60FIR Code size 22 16 60 60FIR
Cycle 5.06 1.11 6.09 5.13

Code size 7.1k 2.5k 11.8k 4.6kFFT
Cycle** 226134 15485 126883 45683

Code size 9.2k 5.4k 9.0k 14kViterbi
Cycle/frame 338727 11845 220526 94298

Code size 1.5k 0.7k 1.3k 1kDCT
Cycle*** 10656 4513 6607 4615Cycle 10656 4513 6607 4615
Code size 136 64 248 136Synthesis

(IIR) Cycle 420 55 520 140

* kernel code size 
** 256 point complex FFT 
*** 8*8 matrix 
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CELP decoder implementation and 
performance comparisonperformance comparison

-Opt1  : loop fusion, Indirect addressing, 
-Opt2  : loop unrolling,circular addressing, merging arrays

A. Code size of the blocks

Code sizeCode size

1500

2000

2500

ze
 (

B
yt

e
) C_level 

Opt1

Opt2 * C_level: 12.5kbytes
* Opt1 : 8 3kbytes

0

500

1000

f p
f k t e p

C
o
d
e
 s

iz * Opt1 : 8.3kbytes
* Opt2 : 7.5kbytes 

S
p
f

C
o
m

p
_L

p

D
e
c
o
d
_A

c
b
k

S
yn

t

S
c
a
le

L
sp

Wonyong Sung
Multimedia Systems Lab SNU



B. Ratio of execution time taken for the blocks

각 최적화 과정에서의 주요 함수의 시간 점유율
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ADPCM Recorder

3 9 1 Code size comparison

- Total code size  : C_level :18.3Kbytes
O t 15 2Kb t

3.9.1  Code size comparison

Code size

Opt       :15.2Kbytes
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코
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 크
기

(b

C_level

Opt

0
200

PoleFilt ZeroFilt Estim_Pitch

주요 함수
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3.9.2  Ratio of time taken before and after optimization

주요 함수의 시간 점유율

80%

100%

율
(%

) Etc

Estim_Pitch

0%

20%

40%

60%

C_level Opt

시
간

 점
유

율 ZeroFilt

PoleFilt -Sample size : 68kbytes
- Sampling Freq : 12Khz 
- 소요시간 : 2.84sec

최적화 단계

Performance improvement ratio

- C_level : 6.82sec
- Opt : 2.2ses
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3. Performance Comparison of DSP and ARM9 
based Implementationsbased Implementations

Title: A platform-based comparison between a 
digital signal processor and a general-purpose digital signal processor and a general purpose 
processor from an embedded systems perspective

D. L. Cuadrado and et. Al. Aalborg Univ and Nokia
dC55x and ARM9E-S

Platform is defined as a processor and a compiler -
compiled and evaluated (not assembly compiled and evaluated (not assembly 
programming)
C55: MAC/Dual MAC, specialized addressing, Viterbi

9 ( ) i l d S iARM9E-s (ARMv5TE): includes DSP extensions to 
improve 16-bit fixed-point performance using a 
single cycle MAC.  Support ARM (32bit) and Thumb 
(16bit) instruction set

Wonyong Sung
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Selected case studies for comparison

Control
Selected domain

DSP

Gray zone

Traditional domain

Selected domain

HLL Kernel Application

DSP Traditional domain

HLL: high level construct:
Simple code segments for demonstrating Simple code segments for demonstrating 
pointer addressing, function call, …

Kernel: FFT, FIR, LMS, small state Kernel: FFT, FIR, LMS, small state 
machines
Application: 

Wonyong Sung
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Application: 
GSM, CVSD



Case studies and types

Case study Type Size

Matrix functions (AC, 
FS)

DSP Kernel

Dhrystone (DM) Control KernelDhrystone (DM) Control Kernel

CVSD (CE, CD) DSP Application
Viterbi (VD) Control KernelViterbi (VD) 
algorithm

Control Kernel

Matrix funcitons: autocorrelation, forward substitution
Dhrystone benchmark: a synthetic benchmark (1988)

assignments (51%), control statements (23%), procedure, call (17%)g ( ) ( ) p ( )

Wonyong Sung
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Cycle count comparison in compiler 
environmentsenvironments

Wonyong Sung
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Code size comparison

Wonyong Sung
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ARM vs Thumb instruction set

•Branches are more limited in the Thumb
•Data processing instructions are fewer 
(only one multiplication in Thumb, while 
14 in ARM)14 in ARM)

•Limited access to 8 of the 16 registers
•Single and multiple loads can access only 
8 registers

Wonyong Sung
Multimedia Systems Lab SNU



4. MP3 Implementation Using ARM7 CPU

MP3 market
Sigmatel: DSP56000 based SOCSigmatel: DSP56000 based SOC

Sigmatel is good at analog technology (codec, DC-
DC)

Cirrus Logic, Telechips and et al: ARM7 or 
ARM9 based SOC

Integrates codec  internal memory (64 KB or so)  Integrates codec, internal memory (64 KB or so), 
NOR flash for code

Need to support multiple audio standards in 
these days

MP3, WMA, ..
Wonchul Lee  Kisun You and Wonyong Sung  Wonchul Lee, Kisun You and Wonyong Sung, 
"Software Optimization of MPEG Audio Layer-III for 
a 32bit RISC Processor," in Proc. IEEE Asia-Pacific 
Conference on Circuits and Systems (APCCAS),

Wonyong Sung
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Floating-point profiling results

•The profiling results in a PC show that the Subband synthesis
and IMDCT parts take about 84%.
Th t h DSP k l lik h t i ti•These parts have DSP kernel like characteristics.
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Assembly program based optimization

LDM/STM: block transfer 
of upto 15 registersof upto 15 registers

Compiler do not use 
these instructions except 
for context switchingfor context switching
Takes 15 sequential, 1 
non-seq, 1 internal cycles
Repetitive 15 execution 
15*2N cycles
21%  25% decrease in 21%, 25% decrease in 
the number of clock 
cycles for IMDCT and 
S bb d h iSubband synthesis

Wonyong Sung
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Effects of multiply accuracy reduction

ARM7TDMI has 32*8bit 
multipliermultiplier

32*16 takes 4 cycles
32*32 takes 6 cycles

32*16 implementation 
requires 8% less cycles
The SQNR is 82dB while The SQNR is 82dB while 
32*32bit yields 91dB.

Wonyong Sung
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Cache misses

Data cache misses 
are dominant are dominant 
because program 
behavior is very e a o s e y
predictable in MP3 
program
MP3 SOC usually 
uses internal ROM 
f  d  d RAM for code and RAM 
for data, instead of 
cache.cache.

Wonyong Sung
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5. RISC CPU with SIMD Support

SIMD architecture
Single instruction multiple 

32b
Single instruction multiple 
data
Implementations 

a0

b0p e e tat o s
Intel Pentium MMX/SSE, 
Intel Xscale WMMX, ARM 11, 
AMD 3DNOW  PowerPC a0+b0

+

AMD 3DNOW, PowerPC 
AltiVec, SUN SPARC VIS, TI 
C6000, …

Exploit data parallelism 4X16b

Conventional ALU structure

a0 b0

Exploit data parallelism
same operation with multiple 
data

a0 a1 a2 a3

b0 b1 b2 b3

4X16b

b0 b1 b2 b3

a0+b0a1+b1a2+b2a3+b3

+ + + +

Wonyong Sung
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a0+b0a1+b1a2+b2a3+b3

Partitioned ALU structure



SIMD Introduction

Operation with packed data
A wide SIMD register holds multiple dataA wide SIMD register holds multiple data

Compatible with existing data-path
2X64b, 4X32b, 8X16b, 16X8b, , ,

Wonyong Sung
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SIMD architecture example
(Intel Pentium 4 SSE3)

128b partitioned ALU  8 128b registers128b partitioned ALU, 8 128b registers
H/W Prefetch unit, S/W prefetch inst.
Unaligned load/store instUnaligned load/store inst.
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SIMD architecture example
(Motorola PowerPC AltiVec)

128b partitioned ALU
32 128b registers32 128b registers

Sum-across inst : Sum across inst.: 
sum all element in 
vector
Stride-N access 
prefetch
Unaligned memory Unaligned memory 
access by aligned 
load/store and 
permute inst.

Wonyong Sung
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Intel® Wireless MMX™

Wireless MMX™ Technology 
MechanismMechanism

It exploit the data 
parallelism by executing the 
same operation on different same operation on different 
data elements in parallel. 
This is accomplished by 

k d lpacking data elements into 
a single register and 
introducing new types of 
instruction to operate on 
packed data.
Wireless MMX™ Wireless MMX  
Technology Data Types

Wonyong Sung
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Intel® Wireless MMX™
Mapping Wireless MMX™ technology onto 
the ARM architecture

Th  Wi l  MMX™ t h l  tili  t  The Wireless MMX™ technology utilize two 
ARM coprocessors; coprocessor 0 and 
coprocessor 1coprocessor 1.
These coprocessors support Wireless MMX™ 
technology data and control registers using technology data and control registers using 
standard coprocessor transfer instructions.
Two coprocessor space is mapped onto two p p pp
register files.

A main register file, mapped onto coprocessor 0 
 i  id d f  h ldi  16X64 bit k d space, is provided for holding 16X64-bit packed 

data.
32-bit control register file, mapped onto 

Wonyong Sung
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g , pp
coprocessor 1 space, is provided for auxiliary 
support functions.



Wireless MMX™ Register File 
OrganizationO ga at o
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Wireless MMX™ Instruction

Compatibility Instructions
Th  i  l  f i t ti  i  th  Wi l  The main class of instructions in the Wireless 
MMX™ technology are the compatibility 
instructionsinstructions.
Wireless MMX™ technology provides 
equivalent functionality to all the Intel® equivalent functionality to all the Intel® 
MMX™ instructions and integer instructions 
from SSE instruction group.
In particular they provide equivalent 
functionality to:

MMX™ technology
Integer Intel Streaming SIMD Extensions (SSE)
Intel® XScale™ microarchitecture media 
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Intel® XScale  microarchitecture media 
instructions



Wireless MMX™ Instruction

New Wireless MMX™ Instructions

Wonyong Sung
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Wireless MMX™ Instruction

WMAC<U,S>{Z}{Cond} wRd, wRn, wRm
P f   t  lti li ti  f R  d Performs a vector multiplication of wRn and 
wRm and can accumulate the result with wRd 
on vectors of 16-bit data onlyon vectors of 16 bit data only.

Wonyong Sung
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Wireless MMX™ Instruction

WALIGNI{cond} wRd, wRn, wRm, #Imm3
E t t   64 bit l  f  th  t  64 bit Extracts an 64-bit value from the two 64-bit 
Source registers (wRn, wRm), and place the 
result in the Destination register  wRdresult in the Destination register, wRd.

Wonyong Sung
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Wireless MMX™ Instruction

TBCST<B,H,W>{Cond} wRd, Rn
B d t   l  f  th  ARM* S  Broadcasts a value from the ARM* Source 
register, Rn, or to every SIMD position in the 
Wireless MMX™ technology Destination Wireless MMX  technology Destination 
register, wRd; can operate on 8-, 16-, and 
32-bit data values.

Wonyong Sung
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Wireless MMX™ Instruction

Transfer to and from Coprocessor Register
Th  t f  i t ti  f  i  d t  The transfer instructions for moving data 
between the Wireless MMX™ technology 
control and data registers and the Intel® control and data registers and the Intel® 
XScale™ microarchitecture registers.
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Wireless MMX™ Instruction

Intrinsic support
M t Wi l  MMX™ i t ti  h   Most Wireless MMX™ instructions have a 
corresponding C intrinsic that implement that 
instruction directlyinstruction directly.
Intrinsic function use a new C data type, the 

m64 data type. The m64 data type is __m64 data type. The __m64 data type is 
used to represent the contents of Wireless 
MMX™ technology register.

Wonyong Sung
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Optimization Techniques

Instruction Scheduling
I i  L d Th h tIncreasing Load Throughput

The buffering in the Memory pipeline allows two 
Load Double transactions to be outstanding without Load Double transactions to be outstanding without 
incurring a penalty(stall)
Back-to-Back WLDRD instructions will incur a stall, 
Back to Back WLDR(BHW) inst ctions ill not Back-to-Back WLDR(BHW) instructions will not 
incur a stall.
The WLDRD requires 4 cycles to return the DWORD q y
assuming a cache hit, Back-to-Back WLDR(BHW) 
require 3 cycles to return the data.
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Optimization Techniques

Interleave other operation to avoid the penalty with 
successive WLDRD instructions.successive WLDRD instructions.

Always try to separate 3 consecutive WLDRD 
instructions so that only 2 are outstanding at any 
one time and the loads are always interleaved with 
other instructions.

Wonyong Sung
Multimedia Systems Lab SNU



Optimization Techniques

SIMD Optimization Techniques
S ft  Pi li iSoftware Pipelining
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Optimization Techniques

Multi-Sample Technique
Calculating multiple outputs with each loop iteration Calculating multiple outputs with each loop iteration 
similar to loop unrolling.
C code for FIR filter with Multiple Samples for 8-
taps per iteration

Wonyong Sung
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Optimization Techniques

Register File Usage
With the large register file of the Wireless MMX™ With the large register file of the Wireless MMX™ 
technology it is possible to store large data 
structures in the register file and reduce memory 
l d ffload traffic.
Example: the register file is used to store the 8X8 
pixel macroblock during a video encode motion pixel macroblock during a video encode motion 
search.
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SIMD programming method

SIMD library
Various signal processing kernelsVarious signal processing kernels
Provided by processor makers or self-made
Various optimization techniques applied

Soft a e pipeliningSoftware pipelining
Data layout modification
Loop reduction Accumulate partial sum

i k d i t…

Accumulate

in packed register

Ex) Intel performance primitives (IPP), SUN MediaLib

Accumulate
results

Loop 
+reduction

Wonyong Sung
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SIMD programming method

Intrinsic functions
A function known by compilerA function known by compiler
directly map to instruction

Ex) c = _mm_mulhi_pi16(a, b)  
PMULHW c, a, b

32( )c = _mm_unpackhi_pi32(a, b)
UNPCKHDQ c, a, b

Wonyong Sung
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SIMD programming method

C compiler
Autovectorization : automatically transform serial Autovectorization : automatically transform serial 
code to vector code.

Identify loop
Memory reference analysis (access pattern  Memory reference analysis (access pattern, 
dependency, alignment)
Vectorize (loop unrolling, peeling, reduction, idioms)

Intel compiler  gcc v4 0Intel compiler, gcc v4.0

automatic
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Performance of SIMD

Speed-up by SIMD extension
Packed arithmetic inst. reduce FU inst.Packed arithmetic inst. reduce FU inst.
Unrolled loop, saturation mode reduce branch inst.
Packed memory inst. reduce memory inst.

VIS i tB h i t VIS inst.
Memory inst.

Branch inst.
FU inst.

Wonyong Sung
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Performance bottlenecks

Not suitable to control-oriented 
software
Ex) Huffman coding: inherently 

sequential, variable data size
Data rearrangement overhead

l d d
8B aligned Sample data

Misaligned data
Stride > 1
Reordering

ffi i tEx1) FIR filter
Ex2) accessing RGB interleaved 

pixel data

coefficients

Unaligned access

Next iteration

Ex3) bit-reverse addressing of FFT
Unaligned access

4-tab FIR filter example

Wonyong Sung
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4-tab FIR filter example



6. Conclusion

1. Many DSP applications are nowadays 
implemented by RISC CPUs partly because of the 
performance increase of RISC processors (dual performance increase of RISC processors (dual 
cache, wide bandwidth data bus, hardware 
multiplier)
2  RISC processors are advantageous for 2. RISC processors are advantageous for 
implementing control (branches) intensive, large 
memory size, and complex applications requiring 
compiler based development   compiler based development.  
3. RISC CPU specific optimization methods can 
increase the implementation performance very 
much   DSP and RISC CPU needs different program much.  DSP and RISC CPU needs different program 
optimization strategies.
Example:    CELP decoder

d i kb- code size : 13K -> 7.5kbytes
- speedup : Upto x5.

4. SIMD support closes the gap between RISC and 
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4. SIMD support closes the gap between RISC and 
DSP.


