RISC CPU Based Implementation
of Digital Signhal Processing
Algorithms

Wonyong Sung

o

""""-~-~-----~=--5_h_m,‘f”ffﬁscmo' of Electrical Eng

|.A

O O

. Introduction

. DSP Algorithm Optimization using ARM

Con

= Comparison of RISC CPU and DSP

CPU

= Loop fusion

= Loop unrolling

= Merging arrays

= Circular addressing

= Other methods

s CELP decoder and ADPCM recorder

. Performance Comparison of DSP and

ARM9

. MP3 Implementation using ARM7 CPU
. RISC CPU with SIMD Support
. Conclusion

Wonyorng - Sung
Multi Systems Lab SNU

1. Intro

* Why DSP processing using RISC CP

s Performance increase of RISC CPU’s
= By clock speed increase

= By including multiple buses (separate cache and
data buses)

= Multiplier included
 Diversified applications
= Many applications need some amount of
control style programs, which are not
= Large memory size needed
= Good compiler needed

<+ Many embedded SOC using RISC core (ARM
or MIPS)

= ARM based SOC from Intel, Samsung, Motorola

= MIPS based SOC from Toshiba, NEC
Wonyong - Surg

Multi Systems Lab SNU

* Disadvantages of RISC CPU

Limited number of buses (one unified bus or
only one data bus) -> Harvard architecture,
64 bit buses

General purpose orthogonal instructions
= Code density is usually poor.

No specific data format for signal processing
(no saturation or rounding...)

No direct memory accesses (except for load,
store Instr.)

Large delay in context switching (interrupt
service)

Large power consumption (unified register
file, large instruction width...)

Wonyorng - Sung
Multi Systems Lab SNU

Comparison of RI

RISC CPU Programmable DSP

- Small number of - Many and application
Instructions. specific instructions

- Simple instruction ex) FFT (bit reversed
format. addressing.

- Small number of Viterbi (CSSU)
addressing modes - Zero-loop overhead

- Mostly single cycle ex) RPT,RPB
Instructions (>75%0) - Address generation

- Load/store machine units

- Hardwired controller ex) circular addressing

- Good compiler - MAC

- Distributed registers
and special functional
units

Wonyorng - Sung
Multi Systems Lab SNU

ARM 71D

ADDR[31:0]

Register bank
{31 x 32-bit registars)
(& status registers)

i2x8
Muiltiplier

B bus

ALLl Brap
ADIm

—

Biarrel
shiftar

e ‘-‘J-\.-.L'

\ 32-hit ALU /

]

L

ir

Write Data

Read Data

- Von Neumann Architecture

(Unified Instruction/Data BUS)

- Multiplier (32*8)

- MAC(Multiply and Add :MLA)

- Barrel Shift

- 32bit ARM/16bit Thumb Instruction
- 31 32-bit general purpose register

Wonyong Sung
Multi Systems Lab SNU

TMS320

- Harvard Architecture

1'\;'flc73 I\‘jg'f(Shifter (Separate Instruction /Data Bus)
A0bit addr 40bit barrel(-16,31) - Multiplier (17*17)
RND.SAT - two independent 40 bit accumulators
- 40 barrel shift
ALU oo atore - single cycle MAC(Multiply and Ado_l) o
MpS O‘:)%?;tt(ﬁ(L\leERBI) 40bit ACC A - CSSU (compare, select and store unit) for Viterbi
EXP Encoder 40 bit ACC B - single-instruction repeat and block-repeat operations
(RPT, RPTB)

- circular addressing (BK: block size)

8 Auxiliary registers
2 Addressing Units

54x block diagram

Wonyong Sung
Multi Systems Lab SNU

2. DSP Algorithm Optim

** For FIR filtering with R1SC CPU, What are
needed?
= Reducing the loop overhead
= By loop unrolling

= Reduce Memaory acCesses

= Use register data as much as possible to reduce the
number of loads and stores

= Loop fusion and array merges
= Multiply minimization
= Now many RISC contain HW multipliers
= Word-length optimization (16bit if possible)

= multiply cycle reduction according to the
coefficients accuracy

s Use RISC CPU specific instructions
= LDM, STM (load multiple, store multiple)

Wonyorng - Sung
Multi Systems Lab SNU

2.1 Loop

s Conduct multiple iterations in one loop
cycle to reduce the number of loop repeats
-=> |less loop overhead (less number of
conditional jumps, counter decrease)

* Less number of loads and stores possible
when the bus width is bigger than the data
width, especially for MMX based

Im plementatl on Tv : short (2bytes)
int(4bytes)
for (i=0;i<SubFrLen/4;i++){
for (i=0;i<SubFrLen;i++) TmpVect[1*4] = Tv[i] ;
TmpVect[i] = Tv[i] ; — TmpVect[1*4+1] = Tv[1*4+1] ;

TmpVect[1*4+2] = Tv[I*4+2] ;
TmpVect[1*4+3] = Tv[I*4+3] :
}

Wonyorng - Sung
Multi Systems Lab SNU

2.2 Loop

» Merges multiple loops having the same loop lengt
(possible) reusing the loaded variables.

< DSP implementation does not care about the number of
loads and stores.

¢ RISC CPU needs to reduce the number of loads and
stores — register based implementation

» PrevLsp : load (3-=1), store (2-=1)
» LspDcTable: load (3->1), Lsp : load (2-=1) , store(2-=1)

L 4

>

L)

L)

for (j=0;j<LpcOrder;j++) |

PrevLsp[j] = sub(PrevLspl[j]. LspDcTable[j]) ; for (j=0;j<LpcOrder;j++){
for (j=0;j<LpcOrder;j++){ z=LspDcTable[j];
Tmp = mult_r(PrevLsp[j], Lprd) ; X = sub(PrevLspl[j], z) ;
Lsp[j] = add(Lsp[j], Tmp) ;} — Tmp = mult_r(x, Lprd) ;
for (j=0;j<LpcOrder;j++){ y =add(Lsp[j], Tmp) ;
PrevLsp[j]=add(PrevLspl[j].LspDcTable[j]); PrevLsp[j]=add(x, z) ;
Lsp[j] = add(Lsp[j], LspDcTable[j]) ;} Lsp[j] =add(y,z); }

* Good for memory addressing based *Good for register based implementation
implementation |

R Wonyorng - Sung

Multi Systems Lab SNU

* Rearrange the data in the order of

2.3 Mergi

acCcesses

** Reducing cache misses by increasing the
spatial locality (reduce the number of

working sets)

FirCoef[10],lirCoef[10] -> Fir_lirCoef[20]

FirCoef[0]

FirCoef[1]

FirCoef[2]

FirCoef[0]

lirCoef[0]

lirCoef[7]

FirCoef[1]

lirCoef[8]

lirCoef[8]

lirCoef[9]

FirCoef[9]

lirCoef[9]

for (i=0;i<LpcOrder;i++){
FirCoef[i] = mult_r(Lpc[i], PostfirFiltTable[i]) ;
lirCoef[i] = mult_r(Lpcl[i], PostiirFiltTable[i]) ;

} |
for (i=0;i<LpcOrder;i++){
Fir_lirCoef[i*2] = mult_r(Lpc[i], PostFiltTable[i*2]) ;

Fir_lirCoef[i*2+1] = mult_r(Lpc[i], PostFiltTable[i*2+1]) ;
}

Wonyorng - Sung
Multi Systems Lab SNU

2.4 Circular

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 D1

0 1 2 3 4 5 6 7 d2 D1
D10 D9 D8 D7 D6 D5 D4 D3 D2 D1
D10 D9 D8 D7 D6 D5 D4 D3 D2 D11

for (j=0;j<LpcOrder;j++)

Acc0 = L_mac(AccO, Lpc[j], SyntlirDI[j]) ;
for (j=LpcOrder-1;j>0;]--)

SyntlirDI[j] = SyntlirDI[j-1] ;

SyntlirDI[0] = round(Acc0) ;

1

for (j =LpcOrder-1;j>=0;j--)
Acc0 = L_mac(AccO, Lpclj],SyntlirDI[j]) ;
SyntlirDI[0] = round(Acc0) ;

Wonyong Sung
Multi Systems Lab SNU

2.51@

A. Data Alignment B. Multiply by constant
- efficient memory use
char A; char A; - Multiply by 6
short B; s char C; ADD Ra,Ra,Ra,LSL #1 :Ra*3
char C; short B; MOV Ra,Ra,LSL #1 ;Ra*2
int D; int D; -Multiply by 10 and Add(Rc)

ADD Ra,Ra,Ra,LSL #2 :Ra*5
ADD Ra,Rc,Ra,LSL #1 :Ra*2+Rc

PAD | B
PAD

o>

A]l ¢c] B

Wonyong Sung
Multi Systems Lab SNU

Example

- Formant postfilter (ARMA)

for(i=0;i < SubFrLen;i++)

{
sum = In_data[i];
[* Fir Part */
for(j=0;j<LpcOrder;j++)
sum -= FirCoef[j]*PostFir[j]; MAC operation
for(j=LpcOrder-1;;>0;j--)
PostFir[j]=PostFir[j-1]; Data delay
PostFir[0] = In_datali];
[* lir part */
for(j=0;j<LpcOrder;j++)
sum += lirCoef[j]*Postlir[j];
for(j=LpcOrder-1;j>0;j--)
Postlir[j]=Postlir[j-1];
Postlir[0] = sum;

-Loop fusion,

-Merging arrays
-Loop unrolling
-Circular addressing

Multi

Wonyong Sung
Systems Lab SNU

Co

(Loop fusion,circular

I* FIR part */
for (j=0;j<LpcOrder;j++)
Acc0 = L_msu(AccO, FirCoef[j], PostFirDI[j]) ;
for (j=LpcOrder-1;j>0;]--)
PostFirDI[j] = PostFirDI[j-1] ;
/* 1IR part */
for (j=0;j<LpcOrder;j++)
Acc0 = L_mac(AccO, lirCoef[j], PostlirDI[j]) ;
for (j=LpcOrder-1;j>0;]--)
PostlirDI[j] = PostlirDI[j-1] ;

|

for (j=LpcOrder-1;j>=0;j--){
Acc0=L_msu(AccO, Fir_lirCoef[j*2], PostFir_lirDI[j*2]) ;
Acc0= L_mac(AccO, Fir_lirCoef[j*2+1], PostFir_lirDI[j*2+1]) ;

Multi

Wonyong Sung
Systems Lab SNU

Examplel :

*ARM7TDMI
Spf5
LDRSH a2,[v8]
Spfé
LDR a3,[v6].#-4 CMP Ir.v3
MOV a4,a3 ASR #16 BLT Spf6
MOV a3,a3,LSL #16 ADD V3.Ir #0x28
MOV a3,a3,ASR #16 ;****% | oad DecStat.Postlir[1]
LDR vi,[v3]#4 MOV v1,v6
mgx Vi:"i’ﬁgf :115 ADD V2,4 #0x28
viv .
il CMP v2,vl -
MOV v1,v1,ASR #16 SUBEQ V2N H0X22 Loop _FUSIOn,
sI\SLEJsL ;’;:g"i ADDNE V2,V6,#0X6 -Merging Array,
\'
a2, LDRSH ad,[v2 -
MLA a2,v2,24,a2 MLA PV -Loop Unrolling (x2)
CMP V4,6 '3 LS ; i
: MoV a3,a3,LSL #1 -Circular Addressin
ADDEQ v6,6,#0x28 ;***%x Store PostFir[0],Postlir[0] g
LDR 23,[ve} #-4 MOV a2,32,LSL #16
MOV a4,a3 ASR #16 BIC ip,ip,#0xFF000000
MOV a3,a3,LSL #16 BIC ip,ip,#0X00FF0000
MOV a3,a3,ASR #16 ORR a2.22,ip
LDR v1,[v3]#-4 STR a2,[v6] #-4
MOV v2,V1,ASR #16 CMP VAV
MOV V1,V1,LSL #16 ADDEQ V6.V6,40x28
MOV V1,V1,ASR #16 STRH ad [v8] #2
MUL v1,a3yvl cMP v8,al
SUB a2,a2,vl BLT Spf5
MLA a2,v2,a4,a2
CMP v4,v6

ADDEQ V6,v6,#0x28

Wonyong Sung
Multi Systems Lab SNU

° TMS320C54x

;AR3=&iir_coef, AR4=&Fir_coef,AR5=&Post_Fir, AR6=&Post_iir

STM # DecStat+190,AR5
STM # DecStat+200,AR6
STM #(LpcOrder-1),BK
STM #SubFrLen,BRC
RPTB L25-1) RPTRPTB
RPT #LpcOrder-1 . ’ .
MAS *AR4+%, *AR5+%,A >. C”CUIar addreSS|ng
RPT #LpcOrder-1
MAC *AR3+%, *AR6+%,A _
L25:
STH B,*(_DecStat+181)
STM # DecStat+182,AR3

MVMM SP,AR4
MAR *+ ARA(#12)
STH A*AR2+

Wonyong Sung
Multi Systems Lab SNU

Exam

(Quantizer Sca

if(ap > (1 << 13)) al = (1 << 14);

elseal =(ap<<1);

y=(al *yu + ((1 << 14) - al) *yl) >> 14;

>*ARM7TDMI

;a2=ap , a3=al,vli=yu,v2=yl

> TMS320C54x

;AR1=ap,AR2=al,AR3=yu,AR4=yl
LD #0x2000,A

MOV al,#0x2000 1 <<13 g‘éB *If_*lR/iQE
CMP a2,al if(ap>(1<<13)) 72 or osd
) x4000,*AR5
MOVGT a3,#0x4000 Jif(ap>al) al =1<<14 B L2
MOVLE a3,a2,LSL#1 .else al=ap <<1 L1
SUB a2,viv2 ;a2=yu-yl ADD *AR1,1,B
MUL al,a2,al ;al=al*(yu-yl) ST BL*ARS
ADD al,al,v2,LSL #14 ;al=al+yl*(1<<14) Le:
MOV al,al ASR#14 al>>14 LD *AR3,A
MPY *AR2,*AR3,A
MPY *AR2,*AR4,B
ADD BA
SUB #0x4000,A
ADD A/14B -
VVOonyong Surmng
Multi Systems Lab SNU

Comparison of

T1 DSP(Tms320c54x) ARM(7TDMI)
C Assembly C Assembly
Code Code Code Code
ADPCM | Code size(b) 3.2k 3.1k 5k 2k
Cycle/ 12000 3200 4369 799
Sample
FIR Code size* 22 16 60 60
Cycle 5.06 1.11 6.09 5.13
FFT Code size 7.1k 2.5k 11.8k 4.6k
Cycle** 226134 15485 126883 45683
Viterbi Code size 9.2k 5.4k 9.0k 14k
Cycle/frame 338727 11845 220526 94298
DCT Code size 1.5k 0.7k 1.3k 1k
Cycle*** 10656 4513 6607 4615
Synthesis Code size 136 64 248 136
(1IR) Cycle 420 55 520 140

* kernel code size
** 256 point complex FFT
*** 8*8 matrix

Wonyong Sung
Multi Systems Lab SNU

CELP deco
performance com

-Optl : loop fusion, Indirect addressing,
-Opt2 : loop unrolling,circular addressing, merging arrays

A. Code size of the blocks

2500

Code size

— 2000 | OC_level
2 B Opt
F e | I Dogtz * C_level: 12.5kbytes
3 * Optl : 8.3kbytes
o 1000 | i
8 * Opt2 : 7.5kbytes
© 500 |
3 3 g < 2 3
a < @ o -
: 3 ’
© &
[m)
Wonyong Sung
Multi Systems Lab SNU

B. Ratio of execution time taken for the blocks

B etc
OLsp
B Scale
O Synt
0O Decod_Acbk
B Comp_Lpf

O Spf

100%
80%

60%
40%

20% |

Time (cycles) (%)

0%

C_level Opt1 Opt2

b
it
o
e
=

C. Performance improvement ratio

Performance improvement ratio

B O C level to Optl
B C_level to Opt2
O Optl1 to Opt2

Improvement ratic
—_— L A
ONMAODOONIO®®
T

Spf
Synt
Scale
Lsp
Etc

g
O
=

Comp_Lpf
Decod_Acbk

1
0}
]
$

Wonyong Sung
Multi Systems Lab SNU

3.9.1 Code size comparison

- Total code size : C_level :18.3Kbytes
:15.2KDbytes

—

[%2)
(O]
—

1800
1600
1400

> 1200

~

ul
™

1000
800
600
400
200

Code size

Estim_Pitch

"
fO
o
5

Wonyong Sumng
Systems Lab SNU

3.9.2 Ratio of time taken before and after optimization

Ze steol A7t HRe
_ 100% O Etc
R 80% O Estim_Pitch
0 60w | B ZeroFilt
£ o = PoleFl -Sample size : 68kbytes
Mo 20% .
R :- 1 - Sampling Freq : 12Khz
C_level Opt - 2R A2 2.84sec
A= =t e - C_level : 6.82sec
- Opt : 2.2ses
Performance improvement ratio
6
5 O PoleFilt
— 4 B ZeroFilt
|
20 3 O Estim_Pitch
100 5 0O Etc
1 B Total
0
Speedup
Wonyong Sung
Multi Systems Lab SNU

3. Performance Compar
based Imple

<&

L)

» Title: A platform-based comparison between a
digital signal processor and a general-purpose
processor from an embedded systems perspective

= D. L. Cuadrado and et. Al. Aalborg Univ and Nokia
» C55x and ARM9E-S

» Platform is defined as a processor and a compiler -
compiled and evaluated (not assembly
programming)

» C55: MAC/Dual MAC, specialized addressing, Viterbi

» ARMO9E-s (ARMV5TE): includes DSP extensions to

Improve 16-bit fixed-point performance using a

single cycle MAC. Support ARM (32bit) and Thumb
(16Dbit) instruction set

L)

4

L)

L)

4

L)

L)

<&

L)

L)

4

L)

L)

Wonyorng - Sung
Multi Systems Lab SNU

Selected case

Control _L
®— ...
Selected domain
Gray zone | /

DSP +

I I I
HLL Kernel Application

 HLL: high level construct:

s Simple code segments for demonstrating
pointer addressing, function call, ...

<+ Kernel: FFT, FIR, LMS, small state
machines

s Application:
= GSM, CVSD

Wonyong Sung
Multi Systems Lab SNU

Case studi

Case study Type Size

Matrix functions (AC, | DSP Kernel

FS)

Dhrystone (DM) Control Kernel
CVSD (CE, CD) DSP Application
Viterbi (VD) Control Kernel
algorithm

Matrix funcitons: autocorrelation, forward substitution
Dhrystone benchmark: a synthetic benchmark (1988)
assignments (51%), control statements (23%), procedure, call (17%)

Wonyorng - Sung
Multi Systems Lab SNU

Cycle coun
enviro

better than the C533x. Finally, the ABRMOE-5 performs
for Viterbi decoding around 45% better. Even though the
C35x has hardware support for Vitertn decoding. the
compiler 15 unable to take advantage of it.

The greatest improvements of the ABRM over C35x are
observed in the control crented applications.

OC55x OARMSE-S

100
a0
G0

40 —] —’:
il - 0

AZ F5 DM CE CD VD

Experiment

Cycle Count
Improvement factor %

Figure 3. Cycle count improvement factors.

Wonyong Sung
Multi Systems Lab SNU

Code

On the CVSD, the ARMY outperforms the C5335x in cycle
covnt. An mvestigation of the assembly code generated
by the compilers reveals that both compilers take

advantage of the processors’ conditional instruction
execution capabilities.

The C533x compiler does not take advantage of the
C35x"s parallel mstruction execution ability on this
benchmark.

The ARMY9 benefits strongly from s large
homogeneous register file charactenistic of GPPs,
avolding the C533x’s problem of burmng cycles on
OC55x OARMSE-S restoration of its register contents caused by its small.
heterogeneons register file.

The ARMY assembly code contains moere branches than

it

=

o

E 100 the C35x, which also takes advantage of its block repeat
E B0 feamre. However, the number of cycles spent on
E_ & branches on the two processors 15 about evened ouf,
E E 50 becaunse the C33x mcurs much stiffer branch penalties
w 2 4p _ than the ARMS.

i:'—; = In conclusion, the C35x% spends more cycles than the
a 20 4 AFRMY primanly becavse the C5353x must perform
E 0 housekeeping tasks restoring register contents. Features

that give the C35x potential to cutperform the ARMO,
AC Fs DM CE CD VD such as parallel mstruction execution, are not explotted
Experiment by the compiler.

Figure 4. Code size improvement factors.

Wonyong Sung
Multi Systems Lab SNU

ARM vs Thum

Example: DD B4, gFTCon=mtant

15

Thimab coude

4

|IZ]II]1|1EI|E_1:1|

—bit aoommediate

31 | 1 |

| a

111(]' -m]| 1|n1m| 1 |URd|URd| umns—bitin:n:edjmie

Alermrw comndib o coade

AR code

O Cycle Count Increase O Code Size Decrease |

200

150

100

50 ~]
JUE I A E 1\ le
A C F= (Rl Z E coD WD

Experiment

Percentage %

Figure 5: ARM wvs. Thumb mmstruction sets comparison.

*Branches are more limited in the Thumb

sData processing instructions are fewer
(only one multiplication in Thumb, while
14 in ARM)

Limited access to 8 of the 16 registers

«Single and multiple loads can access only
8 registers

Wonyorng - Sung

Multi Systems Lab SNU

4. MP3 Implementati

* MP3 market
» Sigmatel: DSP56000 based SOC

= Sigmatel is good at analog technology (codec, DC-
DC)
= Cirrus Logic, Telechips and et al: ARM7 or
ARM9 based SOC

= Integrates codec, internal memory (64 KB or so),
NOR flash for code

= Need to support multiple audio standards in
these days

= MP3, WMA, ..

*» Wonchul Lee, Kisun You and Wonyong Sung,
"Software Optimization of MPEG Audio Layer-I111 for
a 32bit RISC Processor,"” in Proc. IEEE Asia-Pacific
Conference on Circuits and Systems (APCCAYS),
2002, vol. 1, pp. 435-438.

L)

L)

Wonyorng - Sung
Multi Systems Lab SNU

Floatin

*The profiling results in a PC show that the Subband synthesis
and IMDCT parts take about 84%.
*These parts have DSP kernel like characteristics.

ﬁ.’ -
a1

ja b
E 40
=
¥
B 20

100 ﬁ 5

) ' J 3V 278 0.42
Funler ram e
B Cantuared I v omeled [Sl U degomiierniicen @ ol B ook b

Fig.1. Floating-point profiling of MPEG audio Layer-III

Wonyong Sung
Multi Systems Lab SNU

Assembly progra

< LDM/STM: block transfer
of upto 15 registers

= Compiler do not use -
these instructions excep: "TTE =
for context switching - —_—
. i . R e i
= Takes 15 sequential, 1 oz s o
non-seq, 1 internal cycle (s G i WA G
. . (a) IMDCT
m Repetitive 15 execution ——
15*2N cycles
s 21%, 25% decrease in w S —
the number of clock “ S ——
CyCIES for IMDCT and : WO SRR DD I -L.-:IISIHH:I'L.::I:n: LOMSETM I ML
Su b ban d Synth eSiS [mBsioe Optimzation @ARer Optimization |

(b) Subband Synthesis
Fig 2. Instruction types i (a) IMDCT, (b) Subband
synthesis

Wonyorng - Sung
Multi Systems Lab SNU

Effects of multipl

< ARM7TDMI has 32*8bit

multiplier
= 32%16 takes 4 cycles R
m 32*32 takes 6 cycles m
< 32*16 implementation .
requires 8%o less cycles L~ L Tj e
* The SQNR is 82dB while EE“
32*32bit yields 91dB. Fig. 3. Number of instructions and cycles in IMDCT function.

8.1% lower than 'B°. Companng A, B, and 'C of F1z.
3. we can find that the effect of reducing the data memory
movement 15 greater than that of reducing the precision for

mmltiply. This means that the optimuzed MPEG aundio

program 15 not a multiplication intensive problem, but
rather an access bound program. As expected. the SNE of

Wonyong Sung
Multi Systems Lab SNU

Cach

s Data cache misses

are dominant e

because program =<

behavior is very] E—

predictable in MP3 i e —

program e ham e e
2 MP3 SOC usua”y [mstruetion Gaghs miss —&—Geta Cache s |

Fig. 3 mstruction and data cache miss varying the cache

uses internal ROM size in ARMO
for code and RAM

for data, instead of

cache.

Wonyong Sung
Multi Systems Lab SNU

5. RISC CPU w

< SIMD architecture

= Single instruction multiple
data

= Implementations

= Intel Pentium MMX/SSE,
Intel Xscale WMMX, ARM 11,
AMD 3DNOW, PowerPC
AltiVec, SUN SPARC VIS, TI
C6000, ...

s Exploit data parallelism

= Same operation with multiple
data

A0+b0

Conventional ALU structure

< 4X16b
a0 al az’ a3
b0 | bl b2 | b3
n0+bCal1+b1p2+b2Aa3+b3

9
<
%]
~+
®
3
V2]
-
)
o
%
Z
C

SIM

s Operation with packed data
= A wide SIMD register holds multiple data
s Compatible with existing data-path

= 2X64Db, 4X32b, 8X16b, 16X8b

128 bits ——= B S
32 bits —= -

16 bits ——=

-l
8 bits ——m= |<—-

1 2 3 4 858 6 7 8 8 10 1 12 13 14 15 16
1 2 3 - 5 6 7 6

Wonyong Sung
Multi Systems Lab SNU

SIMD architec
(Intel Pentiu

x 128Db partitioned ALU, 8 128b registers
= H/W Prefetch unit, S/W prefetch inst.
= Unaligned load/store inst.

Instruction

Front-End BTB . '
4K Entries TLB/ Prefetcher §4-bits wide :
I Instruction Decoder |] u
Microcode ‘{
— — - 3 ROM
Trace Cache BTB Execution Trace Cache
¥ Interface
[Alloc R L] Unit
1 -
LM:.m.u.L\Lu.T_Q.ume.l L, Quad
3
dulen Pumped
1 6.4 GB/s
hFﬁf- ,
F 1 F L2 Cache
AGU AGU 2x ALU 2x ALU Slow ALU (1M Byte
Load Store Simple Simple Complex 8-way)
Addressl Addressl Instr. Instr. Instr.
7 T]] |
108GB/s
‘ L1 Data Cache (16Kbyte 8-way) 256 bitg

Multi

Systerﬁs Lab SNU

SIMD
(Moto

128b partitioned ALU
32 128b registers

Sum-across inst.:
sum all element In
vector

Stride-N access
prefetch

Unaligned memory
access by aligned

load/store and
permute inst.

MPC7447A POWERPC® PROCESSOR BLOCK DIAGRAM

Complation Instruction Fetch < Sequencer Unit . 20 KB

Unit Branch Unit 47 M orstPo
L ¢ Cache
Digpatch Unit g‘]l-'llg 4
A
] Y Y
AltiVec™lssue GPR jssue FPR Issue
A

512 KB Unified L2 anc L2 Cache/Tag Control

|
System Interfaze Unit

1
600 MPX bus interface

Multi System's Lab SNU

Intel® Wire

% Wireless MMX™ Technology
Mechanism

= It exploit the data Packed Byts (B): Eight 8-bi bytas

parallelism by executing the |r | == \I
same operation on different

data elements in parallel. Packed Half-word (H): Four 16-bit halfwords
This is accomplished by B)
packing data elements into Packed Word (W): Two 52-bit words

a single register and r = ‘1
!ntroduging new types of Subtword (01 0me st Quanty
instruction to operate on r -1

packed data.

= Wireless MMX™
Technology Data Types

Wonyorng - Sung
Multi Systems Lab SNU

* Mapping Wireless MMX™ technolog
the ARM architecture

s The Wireless MMX™ technology utilize two
ARM coprocessors; coprocessor O and
coprocessor 1.

s These coprocessors support Wireless MMX™
technology data and control registers using
standard coprocessor transfer instructions.

= TWO coprocessor space iIs mapped onto two
register files.

= A main register file, mapped onto coprocessor O
space, is provided for holding 16X64-bit packed
data.

= 32-bit control register file, mapped onto
coprocessor 1 space, is provided for auxiliary

(el H il aVNaVald

SupPpot tfunetions: Wonyong-Sung
Multi Systems Lab SNU

Wireless
O

-7

CPO0 — SIMD Data
Registers

CP1 - Status &
Control

Wonyong Sung
Multi Systems Lab SNU

Wireless MM

s Compatibility Instructions
» The main class of instructions in the Wireless
MMX™ technology are the compatibility
INnstructions.

s Wireless MMX™ technology provides
equivalent functionality to all the Intel®
MMX™ jnstructions and integer instructions

from SSE instruction group.

= In particular they provide equivalent
functionality to:

= MMX™ technology
= Integer Intel Streaming SIMD Extensions (SSE)

» Intel® XScale™ microarchitecture media
instructions

Wonyorng - Sung
Multi Systems Lab SNU

Wireless MM

s New Wireless MMX™ Jnstructions

Instruction Comments

WMAC Multiply four signed or unsigned 16-hit half-words in parallel and accumulate with
a 64-hit register.

WACC Unsigned addition of eight bytes, four half-words. or two words.

WALIGN _ : .

WALIGNI Performs alignment on byte boundaries between two registers

TANDC Performs logical operations across the fields of the SIMD PSR (wCASF) and

TORC sends the result to the ARM* CPSR

TEXTRC Extracts a 4-, 8-, 16-bit field specified by the 3-bit Immediate field data from the
SIMD PSR register (WCASF)
Eroadcasts a value from the ARM* source register, Rn, or to every SIMD position

TECST in the Shortened Product Name Destination register, wRd; can operate on 8-, 16-,
and 32-bit data values

Wonyorng - Sung
Multi Systems Lab SNU

Wireless MM

* WMAC<U,S={Z}{Cond} wRd, wRn, wRm

s Performs a vector multiplication of wRn and
WRmM and can accumulate the result with wRd
on vectors of 16-bit data only.

wRn

A3 AD Af AQ
* * * *
wRm B3 B2 B1 BO

i e ————
\}@/,/

wRd'
RO

0

Wonyorng - Sung
Multi Systems Lab SNU

Wireless M

* WALIGNI{cond} wRd, wRn, wRm, #Imm
s Extracts an 64-bit value from the two 64-bit

Source registers (wRn, wRm), and place the
result in the Destination register, wRd.

Imm3
AZ | A1 | AD BT |B6|B5|B4|B
AZ | A1 |AO|B7 |BE | B5| B4 | B3

-l —
wRd

AT | AG | A5 | A4 | A3 31 B2 B1]|BO

0

Wonyorng - Sung
Multi Systems Lab SNU

Wireless M

% TBCST<B,H,W=>{Cond} wRd, Rn

s Broadcasts a value from the ARM* Source
register, Rn, or to every SIMD position in the
Wireless MMX™ technology Destination
register, wRd; can operate on 8-, 16-, and

32 _TBCSTE wRd, Rn

7l

/M]JRn

A0

Al

A0

Al

po Ao aofao| Rrg

Wonyong Sung
Multi Systems Lab SNU

Wireless MM

s Transfer to and from Coprocessor Registe

s The transfer instructions for moving data
between the Wireless MMX™ technology
control and data registers and the Intel®
XScale™ microarchitecture reaqisters.

Instruction Comments

TMRRC MRRC transfers the contents of the wRn 64-bit Wireless MMXT™ technology data
register to two ARM® core Destination registers {(RdHi, RdLo)

TMCRR TMCRR transfers the contents of the two ARM" registers (RdHi and RdLo) to wRd
(the 64-bit Wireless X TM technology destination register.)

TMRC TMRC transfers the contents of the 32-bit Wireless MMXTM technology control
register (wCx) to the ARM* core Destination register

TMCR TMCR transfers the contents of the En ARM* Core registers to a 32-bit wCx
Wireless MMXT™ technology control register

WLDRMWSTR Data Load Store operation

Wonyorng - Sung
Multi Systems Lab SNU

Wireless M

 Intrinsic support

» Most Wireless MMX™ instructions have a
corresponding C intrinsic that implement that
Instruction directly.

= Intrinsic function use a new C data type, the
___m64 data type. The _ _m64 data type is
used to represent the contents of Wireless
MMX™ technology register.

Wonyong Sung
Multi Systems Lab SNU

Optimizati

* Instruction Scheduling

= Increasing Load Throughput

= The buffering in the Memory pipeline allows two
Load Double transactions to be outstanding without
incurring a penalty(stall)

s Back-to-Back WLDRD instructions will incur a stall,
Back-to-Back WLDR(BHW) instructions will not
Incur a stall.

= The WLDRD requires 4 cycles to return the DWORD
assuming a cache hit, Back-to-Back WLDR(BHW)
require 3 cycles to return the data.

Wonyorng - Sung
Multi Systems Lab SNU

Optimiza

= Interleave other operation to avoid the penalty w
successive WLDRD instructions.

WLDED
WLDRD
WLDRD
WADDE
WADDE
WADDE

wR2, [r4] ., #8
wRE, [r4],#8
wkR4, [r4],#8
WERO,wRE1l, wERZ2
wRO,wR0, wR&
WRO,wWRO0,wR7

@ STALL
@ STALL

WLDRD
WADDE
WLDED
WADDE
WLDED
WADDE

wR2
wRO
wER4
wRO
wERE
wRO

, [r4] ., #8
,WR1, wR2
. [r4] ., #8
,WRO, WR&
. [r4] ., #8
,WRO, WR7

= Always try to separate 3 consecutive WLDRD
iInstructions so that only 2 are outstanding at any
one time and the loads are always interleaved with
other instructions.

WLDED
WZERO
WLDED
SUES

WLDRD

WERO,
wH1E
wEH1,
ra,

wEk3,

[r2]

[r4]
r3i, #E8
[r4]

. #8

, #8

, #8

Multi

Wonyong Sung
Systems Lab SNU

Optimi

 SIMD Optimization Techniques
s Software Pipelining

for (i = 0; 1 < N; i++) {

=2 = 0;
for (§ = 0; § = T; j++) {
s += al[jl*x[i-71);

}

@Pointers ¥0 -» wval , rl - pResult, r2 -= pTap=QlS5 r3 -= tapslen
v[i] = round (s);
} WLDED wRO, [r0], #8 @ Load first 4 input samples
WLDED wR1, [rZ], #82 @ Load first 4 coefficients
WEERD wR1E
WLDED wR2, [r0], #2 @ Load next 4 input szamples
Loop_Begin:
WLDED wR3, [rZ2], #82 @ Load next 4 coefficients
WMACS wR15, wRO,wR1
WLDECHE wRO, [r0], #2 @ Load 4 input samples
EUEBE rF2,r3, 48
WLDRCHE wR2, [r2], #82
WMACE wrh, wrl, wr2
WLDRDHE wrl, [rl], #2
EHE Loop_Begin

Wonyong Sung
Multi Systems Lab SNU

Optimiz

s Multi-Sample Technique

= Calculating multiple outputs with each loop iteration
similar to loop unrolling.

= C code for FIR filter with Multiple Samples for 8-
taps per iteration

for (1 =

for (]

}

y[i] =
yv[i+1]
v [1i+2]
yv[1i+3]

0;

=20 +=
2l +=
22 +=

83 +=

i <« M; 1++4) {

s0=5l=582=53=0;

0; 41 = T/4; j++4)
aljl*x[1-31;
aljl*x[i-3+1];
aljl*x[i-3+2];
aljl*x[1-3+31);

round (s0);

round (sl1);
round (s2);

round (s3);

{

Multi

Wonyong Sung
Systems Lab SNU

Optimizatio

s Register File Usage

= With the large register file of the Wireless MMX™
technology it is possible to store large data

structures in the regqister file and reduce memory
load traffic.

= Example: the register file is used to store the 8X8
pixel macrohlock durina a video encode motion
see STETE

LH-HCHeH

aerat]

i

v- : “ :
o
Wonyorng - Sung

Multi Systems Lab SNU

SIMD pro

s SIMD library
m Various signal processing kernels
» Provided by processor makers or self-made
= Various optimization techniques applied
= Software pipelining
= Data layout modification

= Loop reduction Accumulate partial sum
in packed register

umuilate

SUlLS
—>

Ex) Intel performance primitives\(IPP}-<UN Msghalib
reduction I

Wonyong Sung
Multi Systems Lab SNU

SIMD pr

s Intrinsic functions
= A function known by compiler
= directly map to instruction

ExX) c = _mm_mulhi_pi1l6(a, b)
= PMULHW c, a, b
c = _mm_unpackhi_pi132(a, b)
= UNPCKHDQ c, a, b

Multi

Wonyong Sung
Systems Lab SNU

SIMD pro

s C compiler
= Autovectorization : automatically transform serial
code to vector code.
= ldentify loop

= Memory reference analysis (access pattern,
dependency, alignment)

= Vectorize (loop unrolling, peeling, reduction, idioms)
= Intel compiler, gcc v4.0

for(i=0; i<N: ji++){ for (i=0; i<(N-N%VF); i+=VF){
afil = afi] + b[i] afi-i+VF] = afi:i+VF] + bfi-i+VF]:
} J — } vectorized loop

automatic for (:i<N:it++) {
vectorization afij = afij + bfi];
} epilog loop

vonyong Sung-
Multi Systems Lab SNU

Normaizd dynamig instruchon count

Performan

% Speed-up by SIMD extension
s Packed arithmetic inst. reduce FU inst.
= Unrolled loop, saturation mode reduce branch inst.
s Packed memory inst. reduce memory inst.

Branch inst. VIS inst.

100 1000 | 1000 1=
herrony N
aa.5 Eranch
80 Fu
ES4
[] l -
262 5.4
Z0 100 15.U .

Base VIZ Bas= VI2 Base VIS Baz= VIS Baz= VIS Eaze VIS Eare VIS Eaze VIS =F- k=] Baze WIS Baze VIS Baze WIZ
Addition Blend oy Dotprod Sealing Thresh Cipeg Cipeg Djpeg-ng Djpeg-np Mpeg-enc Mpeg-dec

Figure 2. Impact of VIS on dynamic (retired) instruction count.

P. Ranganathan, S.V. Adve, N.P. Jouppi, "Performance of Image and Video Processing with
General-Purpose Processors and Media ISA Extensions," proc. /SCA, 1999.

Wonyorng - Sung
Multi Systems Lab SNU

Performan

«* Not suitable to control-oriented
software

Ex) Huffman coding: inherently
sequential, variable data size

<+ Data rearrangement overhead 8B aligned Sample data
= Misalighed data —— ¥
= Stride > 1
= Reordering H
Ex1) FIR filter coefficients

Ex2) accessing RGB interleaved
pixel data |

EX3) bit-reverse addressing of EET | o onee aceess

1 Next iteration

Vi |u||9l ICU Aavuvuoeoo

(_%

CTTTT

4-tab FIR filter example

Wonyong Sung
Multi Systems Lab SNU

6. Concl

1. Many DSP applications are nowadays
Implemented by RISC CPUs partly because of the
performance increase of RISC processors (dual
cache, wide bandwidth data bus, hardware
multiplier)

2. RI1SC processors are advantageous for
Implementing control (branches) intensive, large
memory size, and complex applications requiring
compiler based development.

3. RISC CPU specific optimization methods can
Increase the implementation performance very
much. DSP and RISC CPU needs different program
optimization strategies.

Example: CELP decoder
- code size : 13K -=> 7.5kbytes
- speedup : Upto x5.
. SIMD support closes the gap between RISC and
DSP.

Wonyong - Surg
Multi Systems Lab SNU

