
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 4

Message-Passing Programming

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Learning Objectives

Understanding how MPI programs execute
Familiarity with fundamental MPI functions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline

Message-passing model
Message Passing Interface (MPI)
Coding MPI programs
Compiling MPI programs
Running MPI programs
Benchmarking MPI programs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Task/Channel vs. Message-passing

Task/Channel Message-passing

Task Process

Explicit channels Any-to-any communication

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processes

Number is specified at start-up time
Remains constant throughout execution of
program
All execute same program
Each has unique ID number
Alternately performs computations and
communicates

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Advantages of Message-passing Model

Gives programmer ability to manage the
memory hierarchy
Portability to many architectures
Easier to create a deterministic program
Simplifies debugging

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Message Passing Interface

Late 1980s: vendors had unique libraries
1989: Parallel Virtual Machine (PVM)
developed at Oak Ridge National Lab
1992: Work on MPI standard begun
1994: Version 1.0 of MPI standard
1997: Version 2.0 of MPI standard
Today: MPI is dominant message passing
library standard

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solution Method

Circuit satisfiability is NP-complete
No known algorithms to solve in
polynomial time
We seek all solutions
We find through exhaustive search
16 inputs ⇒ 65,536 combinations to test

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglomeration and Mapping

Properties of parallel algorithm
Fixed number of tasks
No communications between tasks
Time needed per task is variable

Consult mapping strategy decision tree
Map tasks to processors in a cyclic
fashion

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cyclic (interleaved) Allocation

Assume p processes
Each process gets every pth piece of work
Example: 5 processes and 12 pieces of work

P0: 0, 5, 10
P1: 1, 6, 11
P2: 2, 7
P3: 3, 8
P4: 4, 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pop Quiz

Assume n pieces of work, p processes, and
cyclic allocation
What is the most pieces of work any
process has?
What is the least pieces of work any process
has?
How many processes have the most pieces
of work?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary of Program Design

Program will consider all 65,536
combinations of 16 boolean inputs
Combinations allocated in cyclic fashion to
processes
Each process examines each of its
combinations
If it finds a satisfiable combination, it will
print it

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Include Files

MPI header file

#include <mpi.h>

Standard I/O header file

#include <stdio.h>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Local Variables

int main (int argc, char *argv[]) {
int i;
int id; /* Process rank */
int p; /* Number of processes */
void check_circuit (int, int);

Include argc and argv: they are needed
to initialize MPI
One copy of every variable for each process
running this program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Initialize MPI

First MPI function called by each process
Not necessarily first executable statement
Allows system to do any necessary setup

MPI_Init (&argc, &argv);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communicators

Communicator: opaque object that provides
message-passing environment for processes
MPI_COMM_WORLD

Default communicator
Includes all processes

Possible to create new communicators
Will do this in Chapters 8 and 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communicator

MPI_COMM_WORLD

Communicator

0

2
1

3

4

5

Processes

Ranks

Communicator Name

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Determine Number of Processes

First argument is communicator
Number of processes returned through
second argument

MPI_Comm_size (MPI_COMM_WORLD, &p);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Determine Process Rank

First argument is communicator
Process rank (in range 0, 1, …, p-1)
returned through second argument

MPI_Comm_rank (MPI_COMM_WORLD, &id);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Replication of Automatic Variables

0id

6p

4id

6p

2id

6p

1id

6p 5id

6p

3id

6p

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What about External Variables?

int total;

int main (int argc, char *argv[]) {
int i;
int id;
int p;
…

Where is variable total stored?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cyclic Allocation of Work

for (i = id; i < 65536; i += p)
check_circuit (id, i);

Parallelism is outside function
check_circuit

It can be an ordinary, sequential function

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shutting Down MPI

Call after all other MPI library calls
Allows system to free up MPI resources

MPI_Finalize();

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) {
int i;
int id;
int p;
void check_circuit (int, int);

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);

for (i = id; i < 65536; i += p)
check_circuit (id, i);

printf ("Process %d is done\n", id);
fflush (stdout);
MPI_Finalize();
return 0;

} Put fflush() after every printf()

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/* Return 1 if 'i'th bit of 'n' is 1; 0 otherwise */
#define EXTRACT_BIT(n,i) ((n&(1<<i))?1:0)

void check_circuit (int id, int z) {
int v[16]; /* Each element is a bit of z */
int i;

for (i = 0; i < 16; i++) v[i] = EXTRACT_BIT(z,i);

if ((v[0] || v[1]) && (!v[1] || !v[3]) && (v[2] || v[3])
&& (!v[3] || !v[4]) && (v[4] || !v[5])
&& (v[5] || !v[6]) && (v[5] || v[6])
&& (v[6] || !v[15]) && (v[7] || !v[8])
&& (!v[7] || !v[13]) && (v[8] || v[9])
&& (v[8] || !v[9]) && (!v[9] || !v[10])
&& (v[9] || v[11]) && (v[10] || v[11])
&& (v[12] || v[13]) && (v[13] || !v[14])
&& (v[14] || v[15])) {
printf ("%d) %d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d\n", id,

v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],
v[10],v[11],v[12],v[13],v[14],v[15]);

fflush (stdout);
}

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Compiling MPI Programs

mpicc: script to compile and link C+MPI
programs
Flags: same meaning as C compiler
-O ⎯ optimize
-o <file> ⎯ where to put executable

mpicc -O -o foo foo.c

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Running MPI Programs

mpirun -np <p> <exec> <arg1> …

-np <p> ⎯ number of processes
<exec> ⎯ executable
<arg1> … ⎯ command-line arguments

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution on 1 CPU
% mpirun -np 1 sat
0) 1010111110011001
0) 0110111110011001
0) 1110111110011001
0) 1010111111011001
0) 0110111111011001
0) 1110111111011001
0) 1010111110111001
0) 0110111110111001
0) 1110111110111001
Process 0 is done

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution on 2 CPUs
% mpirun -np 2 sat
0) 0110111110011001
0) 0110111111011001
0) 0110111110111001
1) 1010111110011001
1) 1110111110011001
1) 1010111111011001
1) 1110111111011001
1) 1010111110111001
1) 1110111110111001
Process 0 is done
Process 1 is done

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution on 3 CPUs
% mpirun -np 3 sat
0) 0110111110011001
0) 1110111111011001
2) 1010111110011001
1) 1110111110011001
1) 1010111111011001
1) 0110111110111001
0) 1010111110111001
2) 0110111111011001
2) 1110111110111001
Process 1 is done
Process 2 is done
Process 0 is done

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Deciphering Output

Output order only partially reflects order of
output events inside parallel computer
If process A prints two messages, first
message will appear before second
If process A calls printf before process
B, there is no guarantee process A’s
message will appear before process B’s
message

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Enhancing the Program

We want to find total number of solutions
Incorporate sum-reduction into program
Reduction is a collective communication

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Modifications

Modify function check_circuit
Return 1 if circuit satisfiable with input
combination
Return 0 otherwise

Each process keeps local count of
satisfiable circuits it has found
Perform reduction after for loop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

New Declarations and Code

int count; /* Local sum */
int global_count; /* Global sum */
int check_circuit (int, int);

count = 0;
for (i = id; i < 65536; i += p)

count += check_circuit (id, i);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Prototype of MPI_Reduce()
int MPI_Reduce (

void *operand,
/* addr of 1st reduction element */

void *result,
/* addr of 1st reduction result */

int count,
/* reductions to perform */

MPI_Datatype type,
/* type of elements */

MPI_Op operator,
/* reduction operator */

int root,
/* process getting result(s) */

MPI_Comm comm
/* communicator */

)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI_Datatype Options
MPI_CHAR
MPI_DOUBLE
MPI_FLOAT
MPI_INT
MPI_LONG
MPI_LONG_DOUBLE
MPI_SHORT
MPI_UNSIGNED_CHAR
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_SHORT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI_Op Options
MPI_BAND
MPI_BOR
MPI_BXOR
MPI_LAND
MPI_LOR
MPI_LXOR
MPI_MAX
MPI_MAXLOC
MPI_MIN
MPI_MINLOC
MPI_PROD
MPI_SUM

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Our Call to MPI_Reduce()

MPI_Reduce (&count,
&global_count,
1,
MPI_INT,
MPI_SUM,
0,
MPI_COMM_WORLD);

Only process 0
will get the result

if (!id) printf ("There are %d different solutions\n",
global_count);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution of Second Program
% mpirun -np 3 seq2
0) 0110111110011001
0) 1110111111011001
1) 1110111110011001
1) 1010111111011001
2) 1010111110011001
2) 0110111111011001
2) 1110111110111001
1) 0110111110111001
0) 1010111110111001
Process 1 is done
Process 2 is done
Process 0 is done
There are 9 different solutions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Benchmarking the Program

MPI_Barrier ⎯ barrier synchronization
MPI_Wtick ⎯ timer resolution
MPI_Wtime ⎯ current time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Benchmarking Code
double elapsed_time;
…
MPI_Init (&argc, &argv);
MPI_Barrier (MPI_COMM_WORLD);
elapsed_time = - MPI_Wtime();
…
MPI_Reduce (…);
elapsed_time += MPI_Wtime();

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Benchmarking Results
Processors Time (sec)

1 15.93

2 8.38

3 5.86

4 4.60

5 3.77

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (1/2)

Message-passing programming follows
naturally from task/channel model
Portability of message-passing programs
MPI most widely adopted standard

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (2/2)
MPI functions introduced
MPI_Init
MPI_Comm_rank
MPI_Comm_size
MPI_Reduce
MPI_Finalize
MPI_Barrier
MPI_Wtime
MPI_Wtick

	Parallel Programming�in C with MPI and OpenMP
	Chapter 4
	Learning Objectives
	Outline
	Task/Channel vs. Message-passing
	Processes
	Advantages of Message-passing Model
	The Message Passing Interface
	Solution Method
	Agglomeration and Mapping
	Cyclic (interleaved) Allocation
	Pop Quiz
	Summary of Program Design
	Include Files
	Local Variables
	Initialize MPI
	Communicators
	Communicator
	Determine Number of Processes
	Determine Process Rank
	Replication of Automatic Variables
	What about External Variables?
	Cyclic Allocation of Work
	Shutting Down MPI
	Slide Number 25
	Slide Number 26
	Compiling MPI Programs
	Running MPI Programs
	Execution on 1 CPU
	Execution on 2 CPUs
	Execution on 3 CPUs
	Deciphering Output
	Enhancing the Program
	Modifications
	New Declarations and Code
	Prototype of MPI_Reduce()
	MPI_Datatype Options
	MPI_Op Options
	Our Call to MPI_Reduce()
	Execution of Second Program
	Benchmarking the Program
	Benchmarking Code
	Benchmarking Results
	Summary (1/2)
	Summary (2/2)

