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Chapter 4

Message-Passing Programming
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Learning Objectives

Understanding how MPI programs execute
Familiarity with fundamental MPI functions
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Outline

Message-passing model
Message Passing Interface (MPI)
Coding MPI programs
Compiling MPI programs
Running MPI programs
Benchmarking MPI programs
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Task/Channel vs. Message-passing

Task/Channel Message-passing

Task Process

Explicit channels Any-to-any communication
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Processes

Number is specified at start-up time
Remains constant throughout execution of 
program
All execute same program
Each has unique ID number
Alternately performs computations and 
communicates
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Advantages of Message-passing Model

Gives programmer ability to manage the 
memory hierarchy
Portability to many architectures
Easier to create a deterministic program
Simplifies debugging
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The Message Passing Interface

Late 1980s: vendors had unique libraries
1989: Parallel Virtual Machine (PVM) 
developed at Oak Ridge National Lab
1992: Work on MPI standard begun
1994: Version 1.0 of MPI standard
1997: Version 2.0 of MPI standard
Today: MPI is dominant message passing 
library standard



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solution Method

Circuit satisfiability is NP-complete
No known algorithms to solve in 
polynomial time
We seek all solutions
We find through exhaustive search
16 inputs ⇒ 65,536 combinations to test
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Agglomeration and Mapping

Properties of parallel algorithm
Fixed number of tasks
No communications between tasks
Time needed per task is variable

Consult mapping strategy decision tree
Map tasks to processors in a cyclic 
fashion
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Cyclic (interleaved) Allocation

Assume p processes
Each process gets every pth piece of work
Example: 5 processes and 12 pieces of work

P0: 0, 5, 10
P1: 1, 6, 11
P2: 2, 7
P3: 3, 8
P4: 4, 9
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Pop Quiz

Assume n pieces of work, p processes, and 
cyclic allocation
What is the most pieces of work any 
process has?
What is the least pieces of work any process 
has?
How many processes have the most pieces 
of work?
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Summary of Program Design

Program will consider all 65,536 
combinations of 16 boolean inputs
Combinations allocated in cyclic fashion to 
processes
Each process examines each of its 
combinations
If it finds a satisfiable combination, it will 
print it
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Include Files

MPI header file

#include <mpi.h>

Standard I/O header file

#include <stdio.h>
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Local Variables

int main (int argc, char *argv[]) {
int i;
int id; /* Process rank */
int p;  /* Number of processes */
void check_circuit (int, int);

Include argc and argv: they are needed 
to initialize MPI
One copy of every variable for each process 
running this program
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Initialize MPI

First MPI function called by each process
Not necessarily first executable statement
Allows system to do any necessary setup

MPI_Init (&argc, &argv);
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Communicators

Communicator: opaque object that provides 
message-passing environment for processes
MPI_COMM_WORLD

Default communicator
Includes all processes

Possible to create new communicators
Will do this in Chapters 8 and 9
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Communicator
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Determine Number of Processes

First argument is communicator
Number of processes returned through 
second argument

MPI_Comm_size (MPI_COMM_WORLD, &p);
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Determine Process Rank

First argument is communicator
Process rank (in range 0, 1, …, p-1) 
returned through second argument

MPI_Comm_rank (MPI_COMM_WORLD, &id);
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Replication of Automatic Variables
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What about External Variables?

int total;

int main (int argc, char *argv[]) {
int i;
int id;
int p;
…

Where is variable total stored?
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Cyclic Allocation of Work

for (i = id; i < 65536; i += p)
check_circuit (id, i);

Parallelism is outside function 
check_circuit

It can be an ordinary, sequential function
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Shutting Down MPI

Call after all other MPI library calls
Allows system to free up MPI resources

MPI_Finalize();
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#include <mpi.h>
#include <stdio.h>

int main (int argc, char *argv[]) {
int i;
int id;
int p;
void check_circuit (int, int);

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);

for (i = id; i < 65536; i += p)
check_circuit (id, i);

printf ("Process %d is done\n", id);
fflush (stdout);
MPI_Finalize();
return 0;

} Put  fflush() after every  printf()
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/* Return 1 if 'i'th bit of 'n' is 1; 0 otherwise */
#define EXTRACT_BIT(n,i) ((n&(1<<i))?1:0)

void check_circuit (int id, int z) {
int v[16];        /* Each element is a bit of z */
int i;

for (i = 0; i < 16; i++) v[i] = EXTRACT_BIT(z,i);

if ((v[0] || v[1]) && (!v[1] || !v[3]) && (v[2] || v[3])
&& (!v[3] || !v[4]) && (v[4] || !v[5])
&& (v[5] || !v[6]) && (v[5] || v[6])
&& (v[6] || !v[15]) && (v[7] || !v[8])
&& (!v[7] || !v[13]) && (v[8] || v[9])
&& (v[8] || !v[9]) && (!v[9] || !v[10])
&& (v[9] || v[11]) && (v[10] || v[11])
&& (v[12] || v[13]) && (v[13] || !v[14])
&& (v[14] || v[15])) {
printf ("%d) %d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d\n", id,

v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],
v[10],v[11],v[12],v[13],v[14],v[15]);

fflush (stdout);
}

}
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Compiling MPI Programs

mpicc: script to compile and link C+MPI 
programs
Flags: same meaning as C compiler
-O  ⎯ optimize
-o <file> ⎯ where to put executable

mpicc -O -o foo foo.c
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Running MPI Programs

mpirun -np <p> <exec> <arg1> …

-np <p> ⎯ number of processes
<exec> ⎯ executable
<arg1> … ⎯ command-line arguments
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Execution on 1 CPU
% mpirun -np 1 sat
0) 1010111110011001
0) 0110111110011001
0) 1110111110011001
0) 1010111111011001
0) 0110111111011001
0) 1110111111011001
0) 1010111110111001
0) 0110111110111001
0) 1110111110111001
Process 0 is done
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Execution on 2 CPUs
% mpirun -np 2 sat
0) 0110111110011001
0) 0110111111011001
0) 0110111110111001
1) 1010111110011001
1) 1110111110011001
1) 1010111111011001
1) 1110111111011001
1) 1010111110111001
1) 1110111110111001
Process 0 is done
Process 1 is done
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Execution on 3 CPUs
% mpirun -np 3 sat
0) 0110111110011001
0) 1110111111011001
2) 1010111110011001
1) 1110111110011001
1) 1010111111011001
1) 0110111110111001
0) 1010111110111001
2) 0110111111011001
2) 1110111110111001
Process 1 is done
Process 2 is done
Process 0 is done
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Deciphering Output

Output order only partially reflects order of 
output events inside parallel computer
If process A prints two messages, first 
message will appear before second
If process A calls printf before process 
B, there is no guarantee process A’s 
message will appear before process B’s 
message
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Enhancing the Program

We want to find total number of solutions
Incorporate sum-reduction into program
Reduction is a collective communication
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Modifications

Modify function check_circuit
Return 1 if circuit satisfiable with input 
combination
Return 0 otherwise

Each process keeps local count of 
satisfiable circuits it has found
Perform reduction after for loop



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

New Declarations and Code

int count;  /* Local sum */
int global_count; /* Global sum */
int check_circuit (int, int);

count = 0;
for (i = id; i < 65536; i += p)

count += check_circuit (id, i);
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Prototype of  MPI_Reduce()
int MPI_Reduce (

void         *operand,
/* addr of 1st reduction element */

void         *result,
/* addr of 1st reduction result */

int          count,
/* reductions to perform */

MPI_Datatype type,
/* type of elements */

MPI_Op       operator,
/* reduction operator */

int          root,
/* process getting result(s) */

MPI_Comm     comm
/* communicator */

)



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI_Datatype Options
MPI_CHAR
MPI_DOUBLE
MPI_FLOAT
MPI_INT
MPI_LONG
MPI_LONG_DOUBLE
MPI_SHORT
MPI_UNSIGNED_CHAR
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_SHORT



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MPI_Op Options
MPI_BAND
MPI_BOR
MPI_BXOR
MPI_LAND
MPI_LOR
MPI_LXOR
MPI_MAX
MPI_MAXLOC
MPI_MIN
MPI_MINLOC
MPI_PROD
MPI_SUM
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Our Call to MPI_Reduce()

MPI_Reduce (&count,
&global_count,
1,
MPI_INT,
MPI_SUM,
0,
MPI_COMM_WORLD);

Only process 0
will get the result

if (!id) printf ("There are %d different solutions\n",
global_count);
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Execution of Second Program
% mpirun -np 3 seq2
0) 0110111110011001
0) 1110111111011001
1) 1110111110011001
1) 1010111111011001
2) 1010111110011001
2) 0110111111011001
2) 1110111110111001
1) 0110111110111001
0) 1010111110111001
Process 1 is done
Process 2 is done
Process 0 is done
There are 9 different solutions
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Benchmarking the Program

MPI_Barrier ⎯ barrier synchronization
MPI_Wtick ⎯ timer resolution
MPI_Wtime ⎯ current time
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Benchmarking Code
double elapsed_time;
…
MPI_Init (&argc, &argv);
MPI_Barrier (MPI_COMM_WORLD);
elapsed_time = - MPI_Wtime();
…
MPI_Reduce (…);
elapsed_time += MPI_Wtime();
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Benchmarking Results
Processors Time (sec)

1 15.93

2 8.38

3 5.86

4 4.60

5 3.77
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Summary (1/2)

Message-passing programming follows 
naturally from task/channel model
Portability of message-passing programs
MPI most widely adopted standard
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Summary (2/2)
MPI functions introduced
MPI_Init
MPI_Comm_rank
MPI_Comm_size
MPI_Reduce
MPI_Finalize
MPI_Barrier
MPI_Wtime
MPI_Wtick
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