Chapter 7

Performance Analysis

Objectives and Contents

Predict performance of parallel programs Understand barriers to higher performance • General speedup formula Amdahl's Law ♦ Gustafson-Barsis' Law ◆ Karp-Flatt metric ♦ Isoefficiency metric

Speedup Formula

$Speedup = \frac{Sequential execution time}{Parallel execution time}$

$$\psi(n, p) \le \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n) / p + \kappa(n, p)}$$

Execution Time Components

Inherently sequential computations: $\sigma(n)$ Potentially parallel computations: $\varphi(n)$ Communication operations: $\kappa(n,p)$

 $\varphi(n)/p + \kappa(n,p)$

Efficiency = Speedup/ Number of processors $0 \le \varepsilon(n,p) \le 1$

$$\varepsilon(n,p) \leq \frac{\sigma(n) + \varphi(n)}{p\sigma(n) + \varphi(n) + p\kappa(n,p)}$$

All terms $> 0 \Longrightarrow \overline{\epsilon(n,p)} > 0$

Denominator > numerator $\Rightarrow \varepsilon(n,p) < 1$

Amdahl's law states that the performance improvement to be gained from using some faster mode of execution is limited by the fraction of the time

the faster mode can be used.

$$\psi(n, p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n) / p + \kappa(n, p)}$$
$$\leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n) / p}$$

Let $f = \sigma(n)/(\sigma(n) + \phi(n))$

$$\psi \leq \frac{1}{f + (1 - f)/p}$$

Example 1

95% of a program's execution time occurs inside a loop that can be executed in parallel. What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?

$$\psi \leq \frac{1}{0.05 + (1 - 0.05)/8} \cong 5.9$$

Example 2

20% of a program's execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

$$\lim_{p \to \infty} \frac{1}{0.2 + (1 - 0.2)/p} = \frac{1}{0.2} = 5$$

Pop Quiz

An oceanographer gives you a serial program and asks you how much faster it might run on 8 processors. You can only find one function amenable to a parallel solution. Benchmarking on a single processor reveals 80% of the execution time is spent inside this function. What is the best speedup a parallel version is likely to achieve on 8 processors?

Pop Quiz

A computer animation program generates a feature movie frame-by-frame. Each frame can be generated independently and is output to its own file. If it takes 99 seconds to render a frame and 1 second to output it, how much speedup can be achieved by rendering the movie on 100 processors?

Limitations of Amdahl's Law

Ignores κ(n,p)
Overestimates speedup achievable

Amdahl Effect

Typically κ(n,p) has lower complexity than φ(n)/p
 As n increases, φ(n)/p dominates κ(n,p)
 As n increases, speedup increases

Illustration of Amdahl Effect

Review of Amdahl's Law

Treats problem size as a constant
Shows how execution time decreases as number of processors increases

Another Perspective

We often use faster computers to solve larger problem instances

Let's treat time as a constant and allow problem size to increase with number of processors

Gustafson-Barsis's Law

$$\psi(n, p) \leq \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n) / p}$$

Let $s = \sigma(n)/(\sigma(n)+\phi(n)/p)$

$$\psi \leq p + (1-p)s$$

psi

Gustafson-Barsis's Law

Begin with parallel execution time
 Estimate sequential execution time to solve same problem
 Problem size is an increasing function of *p* Predicts scaled speedup

Example 1

An application running on 10 processors spends 3% of its time in serial code. What is the scaled speedup of the application?

$$\psi = 10 + (1 - 10)(0.03) = 10 - 0.27 = 9.73$$

... except 9 do not have to execute serial code

Execution on 1 CPU takes 10 times as long...

Example 2

What is the maximum fraction of a program's parallel execution time that can be spent in serial code if it is to achieve a scaled speedup of 7 on 8 processors?

 $7 = 8 + (1 - 8)s \Longrightarrow s \approx 0.14$

Pop Quiz

A parallel program executing on 32 processors spends 5% of its time in sequential code. What is the scaled speedup of this program?

The Karp-Flatt Metric

- Amdahl's Law and Gustafson-Barsis' Law ignore κ(n,p)
- They can overestimate speedup or scaled speedup
- Karp and Flatt proposed another metric

Experimentally Determined Serial Fraction

$$e = \frac{\sigma(n) + \kappa(n, p)}{\sigma(n) + \varphi(n)}$$

Inherently serial component of parallel computation + processor communication and synchronization overhead

Single processor execution time

$$e = \frac{1/\psi - 1/p}{1 - 1/p}$$

Experimentally Determined Serial Fraction

Takes into account parallel overhead
 Detects other sources of overhead or inefficiency ignored in speedup model
 Process startup time
 Process synchronization time
 Imbalanced workload
 Architectural overhead

Example 1

What is the primary reason for speedup of only 4.7 on 8 CPUs?

Since *e* is constant, large serial fraction is the primary reason.

Example 2

p	2	3	4	5	6	7	8
ψ	1.9	2.6	3.2	3.7	4.1	4.5	4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

e 0.070 0.075 0.080 0.085 0.090 0.095 0.100

Since *e* is steadily increasing, overhead is the primary reason.

Pop Quiz

р	4	8	12	
ψ	3.9	6.5	?	

Is this program likely to achieve a speedup of 10 on 12 processors?

Isoefficiency Metric

- Parallel system: parallel program executing on a parallel computer
- Scalability of a parallel system: measure of its ability to increase performance as number of processors increases
- A scalable system maintains efficiency as processors are added
- Isoefficiency: way to measure scalability
 - •Program A shows 90% efficiency with P=20
 - •Program B shows 80% efficiency with P=20
 - •Is program A better for parallel computation regardless of the problem size?

Isoefficiency Derivation Steps

Begin with speedup formula
Compute total amount of overhead
Assume efficiency remains constant
Determine relation between sequential execution time and overhead

Deriving Isoefficiency Relation

Determine overhead

$$T_o(n, p) = (p-1)\sigma(n) + p\kappa(n, p)$$

Substitute overhead into speedup equation

$$\psi(n, p) \leq \frac{p(\sigma(n) + \varphi(n))}{\sigma(n) + \varphi(n) + T_0(n, p)}$$

Substitute $T(n,1) = \sigma(n) + \phi(n)$. Assume efficiency is constant.

$T(n,1) \ge CT_0(n,p)$ Isoefficiency Relation

Scalability Function

Suppose isoefficiency relation is n ≥ f(p)
Let M(n) denote memory required for problem of size n
M(f(p))/p shows how memory usage per processor must increase to maintain same efficiency
We call M(f(p))/p the scalability function

Meaning of Scalability Function

- To maintain efficiency when increasing p, we must increase n
- Maximum problem size limited by available memory, which is linear in p
- Scalability function shows how memory usage per processor must grow to maintain efficiency
- Scalability function a constant means parallel system is perfectly scalable

Interpreting Scalability Function

Cannot maintain efficiency

Memory Size

Memory needed per processor

Can maintain efficiency

Cplogp

Cp

Clogp

C

Number of processors

Example 1: Reduction

 Sequential algorithm complexity T(n,1) = Θ(n)
 Parallel algorithm

 Computational complexity = Θ(n/p)
 Communication complexity = Θ(log p)

 Parallel overhead T₀(n,p) = Θ(p log p)

Reduction (continued)

Isoefficiency relation: n ≥ C p log p
We ask: To maintain same level of efficiency, how must n increase when p increases?

 $\blacksquare M(n) = n$

 $M(Cp \log p) / p = Cp \log p / p = C \log p$

The system has good scalability

Example 2: Floyd's Algorithm

Sequential time complexity: Θ(n³)
Parallel computation time: Θ(n³/p)
Parallel communication time: Θ(n²log p)
Parallel overhead: T₀(n,p) = Θ(pn²log p)

Floyd's Algorithm (continued)

 Isoefficiency relation
 n³ ≥ C(p n² log p) ⇒ n ≥ C p log p

 M(n) = n²

$$M(Cp \log p) / p = C^2 p^2 \log^2 p / p = C^2 p \log^2 p$$

The parallel system has poor scalability

Example 3: Finite Difference

- Sequential time complexity per iteration:
 Θ(n²)
- Parallel communication complexity per iteration: $\Theta(n/\sqrt{p})$
- Parallel overhead: $\Theta(n \sqrt{p})$

Finite Difference (continued)

• Isoefficiency relation $n^2 \ge Cn\sqrt{p} \implies n \ge C\sqrt{p}$

 $\blacksquare M(n) = n^2$

Λ

$$A(C\sqrt{p})/p = C^2 p/p = C^2$$

This algorithm is perfectly scalable

Summary (1/3)

Performance terms ◆ Speedup ♦ Efficiency Model of speedup Serial component Parallel component Communication component

Summary (2/3)

What prevents linear speedup?
Serial operations
Communication operations
Process start-up
Imbalanced workloads

Architectural limitations

Summary (3/3)

- Analyzing parallel performance
 Amdahl's Law
 - ♦ Gustafson-Barsis' Law
 - ♦ Karp-Flatt metric
 - ♦ Isoefficiency metric

Copyright ${f C}$ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.