ECE 496AL

L_ecture 2:
The CUDA Programming Model

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

What iIs (Historical) GPGPU ?

* General Purpose computation using GPU and graphics API in
applications other than 3D graphics
— GPU accelerates critical path of application

« Data parallel algorithms leverage GPU attributes
— Large data arrays, streaming throughput
— Fine-grain SIMD parallelism mG PU
— Low-latency floating point (FP) computation

o Applications — see //GPGPU.org

— Game effects (FX) physics, image processing

— Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-

2009
ECE 498AL, University of Illinois, Urbana-

Previous GPGPU Constraints

« Dealing with graphics API

O
— Working with the corner cases of the Input Regisers
graphics API 1
o Addressing modes
— Limited texture size/dimension § I s
o Shader capabilities |
— Limited outputs —
[|

 [nstruction sets
— Lack of Integer & bit ops

e Communication limited
— Between pixels
— Scatter a[i]=p
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-

2009
ECE 498AL, University of Illinois, Urbana-

CUDA

« “Compute Unified Device Architecture”

* General purpose programming model
— User kicks off batches of threads on the GPU
— GPU = dedicated super-threaded, massively data parallel co-processor

« Targeted software stack
— Compute oriented drivers, language, and tools

 Driver for loading computation programs into GPU
— Standalone Driver - Optimized for computation
— Interface designed for compute — graphics-free API
— Data sharing with OpenGL buffer objects
— Guaranteed maximum download & readback speeds

— Explicit GPU memory management

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

An Example of Physical Reality
Behind CUDA J

CPU

ﬁ \ Intel® Pentium® 4 (h O St)
GPU w/ Extrome Egton |

local DRAM 6.4 GBI

 (device)
DDR2
2

DM
150 4 Serial
W ATA Ports
133
MB/s
Intel’ Matrix
Storage Technology

Intel® Wiraless
BIOS Su ' Connect Technology
HT Technology

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

Intel® High
Definition Audio

4 PCI

Express® x1

8 Hi-5
USB 20 Ports

Parallel

»
N 4

ombput
P

4 | B B |

=
«Q
o
-
Q
G
U

+ 8-series GPUs deliver 25 to 200+ GFLOPSTEES
on compiled parallel C applications D~ g
— Auvailable in laptops, desktops, and clusters » GeForce 8800

e GPU parallelism is doubling every year

e Programming model scales transparently
Tesla D870

 Programmable in C with CUDA tools

o Multithreaded SPMD model uses application
data parallelism and thread parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- Tesla S840
2009
ECE 498AL, University of Illinois, Urbana-

Overview

 CUDA programming model — basic concepts and
data types

 CUDA application programming interface - basic

e Simple examples to illustrate basic concepts and
functionalities

e Performance features will be covered later

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

CUDA - C with no shader limitations!

* Integrated host+device app C program
— Serial or modestly parallel parts in host C code
— Highly parallel parts in device SPMD kernel C code

Serial Code (host) g

SOOI BAOSOIMINHY SOOI

Parallel Kernel (device)
KernelA<<< nBIk, nTid >>>(args);

L« < (« (L (<

Serial Code (host) g

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

CUDA Devices and Threads

e A compute device
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel
— Istypically a GPU but can also be another type of parallel processing
device
« Data-parallel portions of an application are expressed as device
kernels which run on many threads

e Differences between GPU and CPU threads

— GPU threads are extremely lightweight
* Very little creation overhead

— GPU needs 1000s of threads for full efficiency
o Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

G80 — Graphics Mode

The future of GPUs is programmable processing

build the architecture around the processor

So —

HEEN
S]]

NN
S

2009

ECE 498AL, University of Illinois, Urbana-

G80 CUDA mode — A Device Example

* Processors execute computing threads
* New operating mode/HW interface for computing

v

z
|

. ! .

!

! .

Global Memory

2009
ECE 498AL, University of Illinois, Urbana-

Extended C

» Declspecs]]
] __device__ fTloat filter[N];
— global, device, shared,
local, constant __global__ void convolve (float *image)
__shared__ float region|[M];
« Keywords
— threadldx, blockldx region[threadldx] = image[i];
e Intrinsics __syncthreads()
— __syncthreads
image[j] = result;
« Runtime API g
_ hAernory,synwboI, // Allocate GPU memory

: void *myimage = cudaMalloc(bytes
execution management yimag (bytes)

] // 100 blocks, 10 threads per block
Function launch convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

12

Extended C

Integrated source
(foo.cu)

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly CPU Host Code

foo.s foo.cpp

OCG gcc / cl

GSO SASS Mark Murphy,; ‘

foo.sass ’
www. capsl. udel edu/conferences/openb
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007~ 4/2008/Papers/101.doc 13

2009
ECE 498AL, University of Illinois, Urbana—

Arrays of Parallel Threads

« A CUDA kernel is executed by an array of
threads
— All threads run the same code (SPMD)

— Each thread has an ID that it uses to compute
memory addresses and make control decisions

threadlD |o|1|2|3|4]|5|6]|7

float x = Input[threadlD];
float y = func(Xx);

output[threadlD] = y;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

14

Thread Blocks: Scalable Cooperation

Divide monolithic thread array into multiple blocks

— Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

— Threads in different blocks cannot cooperate

Thread Block N - 1

O 1|1 2] 3| 4| 5| 6] 7

Thread Block O Thread Block 0

4151 6|7 0ol 1] 2| 3| 4] 5]|6|7

threadlD |°] 1] 2|3

float x = input[threadlD];

float x = input[threadlD];
float y = func(X);

float y = func(x);
output[threadlID] = y;

float x = input[threadlD];
float y = func(xX);
output[threadlD] = y;

output[threadlD] = y;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 15

2009
ECE 498AL, University of Illinois, Urbana-

Block IDs and Thread IDs

. Host evice
e Each thread uses IDs to decide ’
Grid 1
what data to work on
— Block ID: 1D or 2D S | Block || Bleck

— Thread ID: 1D, 2D, or 3D

Block” Block
o) || @y |

« Simplifies memory Gz /0
addressing when processing comet L) T Tl
multidimensional data 2 A : =

— Image processing
— Solving PDEs on volumes

Courtesy: NDVIA
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- _
2009

ECE 498AL, University of Illinois, Urbana-

CUDA Memory Model Overview

e Global memory
— Main means of

communicating
Data between host 2qd
device

— Contents visible to all
threads

— Long latency access
* We will focus on global

Grid

Block (0, 0)

e e

Block (1, 0)

|

Thread (0, 0)

memory for now Host

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

— Constant and texture
memory will come later

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-

2009
ECE 498AL, University of Illinois, Urbana-

17

CUDA API Highlights:
Easy and Lightweight

e The APl Is an extension to the ANSI C programming
language

== Low learning curve

e The hardware Is designed to enable lightweight
runtime and driver

=== High performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 18
2009
ECE 498AL, University of Illinois, Urbana-

CUDA Device Memory Allocation
e cudaMalloc()

Grid

— Allocates object in the

device Global Memory Block (0.0 Block (1,0

— Requires two parameters ﬂ ﬂ
» Address of a pointer to the * * * *
allocated object

Thread (0, 0) | Thread (1, 0) | | Thread (0, 0) Thread (1, 0)

« Size of of allocated object

e cudaFree() L

— Frees object from device
Global Memory
 Pointer to freed obg'ect

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 19
2009
ECE 498AL, University of Illinois, Urbana-

CUDA Device Memory Allocation (cont.)

e Code example:

— Allocate a 64 * 64 single precision float array
— Attach the allocated storage to Md
— “d” 1s often used to indicate a device data structure

TILE_ WIDTH = 64;
Float* Md
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 20
2009
ECE 498AL, University of Illinois, Urbana-

CUDA Host-Device Data Transfer

e cudaMemcpy()
— memory data transfer

— Requires four parameters
 Pointer to destination
 Pointer to source
* Number of bytes copied
* Type of transfer

— Host to Host

— Host to Device

— Device to Host
— Device to Device

e Asynchronous transfer

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

Grid

Block (0, 0)

| e

Block (1, 0)

| e

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

N\

=

21

CUDA Host-Device Data Transfer
(cont.)

e Code example:
— Transfer a 64 * 64 single precision float array
— M is in host memory and Md is in device memory

— cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 22
2009
ECE 498AL, University of Illinois, Urbana-

CUDA Keywords

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

23

CUDA Function Declarations

Executed | Only callable
on the: from the:

__device float DeviceFunc() device device
__global _ void KernelFunc(Q) device host
__host float HostFunc() host host

e global defines a kernel function

— Must return void
e device and host can be used

together

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

24

ClIDA Eiinctinn Daclaratinne (N
N\JL7 VN1 UTLIVLULIVILI LU UIAUAI UALTVIL VD \UU

nt.)

e device functions cannot have their
address taken

e For functions executed on the device:
— No recursion
— No static variable declarations inside the function
— No variable number of arguments

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 25
2009
ECE 498AL, University of Illinois, Urbana-

Calling a Kernel Function — Thread Creation

A kernel function must be called with an execution
configuration:

~_global void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per
block

size_t SharedMemBytes = 64; // 64 bytes of shared
memory

KernelFunc<<< DimGrid, DimBlock,
SharedMemBytes >>>(...);

* Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 26
2009
ECE 498AL, University of Illinois, Urbana-

A Simple Running Example
Matrix Multiplication

« A simple matrix multiplication example that illustrates
the basic features of memory and thread management
iIn CUDA programs

— Leave shared memory usage until later

— Local, register usage

— Thread ID usage

— Memory data transfer APl between host and device
— Assume square matrix for simplicity

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 27
2009
ECE 498AL, University of Illinois, Urbana-

Programming Model
ChAiinra NMatriv NMiitltinlhicatinn Evarmnlan
Oqualc IVIAQU IA |V|U|l.||J||bal.|U|| E/\alllldlc

e P=M*N of size WIDTH x WIDTH
e Without tiling:
— One calculates one element of P

— M and N are loaded WIDTH times from
global memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, =

\ 4
A

2009
ECE 498AL, University of Illinois, Urbana-

\ 4

Memory Layout of a Matrix in C

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

29

Step 1: Matrix Multiplication
A Simple Host Version in C

// Matrix multiplication on the (CPU) host in double

precision

void MatrixMulOnHost(float* M, float* N, float* P, int Width) k

{ . J v
for (inti = 0; i < Width; ++i) J

for (intj = 0; j < Width; ++j) {
double sum = 0;
for (int k = 0; k < Width; ++Kk) {
double a = M[i * width + KJ;
double b = N[k * width + j];
sum +=a*b;

1
} N N N
P[i * Width + j] = sum; |
} —
} k
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2:

2009 1B
ECE 498AL, University of Illinois, Urbana-

Step 2: Input Matrix Data Transfer
(UAnct_cidn o)
\M0Ost-31de LOJUE)
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)

{

Int size = Width * Width * sizeof(float);
float* Md, Nd, Pd;

1. // Allocate and Load M, N to device memory
cudaMalloc(&Md, size);

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMalloc(&Nd, size);
cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

/| Allocate P on the device
cudaMalloc(&Pd, size);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 31
2009

ECE 498AL, University of Illinois, Urbana-

Step 3: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code — to be shown later

3. // Read P from the device
cudaMemcpy(P, Pd, size,
cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree (Pd);
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

32

Step 4: Kernel Function

// Matrix multiplication kernel — per thread code

__global __ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

/| Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = O;

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 33
2009
ECE 498AL, University of Illinois, Urbana-

Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k) {
float Melement = Md[threadldx.y*Width+k];
float Nelement = Nd[k*Width+threadldx.x]; k

Pvalue += Melement * Nelement;
} tx

Pd[threadldx.y*Width+threadldx.x] = Pvalue;
}

ty ty

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

2009
ECE 498AL, University of Illinois, Urbana-

Step 5: Kernel Invocation
(Host-side Code)

I/ Setup the execution configuration
dim3 dimGrid(1, 1);
dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 35
2009
ECE 498AL, University of Illinois, Urbana-

Only One Thread Block Used

e One Block of threads compute
matrix Pd

— Each thread computes one
element of Pd

 Each thread
— Loads a row of matrix Md
— Loads a column of matrix Nd

— Perform one multiply and
addition for each pair of Md and
Nd elements

— Compute to off-chip memory
access ratio close to 1:1 (not very
high)

o Size of matrix limited by the
number of threads allowed in a
thread block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-

2009
ECE 498AL, University of Illinois, Urbana-

Nd

A
v

WIDTH

Md Pd

36

Step 7: Handling Arbitrary Sized Square
Matrices

e Have each 2D thread block to compute
a (TILE_WIDTH)? sub-matrix (tile) of
the result matrix

— Each has (TILE_WIDTH)? threads

e Generate a 2D Grid of
(WIDTH/TILE_WIDTH)? blocks

You still need to put a by
loop around the kernel TILE_WIDTH
call for cases where ty
WIDTH/TILE_WIDTH is

greater than max grid bx |tx

size (64K)!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

2009
ECE 498AL, University of Illinois, Urbana-

Some Useful Information on
Tools

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

38

Compiling a CUDA Program

« Parallel Thread
eXecution (PTX)

— Virtual Machine
and ISA

— Programming
model

— Execution
resources and
state

$F3,$F5,$F7}, [$ro+0];
$f5, $f3, $F1;

39
39

ECE 498AL, University of Illinois, Urbana-

Compilation

* Any source file containing CUDA language
extensions must be compiled with NVCC

« NVCC is a compiler driver

— Works by invoking all the necessary tools and
compilers like cudacc, g++, cl, ...

« NVCC outputs:
— C code (host CPU Code)

Must then be compiled with the rest of the application using another tool
~- PTX
* Object code directly
 Or, PTX source, interpreted at runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 40
2009

40
ECE 498AL, University of Illinois, Urbana-

Linking

* Any executable with CUDA code requires two
dynamic libraries:
— The CUDA runtime library (cudart)
— The CUDA core library (cuda)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

41

Debugging Using the
Device Emulation Mode

e An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host

using the CUDA runtime

— No need of any device and CUDA driver
— Each device thread i1s emulated with a host thread

* Running in device emulation mode, one can:

— Use host native debug support (breakpoints, inspection, etc.)
— Access any device-specific data from host code and vice-versa

— Call any host function from device code (e.g. printf) and vice-
versa

— Detect deadlock situations caused by improper usage of
__syncthreads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

42

Device Emulation Mode Pitfalls

 Emulated device threads execute sequentially, so
simultaneous accesses of the same memory location
oy multiple threads could produce different results.

« Dereferencing device pointers on the host or host
pointers on the device can produce correct results in
device emulation mode, but will generate an error in
device execution mode

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-
2009
ECE 498AL, University of Illinois, Urbana-

43

Floating Point

* Results of floating-point computations will slightly
differ because of:
— Different compiler outputs, instruction sets

— Use of extended precision for intermediate results
» There are various options to force strict single precision on the host

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007- 44
2009
ECE 498AL, University of Illinois, Urbana-

