CUDA Threads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

Block IDs and Thread IDs

Host evice
e Each thread uses IDs to ’ d
. Grid 1
decide what data to work on
Kernel oc oc
— Block ID: 1D or 2D —==" | 0o | o

— Thread ID: 1D, 2D, or 3D

Block” Block
o8 || @y \

« Simplifies memory Gz /0
addressing when came LS| IF
processing 2 ' =

multidimensional data
— Image processing
— Solving PDEs on volumes

Courtesy: NDVIA
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2uuy -
ECE498AL, University of Illinois, Urbana-Champaign

Matrix Multiplication Using
Multiple Blocks

e Break-up Pd into tiles

e Each block calculates one
tile
— Each thread calculates one
element
— Block size equal tile size

\ 4

\4
A

P
<«

© David Kirk/NVIDIA and Weri-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

A Small Example

Block(0,0) Block(1,0)

\ /

Poo|P1o]P2o|Pso| TILE. WIDTH = 2

Block(0,1) Block(1,1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

A Small Example: Multiplication

TN TR, &, TN
| dO,lMdl,MdZ,MdB, PdZ,lde,l
Pdg JPd; JPds JfPdj 5
Pdg jPd; Pd, 4Pd; 5

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Calculate the row iIndex of the Pd element and M

iInt Row = blockldx.y*TILE_ WIDTH + threadldx.y;

// Calculate the column i1denx of Pd and N

int Col = blockldx.x*TILE_ WIDTH + threadldx.X;

£ +hn hhlAaA~AlL crih_matwvev
| LIITC M EIUUN oSuu~Tliiacur I A

th; ++k)
h+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 6
ECE498AL, University of Illinois, Urbana-Champaign

CUDA Thread Block

« All threads in a block execute the same
kernel program (SPMD)

e Programmer declares block: CUDA Thread Block
— Block size 1 to 512 concurrent threads _
— Block shape 1D, 2D, or 3D Thread 1d #:
0123.

— Block dimensions in threads
e Threads have thread id numbers within block

work and address shared data Thread program

e Threads in the same block share data and
synchronize while doing their share of the
work

 Threads in different blocks cannot cooperate

— Each block can execute in any order relative
to other blocs!

Courtesy: John Nickolls,
NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 !
ECE498AL, University of Illinois, Urbana-Champaign

Transparent Scalability

 Hardware is free to assigns blocks to any
processor at any time

— A kernel scales across any number of
parallel processors

Block O Block 1

/ Block 2 Block 3 \

Block 0 Block 1 Biock 4 Biock 5
Block 6 Block 7 Block O Block 1 || Block 2 Block 3
Block 2 Block 3 tim
Block 4 Block5 Block6 Block?7

Block 4 Block 5 .
Each block can execute in any order

Block 6 Block 7 relative to other blocks.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

G80 Example: Executing Thread Blocks

t0tlt2 ... tm

SMO SM1 .

t0 t1 t2 ... tm

SNONNNNNNNNY
<LLLLKLS

Blocks

|_I

. Threads are assigned to Streaming
" Multiprocessors in block granularity

— Up to 8 blocks to each SM as
resource allows

— SM in G80 can take up to 768 threads

Could be 256 (threads/block) * 3
blocks

Or 128 (threads/block) * 6 blocks, etc.

 Threads run concurrently
— SM maintains thread/block id #s

— SM manages/schedules thread

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 €Xecution 9
ECE498AL, University of Illinois, Urbana-Champaign

G80 Example: Thread Scheduling

Each Block is executed as — Block 1 Warps — Block 2 Warps — Block 1 Warps
| | |
32-thread Warps t0tlt2 ... t31 t0tlt2 ... t31 t0 t1t2 ... t31
_ _ . Mot NNt PIIRSN
— An implementation decision, S S >
not part of the CUDA I IPSSSSSSSSSS O M [IPSSSSSSS55S: — <
programming model
— Warps are scheduling units Streaming Multiprocessor
in SM [nstucfionli |
If 3 blocks are assigned to an Instruction Fetch/Dispatch
SM and each block has 256 Shared Memory

threads, how many Warps are
there in an SM?

— Each Block is divided into
256/32 = 8 Warps

— There are 8 * 3 = 24 Warps

S

S

SFU SFU

n ()] n
jv) o jv)

S

I o Rl sp LBl

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 10

ECE498AL, University of Illinois, Urbana-Champaign

G80 Example: Thread Scheduling
\

« SM implements zero-overhead warp scheduling
— At any time, only one of the warps is executed by SM
— Warps whose next instruction has its operands ready for
consumption are eligible for execution
— Eligible Warps are selected for execution on a prioritized
scheduling policy
— All threads in a warp execute the same instruction when selected

p——TB1, Wl stall———]
—TB2, W1 stal—}———TB3, W2 stall———]
TB1 TB2 | TB3 | TB3 | TB2 | TBL | TBL | TBL | TB3
_ w1 wi | wi | w2 | owi | wi | w2 | w3 | w2
Instruction: | 1i2i3i4ai5i6[ai2|1i2|1i2]|814a]|7i8|1i2|1i2|34
—Time-» TB = Thread Block, W = Warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 11

ECE498AL, University of Illinois, Urbana-Champaign

()
0

N Rln |/ ran || \I("
LIIUJUUIN U| 1CA y\J

cidaratinnc
| IVAGLUITI CALIVI T O

e For Matrix Multiplication using multiple blocks, should |
use 8X8, 16X16 or 32X32 blocks?

— For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

— For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

— For 32X32, we have 1024 threads per Block. Not even one can fit
iInto an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 12

ECE498AL, University of Illinois, Urbana-Champaign

Some Additional APl Features

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

13

Application Programming Interface

« The APl Is an extension to the C programming
language

e |t consists of:

— Language extensions
« To target portions of the code for execution on the device

— A runtime library split into:

A common component providing built-in vector types and a
subset of the C runtime library in both host and device
codes

A host component to control and access one or more
devices from the host

« A device component providing device-specific functions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 14
ECE498AL, University of Illinois, Urbana-Champaign

Language Extensions:
Built-in Variables

e dim3 gridDim;
— Dimensions of the grid in blocks (gridDim.z
unused)

e dim3 blockDim;

— Dimensions of the block in threads
e dim3 blockldx;

— Block index within the grid
e dim3 threadldx;

— Thread index within the block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

15

Common Runtime Component:

Mathematical Functions

e pow, sSgrt, cbrt, hypot

e exp, exp2, expml

e log, 1og2, 10910, loglp

e siIN, Ccos, tan, asin, acos, atan, atan2
e sinh, cosh, tanh, asinh, acosh, atanh
e ceil, floor, trunc, round

e Etc.

— When executed on the host, a given function uses
the C runtime implementation if available

— These functions are only supported for scalar types,

not vector types

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 16

ECE498AL, University of Illinois, Urbana-Champaign

Device Runtime Component:

Mathematical Functions

« Some mathematical functions (e.g. sin(x))
have a less accurate, but faster device-only
version (e.g. sin(x))

— __ pow
— log, log2, 1ogl0
= exp

— __SiIn, cos, tan

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 17

ECE498AL, University of Illinois, Urbana-Champaign

Host Runtime Component

* Provides functions to deal with:
— Device management (including multi-device systems)
— Memory management
— Error handling

e Initializes the first time a runtime function is called

A host thread can invoke device code on only one
device

— Multiple host threads required to run on multiple
devices

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 18
ECE498AL, University of Illinois, Urbana-Champaign

Device Runtime Component:
Synchronization Function

e void _ syncthreads();

 Synchronizes all threads in a block

 Once all threads have reached this point,
execution resumes normally

e Used to avoid RAW / WAR / WAW hazards
when accessing shared or global memory

* Allowed in conditional constructs only if the
conditional is uniform across the entire thread
block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

19

