
CUDA Threads

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

1

Block IDs and Thread IDsBlock IDs and Thread IDs

Host

Kernel

Device

Grid 1

Bl k Bl k

• Each thread uses IDs to
decide what data to work on

Kernel
1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

Kernel

() ()

Grid 2• Simplifies memory
addressing when

2

Block (1, 1)
(0,0,1) (1,0,1) (2,0,1) (3,0,1)

processing
multidimensional data
– Image processing

Thread
(0 1 0)

Thread
(1 1 0)

Thread
(2 1 0)

Thread
(3 1 0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

– Image processing
– Solving PDEs on volumes
– …

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

2
Courtesy: NDVIA

(0,1,0) (1,1,0) (2,1,0) (3,1,0)

bx

tx

0 1 2Matrix Multiplication Using

Nd

tx
01 TILE_WIDTH-12Multiple Blocks

Break up Pd into tiles

W
ID

T
H

• Break-up Pd into tiles
• Each block calculates one

tiletile
– Each thread calculates one

element

Md Pd

– Block size equal tile size

Pdsub

ty 2
1
0

0

W
ID

T
H

E

W
ID

T
H

TILE_WIDTH

by ty

TILE_WIDTH-1

1

T
IL

E
_W W

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

3

WIDTHWIDTH2

A Small ExampleA Small Example

Bl k(0 0) Bl k(1 0)

P1 0P0 0 P2 0 P3 0

Block(0,0) Block(1,0)

TILE WIDTH 2P1,0P0,0

P0,1

P2,0 P3,0

P1,1

P P PP

P3,1P2,1

TILE_WIDTH = 2

P0,2 P2,2 P3,2P1,2

P0,3 P2,3 P3,3P1,3

Block(1,1)Block(0,1)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

4

A Small Example: MultiplicationA Small Example: Multiplication

NdNd

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,3Nd1,3

Nd1,2Nd0,2

Pd1,0Md2,0Md1,0Md0,0 Md3,0 Pd0,0 Pd2,0Pd3,0

Md1,1Md0,1 Md2,1Md3,1 Pd0,1Pd1,1

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

5

Revised Matrix Multiplication
Kernel using Multiple Blocks

global void MatrixMulKernel(float* Md float* Nd float* Pd int Width)__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

i t R bl kId *TILE WIDTH + th dIdint Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub matrix// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

6
}

CUDA Thread Block
• All threads in a block execute the same

kernel program (SPMD)kernel program (SPMD)
• Programmer declares block:

– Block size 1 to 512 concurrent threads
Bl k h 1D 2D 3D

CUDA Thread Block

Thread Id #:– Block shape 1D, 2D, or 3D
– Block dimensions in threads

• Threads have thread id numbers within block

Thread Id #:
0 1 2 3 … m

– Thread program uses thread id to select
work and address shared data Thread program

• Threads in the same block share data and
synchronize while doing their share of the
work

• Threads in different blocks cannot cooperate
– Each block can execute in any order relative

to other blocs!
Courtesy: John Nickolls,
NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

7

Transparent Scalabilityp y
• Hardware is free to assigns blocks to any

t tiprocessor at any time
– A kernel scales across any number of y

parallel processors
Device Kernel grid

Block 0 Block 1

Block 2 Block 3

Bl k 4 Bl k 5

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7 Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

Block 4 Block 5

Block 6 Block 7

Each block can execute in any order
relative to other blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

8

Block 6 Block 7 relative to other blocks.

G80 Example: Executing Thread Blocks
t0 t1 t2 … tm

MT IU MT IU

t0 t1 t2 … tmSM 1SM 0

• Threads are assigned to Streaming

SP

MT IU

SP

MT IU Blocks

• Threads are assigned to Streaming
Multiprocessors in block granularity
– Up to 8 blocks to each SM as

Blocks

Up to 8 blocks to each SM as
resource allows

– SM in G80 can take up to 768 threads
Shared
Memory

Shared
Memory

• Could be 256 (threads/block) * 3
blocks

• Or 128 (threads/block) * 6 blocks, etc.

• Threads run concurrently
– SM maintains thread/block id #s

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

9
– SM manages/schedules thread

execution

G80 Example: Thread Schedulingp g

• Each Block is executed as Block 1 Warps Block 2 Warps Block 1 WarpsEach Block is executed as
32-thread Warps
– An implementation decision,

not part of the CUDA
…

t0 t1 t2 … t31
…

…
t0 t1 t2 … t31

…
Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31

…
Block 1 Warps

not part of the CUDA
programming model

– Warps are scheduling units
in SM Instruction L1

Streaming Multiprocessor
in SM

• If 3 blocks are assigned to an
SM and each block has 256

Instruction Fetch/Dispatch

Instruction L1

Shared Memory

threads, how many Warps are
there in an SM?
– Each Block is divided into SP

SP

SP

SFU
SP

SP

SP

SFUac oc s d ded to
256/32 = 8 Warps

– There are 8 * 3 = 24 Warps
SP

SP

SP

SP

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

10

G80 Example: Thread Scheduling
(Cont)(Cont.)

• SM implements zero-overhead warp scheduling
– At any time, only one of the warps is executed by SM
– Warps whose next instruction has its operands ready forWarps whose next instruction has its operands ready for

consumption are eligible for execution
– Eligible Warps are selected for execution on a prioritized

h d li lischeduling policy
– All threads in a warp execute the same instruction when selected

TB1
W1

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

11
TB = Thread Block, W = WarpTime

G80 Block Granularity ConsiderationsG80 Block Granularity Considerations
• For Matrix Multiplication using multiple blocks, should I

use 8X8, 16X16 or 32X32 blocks?

F 8X8 h 64 th d Bl k Si h SM t k– For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads it can take up to 3 Blocks and achieve fulltake up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

12

Some Additional API Features

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

13

Application Programming InterfaceApplication Programming Interface

Th API i t i t th C i• The API is an extension to the C programming
language

• It consists of:
– Language extensions

• To target portions of the code for execution on the device

– A runtime library split into:
• A common component providing built-in vector types and a

subset of the C runtime library in both host and device
codes

• A host component to control and access one or more
devices from the host
A de ice component pro iding de ice specific f nctions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

14

• A device component providing device-specific functions

Language Extensions:
Built-in Variables

• dim3 gridDim;
– Dimensions of the grid in blocks (gridDim.z

unused)
• dim3 blockDim;

– Dimensions of the block in threads
• dim3 blockIdx;

– Block index within the gridBlock index within the grid
• dim3 threadIdx;

Thread index within the block
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

15

– Thread index within the block

Common Runtime Component:
Mathematical Functions

• pow sqrt cbrt hypot• pow, sqrt, cbrt, hypot
• exp, exp2, expm1

l l 2 l 10 l 1• log, log2, log10, log1p
• sin, cos, tan, asin, acos, atan, atan2

i h h t h i h h t h• sinh, cosh, tanh, asinh, acosh, atanh
• ceil, floor, trunc, round

Et• Etc.
– When executed on the host, a given function uses

the C runtime implementation if availablethe C runtime implementation if available
– These functions are only supported for scalar types,

not vector types
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

16

not vector types

Device Runtime Component:
Mathematical Functions

Some mathematical functions (e g i ())• Some mathematical functions (e.g. sin(x))
have a less accurate, but faster device-only
version (e g i ())version (e.g. __sin(x))
– __pow
– __log, __log2, __log10
– __exp
– __sin, __cos, __tan

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

17

Host Runtime Componentp
• Provides functions to deal with:

– Device management (including multi-device systems)
– Memory management
– Error handling

• Initializes the first time a runtime function is called

• A host thread can invoke device code on only one
devicedevice
– Multiple host threads required to run on multiple

devices
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

18

devices

Device Runtime Component:
Synchronization Function

• void __syncthreads();

• Synchronizes all threads in a block• Synchronizes all threads in a block
• Once all threads have reached this point,

execution resumes normallyexecution resumes normally
• Used to avoid RAW / WAR / WAW hazards

h i h d l b lwhen accessing shared or global memory
• Allowed in conditional constructs only if the

conditional is uniform across the entire thread
block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

19

