Lecture 5: CUDA Memories
G80 Implementation of CUDA Memories

- Each thread can:
 - Read/write per-thread registers
 - Read/write per-thread local memory
 - Read/write per-block shared memory
 - Read/write per-grid global memory
 - Read/only per-grid constant memory

ECE498AL, University of Illinois, Urbana Champaign
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- __device__ is optional when used with __local__, __shared__, or __constant__

- Automatic variables without any qualifier reside in a register
 - Except arrays that reside in local memory
Where to Declare Variables?

Can host access it?

- global constant
 - yes
 - no

- register (automat shared local)

Outside of any Function

In the kernel

ECE498AL, University of Illinois, Urbana Champaign
Variable Type Restrictions

- **Pointers** can only point to memory allocated or declared in global memory:
 - Allocated in the host and passed to the kernel:
    ```c
    __global__ void KernelFunc(float* ptr)
    ```
 - Obtained as the address of a global variable:
    ```c
    float* ptr = &GlobalVar;
    ```
A Common Programming Strategy

• Global memory resides in device memory (DRAM) - much slower access than shared memory
• So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 – Partition data into subsets that fit into shared memory
 – Handle each data subset with one thread block by:
 • Loading the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism
 • Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 • Copying results from shared memory to global memory
A Common Programming Strategy (Cont.)

- Constant memory also resides in device memory (DRAM) - much slower access than shared memory
 - But… cached!
 - Highly efficient access for read-only data

- Carefully divide data according to access patterns
 - R/Only → constant memory (very fast if in cache)
 - R/W shared within Block → shared memory (very fast)
 - R/W within each thread → registers (very fast)
 - R/W inputs/results → global memory (very slow)

For texture memory usage, see NVIDIA document.
GPU Atomic Integer Operations

• Atomic operations on integers in global memory:
 – Associative operations on signed/unsigned ints
 – add, sub, min, max, ...
 – and, or, xor
 – Increment, decrement
 – Exchange, compare and swap

• Requires hardware with compute capability 1.1 and above.
Matrix Multiplication using Shared Memory
Review: Matrix Multiplication Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {
 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
 // Calculate the column idenx of Pd and N
 int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

 float Pvalue = 0;
 // each thread computes one element of the block sub-matrix
 for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

 Pd[Row*Width+Col] = Pvalue;
}

ECE498AL, University of Illinois, Urbana Champaign
How about performance on G80?

- All threads access global memory for their input matrix elements
 - Two memory accesses (8 bytes) per floating point multiply-add
 - 4B/s of memory bandwidth/FLOPS
 - $4 \times 346.5 = 1386$ GB/s required to achieve peak FLOP rating
 - 86.4 GB/s limits the code at 21.6 GFLOPS
- The actual code runs at about 15 GFLOPS
- Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS
Idea: Use Shared Memory to reuse global memory data

- Each input element is read by Width threads.
- Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
 - Tiled algorithms

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign
Tiled Multiply

• Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd
A Small Example
Every Md and Nd Element is used exactly twice in generating a 2X2 tile of P

<table>
<thead>
<tr>
<th>P_{0,0} thread_{0,0}</th>
<th>P_{1,0} thread_{1,0}</th>
<th>P_{0,1} thread_{0,1}</th>
<th>P_{1,1} thread_{1,1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{0,0} * N_{0,0}</td>
<td>M_{0,0} * N_{1,0}</td>
<td>M_{0,1} * N_{0,0}</td>
<td>M_{0,1} * N_{1,0}</td>
</tr>
<tr>
<td>M_{1,0} * N_{0,1}</td>
<td>M_{1,0} * N_{1,1}</td>
<td>M_{1,1} * N_{0,1}</td>
<td>M_{1,1} * N_{1,1}</td>
</tr>
<tr>
<td>M_{2,0} * N_{0,2}</td>
<td>M_{2,0} * N_{1,2}</td>
<td>M_{2,1} * N_{0,2}</td>
<td>M_{2,1} * N_{1,2}</td>
</tr>
<tr>
<td>M_{3,0} * N_{0,3}</td>
<td>M_{3,0} * N_{1,3}</td>
<td>M_{3,1} * N_{0,3}</td>
<td>M_{3,1} * N_{1,3}</td>
</tr>
</tbody>
</table>
Breaking Md and Nd into Tiles
Each phase of a Thread Block uses one tile from Md and one from Nd

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{0,0})</td>
<td>(\text{Md}{0,0}) \downarrow \text{Mds}{0,0}) (\text{Nd}{0,0}) \downarrow \text{Nds}{0,0})</td>
<td>(\text{Md}{2,0}) \downarrow \text{Mds}{0,0}) (\text{Nd}{0,2}) \downarrow \text{Nds}{0,0})</td>
</tr>
<tr>
<td>(\text{Md}{1,0}) \downarrow \text{Mds}{1,0}) (\text{Nd}{1,0}) \downarrow \text{Nds}{1,0})</td>
<td>(\text{Md}{3,0}) \downarrow \text{Mds}{1,0}) (\text{Nd}{1,2}) \downarrow \text{Nds}{1,0})</td>
<td></td>
</tr>
<tr>
<td>(\text{Md}{0,1}) \downarrow \text{Mds}{0,1}) (\text{Nd}{0,1}) \downarrow \text{Nds}{0,1})</td>
<td>(\text{Md}{2,1}) \downarrow \text{Mds}{0,1}) (\text{Nd}{0,3}) \downarrow \text{Nds}{0,1})</td>
<td></td>
</tr>
<tr>
<td>(\text{Md}{1,1}) \downarrow \text{Mds}{1,1}) (\text{Nd}{1,1}) \downarrow \text{Nds}{1,1})</td>
<td>(\text{Md}{3,1}) \downarrow \text{Mds}{1,1}) (\text{Nd}{1,3}) \downarrow \text{Nds}{1,1})</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{PValue}_{0,0} += \text{Mds}_{0,0}\ltimes\text{Nds}_{0,0} + \text{Mds}_{1,0}\ltimes\text{Nds}_{0,1}\)

\(\text{PValue}_{1,0} += \text{Mds}_{0,0}\ltimes\text{Nds}_{1,0} + \text{Mds}_{1,0}\ltimes\text{Nds}_{1,1}\)

\(\text{PValue}_{0,1} += \text{Mds}_{0,1}\ltimes\text{Nds}_{0,0} + \text{Mds}_{1,1}\ltimes\text{Nds}_{0,1}\)

\(\text{PValue}_{1,0} += \text{Mds}_{0,1}\ltimes\text{Nds}_{1,0} + \text{Mds}_{1,1}\ltimes\text{Nds}_{1,1}\)
First-order Size Considerations in G80

• Each thread block should have many threads
 – TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks
 – A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations.
 – Memory bandwidth no longer a limiting factor
CUDA Code – Kernel Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,
 Width / TILE_WIDTH);
Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
   __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
   __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

   int bx = blockIdx.x;  int by = blockIdx.y;
   int tx = threadIdx.x; int ty = threadIdx.y;

   // Identify the row and column of the Pd element to work on
   int Row = by * TILE_WIDTH + ty;
   int Col = bx * TILE_WIDTH + tx;

   float Pvalue = 0;
   // Loop over the Md and Nd tiles required to compute the Pd element
   for (int m = 0; m < Width/TILE_WIDTH; ++m) {
      // Collaborative loading of Md and Nd tiles into shared memory
      Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];  //Width*Width memory
      Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];    //Width*Width (Tile)
      __syncthreads(); //wait until fetching two tiles Mds, Nds for each block

      for (int k = 0; k < TILE_WIDTH; ++k) {
         Pvalue += Mds[ty][k] * Nds[k][tx];
      }
      __syncthreads(); //wait here to finish the job for the current input tile
   }
   Pd[Row*Width+Col] = Pvalue;
}
```

ECE498AL, University of Illinois, Urbana Champaign
Single processor code

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
  __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

  for (blockIdx.y = 0; blockIdx.y < Width/TILE_WIDTH; blockIdx.y++){
    for (blockIdx.x = 0; blockIdx.x < Width/TILE_WIDTH; blockIdx.x++){
      for (threadIdx.y = 0; threadIdx.y < TILE_WIDTH; threadIdx.y++){
        for (threadIdx.x = 0; threadIdx.x < TILE_WIDTH; threadIdx.x++){
          int bx = blockIdx.x;  int by = blockIdx.y;
          int tx = threadIdx.x; int ty = threadIdx.y;
          // Identify the row and column of the Pd element to work on
          int Row = by * TILE_WIDTH + ty;
          int Col = bx * TILE_WIDTH + tx;

          float Pvalue = 0;
          // Loop over the Md and Nd tiles required to compute the Pd element
          for (int m = 0; m < Width/TILE_WIDTH; ++m) {
            Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
            Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];

            for (int k = 0; k < TILE_WIDTH; ++k)
              Pvalue += Mds[ty][k] * Nds[k][tx];
          }
          Pd[Row*Width+Col] = Pvalue;
        }
      }
    }
  }
}
```

ECE498AL, University of Illinois, Urbana Champaign
Tiled Multiply

- Each **block** computes one square sub-matrix $P_{d_{sub}}$ of size TILE_WIDTH
- Each **thread** computes one element of $P_{d_{sub}}$

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
G80 Shared Memory and Threading

• Each SM in G80 has 16KB shared memory
 – SM size is implementation dependent!
 – For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 – Can potentially have up to 8 Thread Blocks actively executing
 • This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 – The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per thread block, allowing only up to two thread blocks active at the same time

• Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 – The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!
Tiling Size Effects
Summary - Typical Structure of a CUDA Program

- Global variables declaration
 - __host__
 - __device__... __global__, __constant__, __texture__
- Function prototypes
 - __global__ void kernelOne(…)
 - float handyFunction(…)
- Main()
 - allocate memory space on the device – cudaMemcpy(d_GlblVarPtr, bytes)
 - transfer data from host to device – cudaMemcpy(d_GlblVarPtr, h_Gl…)
 - execution configuration setup
 - kernel call – kernelOne<<<execution configuration>>>(args…);
 - transfer results from device to host – cudaMemcpy(h_GlblVarPtr,…)
 - optional: compare against golden (host computed) solution
- Kernel – void kernelOne(type args, …)
 - variables declaration - __local__, __shared__
 - automatic variables transparently assigned to registers or local memory
 - syncthreads()…
- Other functions
 - float handyFunction(int inVar…);