
ECE 498AL

Lectures 8:
Threading Hardware in G80

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

1

Single-Program Multiple-Data (SPMD)
• CUDA integrated CPU + GPU application C

programprogram
– Serial C code executes on CPU

Parallel Kernel C code executes on GPU thread blocks– Parallel Kernel C code executes on GPU thread blocks

CPU Serial Code
Grid 0Grid 0

. . .
GPU Parallel Kernel

KernelA<<< nBlk, nTid >>>(args);KernelA<<< nBlk, nTid >>>(args);

CPU Serial Code
Grid 1

GPU Parallel Kernel

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

2

. . .KernelB<<< nBlk, nTid >>>(args);

Grids and Blocks
Host Device

Grids and Blocks
• A kernel is executed as a grid

Kernel
1

Grid 1

Block
(0 0)

Block
(1 0)

g
of thread blocks
– All threads share global memory

space (0, 0) (1, 0)

Block
(0, 1)

Block
(1, 1)

space
• A thread block is a batch of

threads that can cooperate with

Kernel
2

Grid 2each other by:
– Synchronizing their execution

using barrier
Block (1, 1)

Thread Thread Thread Thread

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

using barrier
– Efficiently sharing data through

a low latency shared memory
Two threads from two different

Courtesy: NDVIA

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)– Two threads from two different

blocks cannot cooperate

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

3

Courtesy: NDVIA

CUDA Thread Block: Review
• Programmer declares (Thread) Block:

Bl k i 1 512 h d– Block size 1 to 512 concurrent threads
– Block shape 1D, 2D, or 3D
– Block dimensions in threads CUDA Thread Block

• All threads in a Block execute the same
th d

Thread Id #:
0 1 2 3 … m

thread program
• Threads share data and synchronize while

doing their share of the work Thread programdoing their share of the work
• Threads have thread id numbers within

Block

Thread program

• Thread program uses thread id to select
work and address shared data

Courtesy: John Nickolls,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

4
NVIDIA

GeForce-8 Series HW OverviewGeForce-8 Series HW Overview
Streaming Processor Array

TPC TPC TPC TPC TPC TPC…

Instruction Fetch/Dispatch

Instruction L1 Data L1
Texture Processor Cluster Streaming Multiprocessor

SM

TEX
SP SP

Instruction Fetch/DispatchSM

Shared Memory

SM

SP

SP

SP
SFU

SP

SP

SP
SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

5

SP SP

CUDA Processor Terminology
• SPA

CUDA Processor Terminology

– Streaming Processor Array (variable across GeForce 8-series, 8 in
GeForce8800)

• TPC• TPC
– Texture Processor Cluster (2 SM + TEX)

• SMSM
– Streaming Multiprocessor (8 SP)
– Multi-threaded processor core
– Fundamental processing unit for CUDA thread block

• SP
– Streaming Processor
– Scalar ALU for a single CUDA thread

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

6

Streaming Multiprocessor (SM)Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)
– 8 Streaming Processors (SP)

2 S F ti U it (SFU)
Streaming Multiprocessor

– 2 Super Function Units (SFU)
• Multi-threaded instruction dispatch

– 1 to 512 threads active
Instruction Fetch/Dispatch

Instruction L1 Data L1

Shared Memory

– Shared instruction fetch per 32 threads
– Cover latency of texture/memory loads

• 20+ GFLOPS
SP

SP

SFU
SP

SP

SFU

Shared Memory

• 20+ GFLOPS
• 16 KB shared memory
• texture and global memory access

SP

SP
SFU

SP

SP
SFU

g y

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

7

G80 Thread Computing Pipelinep g p
• Processors execute computing threads
• Alternative operating mode specifically for computing
• The future of GPUs is programmable processing
• So build the architecture around the processor• Alternative operating mode specifically for computing

Input Assembler

Host

• So – build the architecture around the processor

Setup / Rstr / ZCullInput Assembler

Host Generates
Thread grids

based on kernel

Thread Execution Manager

p

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler based on kernel
calls

SP SP

Pr
oc

es
so

rSP SP SP SP SP SP SP SP SP SP SP SP SP SP

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

L1

TF

Th
re

ad
 P

L1

TF

L1

TF

L1

TF

L1

TF

L1

TF

L1

TF

L1

TF

Load/store Load/store Load/store Load/store Load/store Load/storeL2 L2 L2 L2 L2 L2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

8Global MemoryFB FB FB FB FB FB

Thread Life Cycle in HWThread Life Cycle in HW
• Grid is launched on the SPA

Host Device

• Thread Blocks are serially
distributed to all the SM’s
– Potentially >1 Thread Block per

Kernel
1

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Potentially >1 Thread Block per
SM

• Each SM launches Warps of
Threads

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Threads
– 2 levels of parallelism

• SM schedules and executes
W th t d t

Kernel
2

Grid 2

Warps that are ready to run
• As Warps and Thread Blocks

complete, resources are freed
Block (1, 1)

Thread Thread Thread Thread Threadp ,
– SPA can distribute more Thread

Blocks Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

9
Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

SM Executes Blocks
t0 t1 t2 … tm

MT IU MT IU

t0 t1 t2 … tmSM 1SM 0

• Threads are assigned to SMs in

SP

MT IU

SP

MT IU Blocks

• Threads are assigned to SMs in
Block granularity
– Up to 8 Blocks to each SM as

Blocks

Up to 8 Blocks to each SM as
resource allows

– SM in G80 can take up to 768 threads
Shared
Memory

Shared
Memory

TF • Could be 256 (threads/block) * 3
blocks

• Or 128 (threads/block) * 6 blocks,
Texture L1

TF

etc.

• Threads run concurrently
SM i / i t i th d id #

L2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

10

– SM assigns/maintains thread id #s
– SM manages/schedules thread

execution

Memory

Thread Scheduling/ExecutionThread Scheduling/Execution

• Each Thread Blocks is divided in 32-
thread Warps

– This is an implementation decision not …
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 1 Warps Block 2 Warps

This is an implementation decision, not
part of the CUDA programming model

• Warps are scheduling units in SM
Streaming Multiprocessor• If 3 blocks are assigned to an SM and each

Block has 256 threads, how many Warps
are there in an SM? Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

– Each Block is divided into 256/32 = 8
Warps

– There are 8 * 3 = 24 Warps SP

SP

SP

SP

Shared Memory

There are 8 3 24 Warps
– At any point in time, only one of the 24

Warps will be selected for instruction
fetch and execution

SP

SP
SFU

SP

SP
SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

11

fetch and execution.

SM Warp Schedulingp g
• SM hardware implements zero-

h d h d lioverhead Warp scheduling
– Warps whose next instruction has its

operands ready for consumption areoperands ready for consumption are
eligible for execution

– Eligible Warps are selected for execution
on a prioritized scheduling policy

SM multithreaded
Warp scheduler

time on a prioritized scheduling policy
– All threads in a Warp execute the same

instruction when selected
warp 8 instruction 11

1 i t ti 42

time

• 4 clock cycles needed to dispatch the
same instruction for all threads in a
Warp in G80

warp 1 instruction 42

warp 3 instruction 95
Warp in G80
– If one global memory access is needed

for every 4 instructionswarp 8 instruction 12

...

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

12
– A minimal of 13 Warps are needed to

fully tolerate 200-cycle memory latency
warp 3 instruction 96

SM Instruction Buffer – Warp SchedulingSM Instruction Buffer – Warp Scheduling

F t h i t ti / l• Fetch one warp instruction/cycle
– from instruction L1 cache
– into any instruction buffer slot

I$
L1

into any instruction buffer slot

• Issue one “ready-to-go” warp instruction/cycle
– from any warp - instruction buffer slot

Multithreaded
Instruction Buffer

R C$ Sharedy p
– operand scoreboarding used to prevent hazards

• Issue selection based on round-robin/age of

R
F

C$
L1

Shared
Mem

Operand Select

warp
• SM broadcasts the same instruction to 32 MAD SFU

Threads of a Warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

13

ScoreboardingScoreboarding

• All register operands of all instructions in the Instruction• All register operands of all instructions in the Instruction
Buffer are scoreboarded
– Instruction becomes ready after the needed values are deposited
– prevents hazards
– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until scoreboarding

prevents issue
– allows Memory/Processor ops to proceed in shadow of other waiting

Memory/Processor ops

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

14

Granularity ConsiderationsGranularity Considerations
• For Matrix Multiplication, should I use 4X4, 8X8, 16X16 or 32X32 tiles?For Matrix Multiplication, should I use 4X4, 8X8, 16X16 or 32X32 tiles?

– For 4X4, we have 16 threads per block, Since each SM can take up to 768 threads, the
thread capacity allows 48 blocks. However, each SM can only take up to 8 blocks, thus
there will be only 128 threads in each SM!

• There are 8 warps but each warp is only half fullThere are 8 warps but each warp is only half full.

– For 8X8, we have 64 threads per Block. Since each SM can take up to 768 threads, it
could take up to 12 Blocks. However, each SM can only take up to 8 Blocks, only 512
threads will go into each SM!threads will go into each SM!

• There are 16 warps available for scheduling in each SM
• Each warp spans four slices in the y dimension

F 16X16 h 256 th d Bl k Si h SM t k t 768 th d it– For 16X16, we have 256 threads per Block. Since each SM can take up to 768 threads, it
can take up to 3 Blocks and achieve full capacity unless other resource considerations
overrule.

• There are 24 warps available for scheduling in each SM
• Each warp spans two slices in the y dimension• Each warp spans two slices in the y dimension

– For 32X32, we have 1024 threads per Block. Not even one can fit into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign

15

