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CUDA Device Memory Space: Review

Each thread can:

The host can R/W
global, constant, and
texture memories

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Read only per-grid constant
memory
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Parallel Memory Sharing

Thread  Local Memory: per-thread

— Private per thread
_ — Auto variables, register spill
e Shared Memory: per-Block
Block — Shared by threads of the same

block
g_ — Inter-thread communication
e Global Memory: per-application

— Shared by all threads

Grid 0 — Inter-Grid communication
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SM Memory Architecture
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Blocks e Threads in a block share data &
results
— In Memory and Shared Memory
; — Synchronize at barrier instruction
i * Per-Block Shared Memory
Allocation
Courtesy:
John Nicols, NVIDIA — Keeps data close to processor

[T — Minimize trips to global Memory

[ [[[]]]]]
— Shared Memory is dynamically

$
allocated to blocks, one of the
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SM Register File

* Register File (RF)
— 32 KB (8K entries) for each SM in G80

 TEX pipe can also read/write RF
— 2 SMsshare 1 TEX

« Load/Store pipe can also read/write RF
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Programmer View of Register File

3 block
e There are 8192 registers in & blocks S

each SM 1n G80

— This i1s an implementation
decision, not part of CUDA

— Registers are dynamically
partitioned across all blocks
assigned to the SM

— Once assigned to a block, the
register iIs NOT accessible by
threads in other blocks

— Each thread in the same block
only access registers assigned
to itself
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Matrix Multiplication Example

 |f each Block has 16X16 threads and each thread uses

10 registers, how many thread can run on each SM?

— Each block requires 10*256 = 2560 registers

— 8192 = 3 * 2560 + change

— So, three blocks can run on an SM as far as registers are

concerned

 How about If each thread increases the use of registers

by 17

— Each Block now requires 11*256 = 2816 registers

— 8192 < 2816 *3

— Only two Blocks can run on an SM, 1/3 reduction of
parallelism!!!
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More on Dynamic Partitioning

« Dynamic partitioning gives more flexibility to
compilers/programmers

— One can run a smaller number of threads that require many
registers each or a large number of threads that require few
registers each

 This allows for finer grain threading than traditional CPU threading
models.

— The compiler can tradeoff between instruction-level
parallelism and thread level parallelism
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ILP vs. TLP Example

o Assume that a kernel has 256-thread Blocks, 4 independent
Instructions for each global memory load in the thread program,
and each thread uses 10 registers, global laods have 200 cycles

— 3 Blocks can run on each SM

 |f a compiler can use one more register to change the
dependence pattern so that 8 independent instructions exist for
each global memory load
— Only two can run on each SM

— However, one only needs 200/(8*4) = 7 Warps to tolerate the memory
latency

— Two blocks have 16 Warps. The performance can be actually higher!
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Memory Layout of a Matrix in C
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Memory Coalescing

* When accessing global memory, peak performance
utilization occurs when all threads in a half warp
access continuous memory locations.

Not coalesced coalesced

Thread #=——>————
Thread 2
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Memory Layout of a Matrix in C

Access
direction
in Kernel
code

Time Period 1 || Time Period 2
T, T, TS T,/ T, T, TS T,
M

MO,O Ml,O MZ,O MS,O MO,l Ml,l M2,1 M3,1 MO,Z Ml,Z M2,2 MSZ MO,S Ml,S MZ,S MS,S
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Memory Layout of a Matrix in C

Access
direction
in Kernel
code

L

Time Period 2
T, T, TS T,
7y

TIme Period 1
1 T, TS T,

MO,O Ml,O MZ,O MS,O MO,l Ml,l M2,1 M3,1 MO,Z Ml,Z M2,2 MSZ MO,S Ml,S MZ,S MS,S
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Constants

Immediate address constants

Indexed address constants

Constants stored in DRAM, and cached on chip
— L1 perSM

A constant value can be broadcast to all threads
In a Warp

—  Extremel ‘y
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Shared Memory

 Each SM has 16 KB of Shared Memory 5
— 16 banks of 32bit words

« CUDA uses Shared Memory as shared
storage visible to all threads in a thread v

block I
— read and write access voperand Ze|ectv
* Not used explicitly for pixel shader ' ‘
programs MaD || SFY
— we dislike pixels talking to each other © ’ ;
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Parallel Memory Architecture

* |In a parallel machine, many threads access memory
— Therefore, memory is divided into banks
— Essential to achieve high bandwidth

« Each bank can service one address per cycle

— A memory can service as many simultaneous
accesses as It has banks

e Multiple simultaneous accesses to a bank
result in a bank conflict

— Conflicting accesses are serialized
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Bank Addressing Examples

e No Bank Conflicts e No Bank Conflicts
— Linear addressing — Random 1:1 Permutation
stride ==

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
—Thread-5-

Thread O
Thread 1

Thread 2 ;

Thread 3 ‘

Thread 4
—Thread 5-

Thread 6
Thread 7

Thread 15

Thread 6
Thread 7

Thread 15 Bank 15

Bank 15
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Bank Addressing Examples

o 2-way Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1
Thread 2
Thread 3

i -,

Thread 8 / 7\
Thread 9
Bank 15

Thread 10
Thread 11

e 8-way Bank Conflicts

— Linear addressing
stride ==

~Thread 5 ,\
Thread 6 »

Thread O
Thread 1

Thread 2 "
Thread 3 | ‘

Thread 4

Thread 7

Thread 15
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How addresses map to banks on G80

« Each bank has a bandwidth of 32 bits per clock cycle

e Successive 32-bit words are assigned to successive
banks

e G80 has 16 banks
— So bank = address % 16

— Same as the size of a half-warp

» No bank conflicts between different half-warps, only within a
single half-warp
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Shared memory bank conflicts

e Shared memory is as fast as registers if there are no bank
conflicts

e The fast case:

— If all threads of a half-warp access different banks, there is no bank
conflict

— If all threads of a half- Warp access the identical address, there is no

lnanl, A~AnmFliA+r flavAaAaAAAA
DaNK CONTIiCt UJlUd.Ubd.bl.}

e The slow case:

— Bank Conflict: multiple threads in the same half-warp access the same
bank

— Must serialize the accesses

— Cost = max # of simultaneous accesses to a single bank
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Linear Addressing

e (Glven:

__shared___ float shared[256];
float foo =

shared[baselndex + s *
threadldx.x];

* This is only bank-conflict-free If s
shares no common factors with the
number of banks

— 16 on G80, so s must be odd
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