ECE 498AL

L_ectures 9:
Memory Hardware in G80

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-200
ECE 498AL, University of Illinois, Urbana—-Champaign

CUDA Device Memory Space: Review

Each thread can:

The host can R/W
global, constant, and
texture memories

R/W per-thread registers

R/W per-thread local memory
R/W per-block shared memory
R/W per-grid global memory

Read only per-grid constant
memory

[g WA | ‘-

Read only per-grid texture memory

Host

(Device) Grid

Block (0, 0)

|

Block (1, 0)

|

Thread (0, 0) | Thread (1, 0)

Thread (0, 0) | Thread (1, 0)

Parallel Memory Sharing

Thread Local Memory: per-thread

— Private per thread
_ — Auto variables, register spill
e Shared Memory: per-Block
Block — Shared by threads of the same

block
g_ — Inter-thread communication
e Global Memory: per-application

— Shared by all threads

Grid 0 — Inter-Grid communication
D)) . N . N ; S
_ Sequential
Grid 1 Grids
in Time
il Al ¥ hei W, 1IPRLb009 | 3

BCRE 490AL, University ol 1llinoi1s, Urbana—Champaign

SM Memory Architecture

t0 t1t2 .. tm | %, SM0O SM1 éo t1t2 ... tm ‘
NONNNNNINNY POOMMMMNN
R0 222222 | Blocks
LKL SIPOIPP) 4 J_|
Blocks e Threads in a block share data &
results
— In Memory and Shared Memory
; — Synchronize at barrier instruction
i * Per-Block Shared Memory
Allocation
Courtesy:
John Nicols, NVIDIA — Keeps data close to processor

[T — Minimize trips to global Memory

[[[[]]]]]
— Shared Memory is dynamically

$
allocated to blocks, one of the

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 IS
ECE 498AL, University of Illinois, Urbana-Champaign Ilmltlng rESources

SM Register File

* Register File (RF)
— 32 KB (8K entries) for each SM in G80

 TEX pipe can also read/write RF
— 2 SMsshare 1 TEX

« Load/Store pipe can also read/write RF

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—-Champaign

1$
L1

\V
Multithreaded
Instruction Buffer
v
E R C$ @ Shared
F L1 Mem

v v v

Operand Select

v v
MAD SFU
v
v

Programmer View of Register File

3 block
e There are 8192 registers in & blocks S

each SM 1n G80

— This i1s an implementation
decision, not part of CUDA

— Registers are dynamically
partitioned across all blocks
assigned to the SM

— Once assigned to a block, the
register iIs NOT accessible by
threads in other blocks

— Each thread in the same block
only access registers assigned
to itself

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—-Champaign

Matrix Multiplication Example

 |f each Block has 16X16 threads and each thread uses

10 registers, how many thread can run on each SM?

— Each block requires 10*256 = 2560 registers

— 8192 = 3 * 2560 + change

— So, three blocks can run on an SM as far as registers are

concerned

 How about If each thread increases the use of registers

by 17

— Each Block now requires 11*256 = 2816 registers

— 8192 < 2816 *3

— Only two Blocks can run on an SM, 1/3 reduction of
parallelism!!!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 7
ECE 498AL, University of Illinois, Urbana—-Champaign

More on Dynamic Partitioning

« Dynamic partitioning gives more flexibility to
compilers/programmers

— One can run a smaller number of threads that require many
registers each or a large number of threads that require few
registers each

 This allows for finer grain threading than traditional CPU threading
models.

— The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 8
ECE 498AL, University of Illinois, Urbana—-Champaign

ILP vs. TLP Example

o Assume that a kernel has 256-thread Blocks, 4 independent
Instructions for each global memory load in the thread program,
and each thread uses 10 registers, global laods have 200 cycles

— 3 Blocks can run on each SM

 |f a compiler can use one more register to change the
dependence pattern so that 8 independent instructions exist for
each global memory load
— Only two can run on each SM

— However, one only needs 200/(8*4) = 7 Warps to tolerate the memory
latency

— Two blocks have 16 Warps. The performance can be actually higher!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 9
ECE 498AL, University of Illinois, Urbana—-Champaign

Memory Layout of a Matrix in C

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—-Champaign

10

Memory Coalescing

* When accessing global memory, peak performance
utilization occurs when all threads in a half warp
access continuous memory locations.

Not coalesced coalesced

Thread #=——>————
Thread 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—-Champaign

11

Memory Layout of a Matrix in C

Access
direction
in Kernel
code

Time Period 1 || Time Period 2
T, T, TS T,/ T, T, TS T,
M

MO,O Ml,O MZ,O MS,O MO,l Ml,l M2,1 M3,1 MO,Z Ml,Z M2,2 MSZ MO,S Ml,S MZ,S MS,S

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—-Champaign

Memory Layout of a Matrix in C

Access
direction
in Kernel
code

L

Time Period 2
T, T, TS T,
7y

TIme Period 1
1 T, TS T,

MO,O Ml,O MZ,O MS,O MO,l Ml,l M2,1 M3,1 MO,Z Ml,Z M2,2 MSZ MO,S Ml,S MZ,S MS,S

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 13
ECE 498AL, University of Illinois, Urbana—-Champaign

Constants

Immediate address constants

Indexed address constants

Constants stored in DRAM, and cached on chip
— L1 perSM

A constant value can be broadcast to all threads
In a Warp

— Extremel ‘y

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—-Champaign

1$
L1

\V
Multithreaded
Instruction Buffer

v

E R (&3 Shared
F L1 Mem

v v v
Operand Select

v v
MAD SFU
v
v

14

Shared Memory

 Each SM has 16 KB of Shared Memory 5
— 16 banks of 32bit words

« CUDA uses Shared Memory as shared
storage visible to all threads in a thread v

block I
— read and write access voperand Ze|ectv
* Not used explicitly for pixel shader ' ‘
programs MaD || SFY
— we dislike pixels talking to each other © ’ ;
© David Kirk/NVIDIA and Wen—-mei W. Hwu, 2007-2009 15

ECE 498AL, University of Illinois, Urbana—-Champaign

Parallel Memory Architecture

* |In a parallel machine, many threads access memory
— Therefore, memory is divided into banks
— Essential to achieve high bandwidth

« Each bank can service one address per cycle

— A memory can service as many simultaneous
accesses as It has banks

e Multiple simultaneous accesses to a bank
result in a bank conflict

— Conflicting accesses are serialized

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 16
ECE 498AL, University of Illinois, Urbana—-Champaign

Bank Addressing Examples

e No Bank Conflicts e No Bank Conflicts
— Linear addressing — Random 1:1 Permutation
stride ==

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
—Thread-5-

Thread O
Thread 1

Thread 2 ;

Thread 3 ‘

Thread 4
—Thread 5-

Thread 6
Thread 7

Thread 15

Thread 6
Thread 7

Thread 15 Bank 15

Bank 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 17
ECE 498AL, University of Illinois, Urbana—-Champaign

Bank Addressing Examples

o 2-way Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1
Thread 2
Thread 3

i -,

Thread 8 / 7\
Thread 9
Bank 15

Thread 10
Thread 11

e 8-way Bank Conflicts

— Linear addressing
stride ==

~Thread 5 ,\
Thread 6 »

Thread O
Thread 1

Thread 2 "
Thread 3 | ‘

Thread 4

Thread 7

Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—-Champaign

18

How addresses map to banks on G80

« Each bank has a bandwidth of 32 bits per clock cycle

e Successive 32-bit words are assigned to successive
banks

e G80 has 16 banks
— So bank = address % 16

— Same as the size of a half-warp

» No bank conflicts between different half-warps, only within a
single half-warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 19
ECE 498AL, University of Illinois, Urbana—-Champaign

Shared memory bank conflicts

e Shared memory is as fast as registers if there are no bank
conflicts

e The fast case:

— If all threads of a half-warp access different banks, there is no bank
conflict

— If all threads of a half- Warp access the identical address, there is no

lnanl, A~AnmFliA+r flavAaAaAAAA
DaNK CONTIiCt UJlUd.Ubd.bl.}

e The slow case:

— Bank Conflict: multiple threads in the same half-warp access the same
bank

— Must serialize the accesses

— Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 20
ECE 498AL, University of Illinois, Urbana—-Champaign

Linear Addressing

e (Glven:

__shared___ float shared[256];
float foo =

shared[baselndex + s *
threadldx.x];

* This is only bank-conflict-free If s
shares no common factors with the
number of banks

— 16 on G80, so s must be odd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana—-Champaign

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 15

Thread O
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 g

Bank 15

Bank 15

