
Sorting

Introduction to Data Structures

Kyuseok Shim

SoEECS, SNU.

Terminology
List: a collection of records

ex) Student list of CS206 Data Structure

Record: having one or more fields

ex) a student’s data (name, age, sex, number …)

Field: data

ex) name, age, …

Key: distinguishing data

ex) name, number

Sorting: making ordered list by the key

Data type:

2

7.1 Motivation

Sequential Search

Analysis
worst case time : O(n)

Two ways of storage and search
Sequential

Nonsequential

template <class E, class K>
int SeqSearch (E *a, const int n, const K& k)
{ // Search a[1:n] from left to right. Return least i such that
// the key of a[i] equals k. If there is no such i, return 0.

int i;
for(i=1; i<=n&&a[i]!=k; i++);
if(i>n) return 0;
return i;

}

Program 7.1: Sequential search

3

7.1 Motivation (Cont.)

Sorting
Two uses of sorting

as an aid in searching

as a means for matching entries in lists

(ex. Comparing two lists)

If the list is sorted, the searching time could be
reduced.

from : O(n) to : O(log2n)

ex) Binary Search : O(log2n)

4

Example 1
Directly comparing the two unsorted lists

void Verify1(Element *l1, Element *l2, const int n, const int m)
{ // Compare two unordered lists l1 and l2 of size n and m, respectively.

bool *marked = new bool[m+1];
fill(marked+1, marked+m+1, false);

for(i=0; i<=n; i++)
{

int j = SeqSearch(l2, m, l1[i]);
if(j==0) cout << l1[i] << “ not in l2 ” << endl;
else
{

if(!Compare(l1[i], l2[j])
cout << “Discrepancy in ” << l1[i] << endl;

marked[j] = true; // mark l2[j] as being seen
}

}
for(i=1; i<=m; i++)

if(!marked[i]) cout << l2[i] << “not in l1.” << endl;
delete [] marked;

}

Program 7.2: Verifying two lists using a sequential search 5

Example 2
Directly comparing the two sorted lists

void Verify2(Element *l1, Element *l2, const int n, const int m)
{ // Same task as Verify1. However, this time we fist sort l1, l2.

Sort(l1, n); // sort into increasing order of key
Sort(l2, m);
int i=0, j=0;
while ((i<=n) && (j<=m))

if (l[i] < l [j]) {
cout << l1[i] << “ not in l2” << endl;
i++;

}
else if (l[i] > l [j]) {

cout << l2[j] << “ not in l1” << endl;
j++;

}
else { // equal keys

if (!Compare(l1[i], l2[j]))
cout << “Discrepancy in “ << l1[i] << endl;

i++; j++;
}

if (i<=n) OutputRest(l1, i, n, 1); // output records i through n of l1
else if (j<=m) OutputRest(l2, j, m, 2); // output records j through m of l2

}
Program 7.3: Fast verification of two lists 6

Example 1&2

Time Complexity

Example 1
O(mn)

Example 2
O(tsort(n) + tsort(m) + n + m)

7

Another Example
: Binary Search

input : sorted list

output : searched element

Analysis : O(log2n)
8

Sorting Terminology
Record : R1, R2, …, Rn

List of records : (R1, R2, …, Rn)

Key value : Ki

Ordering relation : <

Transitive relation : x < y and y < z ⇒ x < z

Sorting Problem :

finding a permutation σ such that Kσ(i) ≤ Kσ(i+1) , 1 ≤ i ≤ n-1

the desired ordering is (Rσ(1), Rσ(2), …, Rσ(n))

Stable sorting : σs

Kσs(i) ≤ Kσs(i+1) , 1 ≤ i ≤ n-1

If i < j and Ki == Kj , Ri precedes Rj in the sorted list

ex) input list : 6, 7, 3, 21, 22, 8

stable sorting : 21, 22, 3, 6, 7, 8

unstable sorting : 22, 21, 3, 6, 7, 8

9

7.2 Insertion Sort
Assume that ∃ a sorted list (R1, R2, …, Ri).

Add one element e.

Artificial record R0 with key K0 = MININT(the smallest
number)

template <class T>
void Insert(const T& e, T *a, int i)
{ // Insert e into the ordered sequence a[1:i] such that the
// resulting sequence a[1:i+1] is also ordered.
// The array a must have space allocated for at least i+2 elements.

a[0] = e;
while (e<a[i])
{

a[i+1] = a[i];
i--;

}
a[i+1] = e;

}

Program 7.4: Insertion into a sorted list

10

7.2 Insertion Sort (Cont.)
template <class T>
void InsertionSort(T *a, const int n)
{ // Sort a[1:n] into nondecreasing order.

for (int j=2; j<=n, j++) {
T temp = a[j];
Insert(temp, a, j-1);

}
}

Program 7.5: Insertion Sort

11

7.2 Insertion Sort Example

Example 7.1

12

7.2 Insertion Sort Analysis

Time Complexity Analysis
Insert(e, list, i) ⇒ i+1 comparisons

Insertionsort(list, n) ⇒ n-1 times

O() = O(n2)

Useful when the given list is partially
ordered.

Stable sorting method

Useful for small size sorting (n ≤ 20)

∑
−

=

+
1

1

)1(
n

i

i

13

7.3 Quick Sort

One type of Insertion sort

Pivot key Ki ,
If Ki is in position s(i),

Kj ≤ Ks(i) for j < s(i)

Kj ≥ Ks(i) for j > s(i)

⇒ two sublists (R1, …, Rs(i)-1)

(Rs(i)+1, …, Rn)

Some procedure in the sublists

14

Quick Sort Code
template <class T>
void QuickSort(T *a, const int left, const int right)
{ // Sort a[left:right] into nondecreasing order.
// a[left] is arbitrarily chosen as the pivot. Variables i and j
// are used to partition the subarray so that at any time a[m] ≤ pivot, m < i
// and a[m] ≥ pivot, m > j. It is assumed that a[left] ≤ a[right + 1]

if (left < right) {
int i=left,
j = right + 1,
pivot = a[left];
do {

do i++; while (a[i] < pivot);
do j--; while (a[j] > pivot);
if(i < j) swap(a[i], a[j]);

} while (i<j);
swap(a[left], a[j]);

QuickSort(a, left, j-1);
QuickSort(a, j+1, right);

}
}

Program 7.6: Quick Sort
15

Quick Sort Example

Example 7.3
n = 10

input list (26, 5, 37, 1, 61, 11, 59, 15, 48, 19)

Figure 7.1: Quick Sort example

16

Quick Sort Analysis

Time complexity analysis
Worst case : O(n2)

Optimal case : T(n)

T(n) ≤ cn + 2T(n/2), for some constant c

≤ cn + 2(cn/2 + 2T(n/4))

≤ 2cn + 4T(n/4)

:
≤ cnlog2n + nT(1) = O(nlogn)

Unstable sorting

Good(best) sorting method (average
computing time is O(nlogn))

17

Quick Sort Average Time

Lemma 7.1: Let Tavg(n) be the expected
time for function QuickSort to sort a list
with records. Then there exists a constant
k such that Tavg(n) ≤ knlogen for n ≥ 2.

18

Quick Sort Average Time
Proof (Tavg(n) ≤ knlogen for n ≥ 2)

We have

We assume Tavg(0)≤b and Tavg(1)≤b

Induction base: For n=2,

Induction hypothesis: Assume for 1≤n<m

Induction step: From Eq. (7.1) and the induction hypothesis we
have

Since jlogej is an increasing function of j, Eq. (7.2) yields

, for m ≥ 2

∑∑
−

==

+=−+−+≤
1

01

)(2))()1((1)(
n

j
avg

n

j
avgavgavg jT

n
cnjnTjT

n
cnnT

.2log222)2(eavg kbcT ≤+≤
nknnT eavg log)(≤

⎥
⎦

⎤
⎢
⎣

⎡
−++=++≤++≤ ∫∑

−

= 42
log24log24log24)(

22

2

1

2

mmm
m
k

m
bcmxdxx

m
k

m
bcmjj

m
k

m
bcmmT e

m

e

m

j
eavg

mkmkmmkm
m
bcm ee log

2
log4

≤−++=

∑∑
−

=

−

=

++≤++≤
1

2

1

2
log24)(24)(

m

j
e

m

j
avgavg jj

m
k

m
bcmjT

mm
bcmmT

(7.1)

19

(7.2)

7.4 How fast can we sort ?

Worst : O(n2)

Best : O(nlog2n)

Decision tree : describing sorting
process

vertex - key comparison

branch - result

20

7.4 How fast can we sort ?

Example 7.4
input (R1, R2, R3) ⇒ root is [1, 2, 3]

maximum depth of tree is 3

Figure 7.2: Decision tree for Insertion Sort 21

7.4 How fast can we sort ?

Theorem 7.1
Any decision tree that sorts n distinct elements
has a height of at least log2(n!) + 1

Proof
When sorting n elements, there are n! different
possible results. Thus, every decision tree for
sorting must have at least n! leaves. But a
decision tree is also a binary tree, which can
have at most 2k-1 leaves if its height is k.
Therefore, the height must be at least log2n!+1

22

7.4 How fast can we sort ?
Corollary

Any algorithm that sorts only by comparisons must have
a worst case computing time of Ω(nlogn)

Proof
We must show that for every decision tree with n! leaves,
there is a path of length cnlog2n, where c is a constant.
By the theorem, there is a path of length log2n!. Now

n! = n(n-1)(n-2)…(3)(2)(1) ≥ (n/2)n/2

So, log2n! ≥ (n/2)log2(n/2) = Ω(nlogn).

23

7.5 Merge Sort

7.5.1 Merging
Merge two sorted lists to a single sorted list.

(initListl, …, initListm) (initListm+1, …, initListn)

⇒ (mergeListl, …, mergeListn)

Analysis
O(n-l+1) ⇒ O(n)

Example

(3, 4, 8, 9) (5, 7, 10, 11)

⇒ (3, 4, 5, 7, 8, 9, 10, 11)

Stable sorting

24

Merge
template <class T>
void Merge(T *initList, T *mergedList, const int l, const int m, const int n)
{ // initList [l :m] and initList[m+1:n] are sorted lists. They are merged to obtain
// the sorted list mergedList [l :n]

for (int i1 = l, iResult = l, i2 = m+1; // i1, i2, and iResult are list positions
i1 <= m && i2 <= n; // neither input list if exhausted
iResult++)

if (initList[i1] <= initList[i2])
{

mergedList[iResult] = initList[i1];
i1++;

}
else
{

mergedList[iResult] = initList[i2];
i2++;

}
// copy remaining records, if any, of first list

copy(initList+i1, initList+m+1, mergedList+iResult);
// copy remaining records, if any, of second list
copy(initList+i2, initList+n+1, mergedList+iResult);

}

Program 7.7: Merging two sorted lists 25

7.5.2 Iterative Merge Sort
We assume that the input is n sorted lists. But
each list is of length 1.

These lists are merged by pairs to obtain n/2 lists.

template <class T>
void MergePass(T* initList, T* resultList, const int n, const int s)
{ // Adjacent pairs of sublists of size s are merged from
// initList to resultList. n is the number of records in initList.

for (int i=1; // i is first position in first of the sublists being merged
i <= n-2*s+1; // enough elements for two sublists of length s?
i += 2*s)

Merge(initList, resultList, i, i + s - 1, i + 2 * s - 1);

// merge remaining list of size < 2*s
if((i+s-1) < n) Merge(initList, resultList, i, i + s - 1, n);
else copy(initList + i, initList + n + 1, resultList + i);

}

Program 7.8: Merge pass

26

7.5.2 Iterative Merge Sort
template <class T>
void MergeSort(T *a, const int n)
{ // Sort a[1:n] into nondecreasing order.

T* tempList = new T[n+1];
// l is the length of the sublist currently being merged
for (int l=1; l<n; l *= 2)
{

MergePass(a, tempList, n, l);
l *= 2;
MergePass(tempList, a, n, l); // interchange role of a and tempList

}
delete [] tempList;

}

Program 7.9: Merge Sort

27

Iterative Merge Sort example

Example 7.5
input list (26, 5, 77, 1, 61, 11, 59, 15, 48, 19)

Figure 7.4: Merge tree

28

Iterative Merge Sort analysis

Analysis :

merge-pass : O(n)

number of merge passes : O(log2n)

⇒ O(nlog2n)

Stable sorting

29

7.5.3. Recursive Merge Sort

Divide the list into two sublists(left, right)

Physical storage space is not changed.

template <class T>
int rMergeSort(T *a, int* link, const int left, const int right)
{ // a[left:right] is to be sorted. link[i] is initially 0 for all i.
// rMergeSort returns the index of the first element in the sorted chain.

if (left >= right) return left;
int mid = (left + right) / 2;
return ListMerge(a, link,

rMergeSort(a, link, left, mid), // sort left half
rMergeSort(a, link, mid + 1, right)); // sort right half

}

Program 7.10: Recursive Merge Sort

30

template <class T>
int ListMerge(T* a, int* link, const int start1, const int start2)
{ // The sorted chains beginning at start1 and start2, respectively, are merged.
// link [0] is used as a temporary header. Return start of merged chain.

int iResult = 0; // last record of result chain
for (int i1 = start1, i2 = start2; i1 && i2;)

if (a[i1] <= a[i2]) {
link[iResult] = i1;
iResult = i1; i1 = link[i1];

}
else {

link[iResult] = i2;
iResult = i2; i2 = link[i2];

}

// attach remaining records to result chain
if(i1 == 0) link[iResult] = i2;
else link[iResult] = i1;
return link[0];

}

Program 7.11: Merging sorted chains

31

Variation
-- Natural Merge Sort

Figure 7.6: Natural Merge Sort

32

26 265 77 1 61 11 59 15 48

5 26 77 1 11 59 61 15 19 48

1 5 11 26 59 61 77 15 19 48

1 5 11 15 19 26 48 59 61 77

7.6 Heap Sort

Save storage space

Use the max heap structure in Chap. 5

Store n element in the heap, and extract
one at a time

Adjust after the extract

Store the extracted element in the last
node

33

Adjusting a Max Heap
template <class T>
void Adjust(T *a, const int root, const int n)
{ // Adjust binary tree with root to satisfy heap property. The left and right
// subtrees of root already satisfy the heap property. No node index is > n.

T e = a[root];
// find proper place for e
for (int j = 2*root; j <= n; j *= 2) {

if (j<n && a[j] < a[j+1]) j++; // j is max child of its parent
if (e >= a[j]) break; // e may be inserted as parent of j
a[j/2] = a[j]; // move j th record up the tree

}
a[j/2] = e;

}

Program 7.13: Adjusting a max heap

34

Heap Sort
template <class T>
void HeapSort(T *a, const int n)
{ // Sort a[1:n]) into nondecreasing order.

for (int i=n/2; i>= 1; i--) // heapify
Adjust(a, i, n);

for(i=n-1; i>=1; i--) // sort
{

swap(a[1], a[i+1]); // swap first and last of current heap
Adjust(a,1,i); // heapify

}
}

Program 7.14: Heap Sort

35

Heap Sort

Analysis : O(nlogn)

Adjust : log2n

Call : n

36

Example

Example 7.7
input list (26, 5, 77, 1, 61, 11, 59, 15, 48, 19)

Figure 7.7: Array interpreted as a binary tree 37

Example

Figure 7.8: Heap Sort example (continued on next page)

38

Example

Figure 7.8: Heap Sort example

39

7.7 Sorting on Several Keys

There are several keys K1, K2, …, Kr

K1 is the most significant key(digit) : MSD

Kr is the least significant key(digit) : LSD

(R1, …, Rn) is sorted with respect to K1, K2,
…, Kr iff (Ki

1, …, Ki
r) ≤ (Kj

1, …, Kj
r)

ex) a deck of cards
K1[suits] : ♣ < ♦ < ♥ < ♠
K2[values] : 2 < 3 < 4 …< 10 < J < Q < K < A

Sorted deck :
2 ♣, …, A♣, …, 2♠, …, A♠

40

LSD Radix Sort
template <class T>
int RadixSort(T *a, int *link, const int d, const int r, const int n)
{ // Sort a[1:n] using a d-digit radix-r sort. digit(a[i],j,r) returns the j th radix-r
// digit (from the left) of a[i]’s key. Each digit is in the range is [0,r).
// Sorting within a digit is done using a bin sort.

int e[r], f[r]; // queue front and end pointers
// create initial chain of records starting at first
int first = 1;
for(int i=1; i<n; i++) link[i] = i+1; // link into a chain
link[n] = 0;

for(i=d-1; i>=0; i--)
{ // sort on digit i

fill(f, f+r, 0); // initialize bins to empty queues
for(int current = first; current; current = link[current])
{ // put records into queues/bins

int k = digit(a[current], i, r);
if (f[k] == 0) f[k] = current;
else link[e[k]] = current;
e[k] = current;

}
…

41

LSD Radix Sort (Cont.)

Analysis: RadixSort makes d passes, each pass takes O(n+r)
time

=> O(d(n+r))

…
for(j=0; !f[j]; j++); // find first nonempty queue/bin
first = f[j];
int last = e[j];
for(int k=j+1; k<r; k++) // concatenate remaining queues

if(f[k]) {
link[last] = f[k];
last = e[k];

}
link[last] = 0;

}
return first;

}

Program 7.15: LSD Radix Sort

42

Radix Sort example

Example 7.8
10 number in [0,999], d=3, r=10

Figure 7.9: Radix Sort example (continued on next page)

43

Radix Sort example (Cont.)

Figure 7.9: Radix Sort example (continued on next page)

44

Radix Sort example (Cont.)

Figure 7.9: Radix Sort example (continued on next page)

45

7.8 List and Table Sorts

Physical arrangement ?
Radix (several keys), Recursive merge sort

: no physical change (linked list)

Others : physical arrangement (array)

This requires excessive data movement

This tends to slow down the sorting process

How to improve the ‘Others’?
First perform linked-list sort or table sort

Then physically rearrange the records

This rearranging can be accomplished in linear time
using some additional space

46

List Sort

Two cases of List Sort
doubly linked list

list[i].linka

list[i].linkb

singly linked list
list[i].link

47

Rearranging records using linked list

At the end of linked list sort, the pointer first points to the
first record

We begin by interchanging records R1 and Rfirst

Now the record in the position R1 has the smallest key

If first ≠ 1, then there is some record in the list whose link
field is 1

If we could change this link field to indicate the new position
of the record previously at position 1, then we would left with
records R2, …, Rn linked together in nondecreasing order

Repeating the above process, after n-1 iterations, result in
the desired rearrangement

48

Rearranging records using linked list
: Doubly linked case

template <class T>
void List1(T *a, int *linka, const int n, int first)
{ // Rearrange the sorted chain beginning at first so that the records a[1:n]
// are in sorted order.

int *linkb = new int[n]; // array for backward links
int prev = 0;
for (int current = first; current; current = linka[current])
{ // convert chain into a doubly linked list

linkb[current] = prev;
prev = current;

}
for (int i=1; i<n; i++) // move a[first] to position i while
{ // maintaining the list

if(first != i) {
if(linka[i]) linkb[linka[i]] = first;
linka[linkb[i]] = first;
swap(a[first], a[i]);
swap(linka[first], linka[i]);
swap(linkb[first], linkb[i]);

}
first = linka[i];

}
} Program 7.16: Rearranging records using a doubly linked list 49

Rearranging records using linked list
: Doubly linked case (Cont.)

Analysis
The time required to convert the chain first into
a doubly linked list is O(n)

The second for loop is iterated n-1 times. In
each iteration, at most two records are
interchanged(3 record moves). if each record is
m words long , the cost per record swap is
O(m)

Total time is therefore O(mn)

50

Example 7.9

input list (26, 5, 7, 1, 61, 11, 59, 15, 48, 19)

Figure 7.10: Sorted linked lists

51

a

a

Example for List1 (Program 7.16)

Figure 7.11: Example for List1 (Program 7.16)

52

Rearranging records using linked list
: Singly linked list

When Rp is exchanged with Ri, the link of Ri is set to p

first ≥ i

template <class T>
void List2(T *a, int *link, const int n, int first)
{ // Same function as List1 except that a second link array linkb is not required.

for(int i=1; i<n; i++)
{ // Find correct record for i th position. Its index is ≥ i as
// records in positions 1, 2, …, i-1 are already correctly positioned.

while(first < i) first = link[first];
int q = link[first]; // a[q] is next record in sorted order
if (first != i)
{ // a[first] has i th smallest key. Move record to i the position.
// Also set link from old position of a[i] to new one.

swap(a[i], a[first]);
link[first] = link [i];
link[i] = first;

}
first = q;

}
}

Program 7.17: Rearranging records using only one link field 53

Rearranging records using linked list
: Singly linked list (Cont.)

Analysis : O(n)

54

Example for List2 (Program 7.17)

Figure 7.12: Example for List2 (Program 7.17)

55

List1 vs List2

List1 is inferior to List2 in both space
and time

List1 uses two link fields

56

Table Sort
A auxiliary table t

One entry per record

The entries serve as an indirect reference to the records

Sorting
At the start of the sort

t[i] = i, 1≤i≤n

When the sorting function requires a swap of a[i] and a[j]
Swap t[i] and t[j], instead of a[i] and a[j]

At the end of the sort
a[t[1]] ≤ a[t[2]]≤ … ≤ a[t[n]]

57

Table Sort (Cont.)

t[1]=5, t[2]=4, t[3]=2, t[4]=3, t[5]=1

a[t[1]] ≤ a[t[2]] ≤ a[t[3]] ≤ a[t[4]] ≤ a[t[5]]

Figure 7.13: Table Sort

58

Table Sort (Cont.)
Every permutation is made up of disjoint cycles

The cycle for any element i is made up of
i, t[i], t2[i], …, tk[i], where tj[i]=t[tj-1[i]], t0[i]=i, and
tk[i]=i

Figure 7.13 has two cycles
R1, R5

R2, R4, R2

59

Rearranging records using table

Physical rearrangement of table
Find cycles of records

Interchange records in a cycle using a
temporary space

60

Rearranging records using table
(Cont.)

Analysis : O(mn) when the record length is m.

But O(n) if m is fixed

template <class T>
void Table(T *a, const int n, int *t)
{ // Rearrange a[1:n] to correspond to the sequence a[t[1]], …, a[t[n]], n ≥ 1.

for(int i=1; i<n; i++)
if(t[i] != i) { // there is a non-trivial cycle starting at i

T p = a[i];
int j = i;
do {

int k = t[j]; a[j] = a[k]; t[j]= j;
j = k;

} while (t[j] != i);
a[j] = p; // j is position for record p
t[j] = j;

}
}

Program 7.18: Table Sort

61

Example 7.11
Cycle 1 : R1, R3, R8, R6, R1

Cycle 2 : R4, R5, R7, R4

Figure 7.14: Table Sort example 62

7.9 Summary of Internal Sorting

Method Worst Average

Insertion Sort n2 n2

Heap Sort nlogn nlogn

Merge Sort nlogn nlogn

Quick Sort n2 nlogn

Figure 7.15: Comparison of sort methods

63

Average times for sort methods

n Insert Heap Merge Quick

0 0.000 0.000 0.000 0.000

50 0.004 0.009 0.008 0.006

100 0.011 0.019 0.017 0.013

200 0.033 0.042 0.037 0.029

300 0.067 0.066 0.059 0.045

400 0.117 0.090 0.079 0.061

500 0.179 0.116 0.100 0.079

1000 0.662 0.245 0.213 0.169

2000 2.439 0.519 0.459 0.358

3000 5.390 0.809 0.721 0.560

4000 9.530 1.105 0.972 0.761

5000 15.935 1.410 1.271 0.970

Figure 7.16: Average times for sort methods (milliseconds)
64

Plot

Insertion Sort

Heap Sort

Merge Sort

Quick Sort

Figure 7.17: Plot of average times(miliseconds)
65

7.10 External Sorting

When the lists to be sorted are so large
The whole list cannot be contained in the internal
memory

Making an internal sort impossible

The most popular method for sorting on external
storage devices is Merge Sort

External Merge Sort
Segments of the input list are sorted using a good
internal sort method

The sorted segments are merged together until only one
run is left

66

7.10 External Sorting (Cont.)

Block
The unit of data that is read or written to a disk at one
time

Consists of several records

Three factors contributing to the read/write time
Seek time: time taken to position the read/write heads to
the correct cylinder

Latency time: time until the right sector of the track is
under the read/write head

Transmission time: time to transmit the block of data
to/from the disk

67

Example 7.12

lists: 4500 records

internal memory capable of sorting: 750 records

block length: 250 records

1. Internally sort three blocks at a time to obtain six runs R1 to
R6

Heap Sort, Merge Sort, or Quick sort could be used

2. These six runs are written onto the scratch disk

run 1

1-750

run 2

751-1500

run 3

1501-2250

run 4

2251-3000

run 5

3001-3750

run 6

3751-4500

3 blocks per run

Figure 7.20: Blocked runs obtained after internal sorting 68

Example 7.12 (Cont.)

3. Set aside three blocks of internal memory
each capable of holding 250 records

Two for input buffers, one for an output buffer

4. Merge a pair of runs
First Read one block of each of two runs into input
buffers

Blocks of runs are merged from the input buffers into the
output buffer

When the output buffer gets full, it is written onto the disk

If an input buffer gets empty, it is refilled with another
block from the same run

5. Merge a pair of runs generated in the previous
step until only one run is left

69

Example 7.12 (Cont.)

Figure 7.21: Merging the six runs

run 1 run 2 run 3 run 4 run 5 run 6

70

Time Complexity Analysis
ts = maximum seek time

tl = maximum latency time

trw = time to read or write one block of 250 records

tIO = time to input or output one block = ts + tl + trw
tIS = time to internally sort 750 records

n*tm = time to merge n records from input buffers to the output buffer

operation time

(1) read 18 blocks of input, 18tIO,
internally sort, 6tIS, write 18 blocks,
18tIO

36tIO + 6tIS

(2) merge runs 1 to 6 in pairs 36tIO + 4500tm

(2) merge two runs of 1500 records
each, 12 blocks

24tIO + 3000tm

(4) merge one run of 3000 records with
one run of 1500 records

36tIO + 4500tm

total time 132tIO + 12,000tm + 6tIS

Figure 7.22: Computing times for disk sort example 71

k-Way Merging
The number of merge passes can be reduced by
using higher-order merge than two-way merge

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.23: A four-way merge on 16 runs

72

k-Way Merging (Cont.)

If we start with m runs, the two way merge tree will have

+ 1 levels

passes

k-way merge on m runs requires passes over the
data

k runs of size s1, s2, s3, …, sk can no longer be merged
internally in O() time

In the most direct way, k-1 comparisons are needed to
determine the next record to output O()

total number of key comparisons is

n(k-1)logkm = n(k-1)log2m/log2k

As k increases, the reduction in input/output time will be
outweighed by the resulting increasing in CPU time

At least, k + 1 buffers are needed

⎡ ⎤m2log
⎡ ⎤m2log

⎡ ⎤mklog

∑
k

i
is

∑−
k

i
isk)1(

73

k-Way Merging (Cont.)

For large k (say, k≥6), Loser tree may reduce the number of
comparisons

Total time needed per level of the merge tree O(nlog2k)

The asymptotic internal processing time becomes
O(nlog2klogkm) = O(nlog2m)

This is independent of k

Disk IO will be reduced

The buffer size must be reduced as k increases

If the buffer size is reduced even smaller than block size, the
number of block reading/writing will increase

The optimal value for k depends on disk parameters and the
amount of internal memory

74

7.10.3 Buffer Handling for Parallel
Operation

While the output buffer is being written out,
internal merging has to be halted

no place to collect the merged records

This can be overcome through the use of two output
buffer

With only k input buffers, internal merging will have
to be held up whenever one of these input buffers
becomes empty

This can be avoided if we have 2k input buffers

2k input buffers have to be used cleverly to avoid a lack
of input records from any one run

75

Example 7.13
• two-way merge
• ou[0] and ou[1] are output buffers
• in[0~3] are input buffers
• in[0] and in[2] are assigned to run 0
• in[1] and in[3] are assigned to run 1
• Assume times to input, output, and
generate an output buffer are all the
same

• run 0: 1, 3, 5, 7, 9
• run 1: 2, 4, 6, 15, 20, 25

76

k-way merge with floating buffers

An individual buffer may be assigned to any run depending
upon need

The run which will be empty first is the one from which the
next buffer will be filled

The remaining buffers will be filled on a priority basis

Run-exhaustion prediction

Compare the keys of the last record read from each of the k
runs

Use a looser tree

77

k-way merge with floating buffers
(Cont.)

2k input buffers and two output buffers are used

Input buffers are queued in k queues, one queue for each
run

Empty buffers are placed on a linked stack

The end of each run has a sentinel records with a very large
key, say +∞

If the time to merge one output buffer load equals the time
to read a block, almost all input, output, and computation
will be carried out in parallel

78

{ steps in buffering algorithm }
Step 1: Input the first block of each of the k runs, setting up k linked queues,

each having one block of data. Put the remaining k input blocks into a
linked stack of free input blocks. Set ou to 0.

Step 2: Let lastKey[i] be the last key input from run i. Let nextRun be the run
for which lastKey is minimum. If lastKey[nextRun] ≠ +∞, then initiate
the input of the next block from run nextRun.

Step 3: Use a function Kwaymerge to merge records from the k input queues
into the output buffer ou. Merging continues until either the output
buffer gets full or a records with key +∞ is merged into ou. If, during
this merge, an input buffer becomes empty before the output buffer
gets full or before +∞ is merged into ou, the Kwaymerge advances to
the next buffer on the same queue and returns the empty buffer to the
stack of empty buffers. However, if an input buffer becomes empty at
the same time as the output buffer gets full or +∞ is merged into ou,
the empty buffer is left on the queue, and Kwaymerge does not
advance to the next buffer on the queue. Rather, the merge terminates.

Step 4: Wait for any ongoing disk input/output to complete.
Step 5: If an input buffer has been read, add it to the queue for the

appropriate run. Determine the next run to read from by determining
NextRun such that lastKey[nextRun] is minimum.

Step 6: If lastKey[nextRun] ≠ +∞, then initiate reading the next block from
run nextRun into a free input buffer.

Step 7: Initiate the writing of output buffer ou. Set ou to 1 - ou.
Step 8: If a record with key +∞ has been not been merged into the output

buffer, go back to Step 3. Otherwise, wait for the ongoing write to
complete and then terminate.

Program 7.21: k-way merge with floating buffers
79

Example 7.14

Run 0

Run 1

Run 2

20 25 26 28 29 30 33 +∞

23 29 34 36 38 60 70 +∞

24 28 31 33 40 43 50 +∞

Figure 7.25: Three runs

Figure 7.27 Buffering example 80

7.10.4 Run Generation

The runs generated in this algorithm will be twice as long as
obtainable by conventional methods(as large as the number
of records that can be held in internal memory)

This algorithm uses a loser tree

The variables used in this algorithm

r[i], 0 ≤ i < k the k records in the tournament tree

l[i], 1 ≤ i < k loser of the tournament played at node i

l[0] winner of the tournament

rn[i], 0 ≤ i < k the run number to which r[i] belongs

rc run number of current run

q overall tournament winner

rq run number for r[q]

rmax number of runs that will be generated

lastRec last record output

MAXREC a record with maximum key possible
81

Run Generation using a loser tree
: Brief Explanation

The loop repeatedly plays the tournament outputting records (lines
11 to 34)

The variable lastKey is made use of in line 22 to determine whether
or not the new record input, r[q], can be output as part of the
current run

if(key[q] < lastKey) then r[q] cannot be output as part of the current
run rc

A record with larger key value has already been output in this run

When the tree is being readjusted (line 27 to 33)

A record with lower run number winds over one with a higher run
number

When run numbers are equal, the record with lower key value wins

rmax is used to terminate the function. In line 19, when we
run out of input, a record with num number rmax+1 is
introduced. When this record is ready for output, the
function terminates from line 14

82

Run Generation using a loser tree
: Code
template <class T>
1. void Runs(T *r)
2. {
3. r = new T[k];
4. int *rn = new int[k], *l = new int[k];
5. for (int i=0; i<k; i++) { // input records
6. InputRecord(r[i]); rn[i] = 1;
7. }
8. InitializeLoserTree();
9. T q = l[0]; // tournament winner
10. int rq = 1, rc = 1, rmax = 1; T lastRec = MAXREC;
11. while(1) { // output runs
12. if(rq != rc) { // end of run
13. output end of run marker;
14. if (rq > rmax) return;
15. else rc = rq;
16. }
17. WirteRecord(r[q]); lastRec = r[q]; // output record r[q]
18. // input new record into tree
19. if (end of input) rn[q] = rmax + 1;

…

83

Run Generation using a loser tree
: Code (Cont.)

Analysis of Runs : When the input list is already sorted, only one run is
generated. On the average, the run size is almost 2k. The time required to
generate all the runs for an r run list is O(nlogk), as it takes O(logk) time to
adjust the loser tree each time a record is output

…
20. else {
21. ReadRecord(r[q]);
22. if (r[q] < lastRec) // new record belongs to next run
23. rn[q] = rmax = rq + 1;
24. else rn[q] = rc;
25. }
26. rq = rn[q];
27. // adjust losers
28. for (t=(k+q)/2; t; t/=2) // t is initialized to be parent of q
29. if ((rn[l[t]] < rq) || ((rn[l[t]] == rq) && (r[l[t]] < r[q])))
30. { // t is the winner
31. swap(q, l[t]);
32. rq = rn[q];
33. }
34. }
35. delete [] r; delete [] rn; delete [] l;
36. }

Program 7.22: Run generation using a loser tree

84

7.10.5 Optimal Merging of Runs

The runs generated by Runs may not be of the same size

When runs are of different size, the merging does not yield
minimum runtimes

The merging runtimes depend on the order of merging

Figure 7.27: Possible two-way merges

15

5

42

15542

(a) (b)

85

7.10.5 Optimal Merging of Runs (Cont.)

The number of merges that an individual records is
involved in is

Given by the distance of the corresponding external node
from the root

ex) In Fig 7.27, the records of the run with 15 records are
involved in

(a) : one merge

(b) : two merge

ex) In Fig 7.27, total numbers of merges are
(a) : 2*3 + 4*3 + 5*2 + 15*1 = 23

(b) : 2*2 + 4*2 + 5*2 + 15*2 = 52

We shall consider the case k = 2 only

86

Decord tree

A decord tree is a binary tree in which external nodes
represent messages

The binary bits determine the branching needed at each
level

A zero as a left branch and a one as a right branch

000, 001, 01, and 1 for message M1, M2, M3, and M4

Huffman codes

Figure 7.28: A decord tree

M4

M3

M2M1

0

0

0

1

1

1

87

Huffman codes

Expected decoding time for messages M1, …, Mn+1

di is the distance of the external node for message Mi from the root
node.

qi is the relative frequency with which message Mi will be transmitted

A solution to the problem of finding minimum weighted
external path length has been given by D. Huffman

begins with a min heap of n single-node tree

1. extract two minimum-weight trees a and b

2. combine a and b into a single binary tree c by creating a new root
whose left and right subtrees are a and b respectively

3. weight of c is the sum of the weight of a and b

4. insert c into the min-heap

Repeat step 1 ~ 4 for n-1 times

∑
+≤≤ 11 ni

iidq

88

Huffman
template <class T>
void Huffman(MinHeap<TreeeNode <T> *> heap, int n)
{ // heap is initially a min heap of n single-node binary trees as described above

for (int i=0; i<n-1; i++)
{ // combine two minimum-weight trees

TreeNode <T> *first = heap.Pop();
TreeNode <T> *second = heap.Pop();
TreeNode <T> *bt = new BinaryTreeNode <T>(first, second,

first.data+second.data);
heap.Push((bt);

}
}

Program 7.23: Finding a binary tree with minimum weighted external path length

89

Example 7.15

Figure 7,29: Construction of a Huffman tree

32

5

32

5

10

5
79

16

23

13

5

32

5

10

23

13

5

32

5

1079

16

39(a) (b)

(c)

(d)
(e)

90

q1=2, q2=3, q3=5, q4=7, q5=9, q6=13

Analysis of Huffman

The main loop is executed n-1 times

Each call to Pop and Push requires O(logn) time

Hence, the asymptotic computing time is O(nlogn)

91

	�Sorting
	Terminology
	7.1 Motivation
	7.1 Motivation (Cont.)
	Example 1
	Example 2
	Example 1&2
	Another Example�: Binary Search
	Sorting Terminology
	7.2 Insertion Sort
	7.2 Insertion Sort (Cont.)
	7.2 Insertion Sort Example
	7.2 Insertion Sort Analysis
	7.3 Quick Sort
	Quick Sort Code
	Quick Sort Example
	Quick Sort Analysis
	Quick Sort Average Time
	Quick Sort Average Time
	7.4 How fast can we sort ?
	7.4 How fast can we sort ?
	7.4 How fast can we sort ?
	7.4 How fast can we sort ?
	7.5 Merge Sort
	Merge
	7.5.2 Iterative Merge Sort
	7.5.2 Iterative Merge Sort
	Iterative Merge Sort example
	Iterative Merge Sort analysis
	7.5.3. Recursive Merge Sort
	슬라이드 번호 31
	Variation�-- Natural Merge Sort
	7.6 Heap Sort
	Adjusting a Max Heap
	Heap Sort
	Heap Sort
	Example
	Example
	Example
	7.7 Sorting on Several Keys
	LSD Radix Sort
	LSD Radix Sort (Cont.)
	Radix Sort example
	Radix Sort example (Cont.)
	Radix Sort example (Cont.)
	7.8 List and Table Sorts
	List Sort
	Rearranging records using linked list
	Rearranging records using linked list�: Doubly linked case
	Rearranging records using linked list�: Doubly linked case (Cont.)
	Example 7.9
	Example for List1 (Program 7.16)
	Rearranging records using linked list �: Singly linked list
	Rearranging records using linked list �: Singly linked list (Cont.)
	Example for List2 (Program 7.17)
	List1 vs List2
	Table Sort
	Table Sort (Cont.)
	Table Sort (Cont.)
	Rearranging records using table
	Rearranging records using table (Cont.)
	 Example 7.11
	7.9 Summary of Internal Sorting
	Average times for sort methods
	Plot
	7.10 External Sorting
	7.10 External Sorting (Cont.)
	Example 7.12
	Example 7.12 (Cont.)
	Example 7.12 (Cont.)
	Time Complexity Analysis
	k-Way Merging
	k-Way Merging (Cont.)
	k-Way Merging (Cont.)
	7.10.3 Buffer Handling for Parallel Operation
	Example 7.13
	k-way merge with floating buffers
	k-way merge with floating buffers (Cont.)
	슬라이드 번호 79
	Example 7.14
	7.10.4 Run Generation
	Run Generation using a loser tree�: Brief Explanation
	Run Generation using a loser tree�: Code
	Run Generation using a loser tree �: Code (Cont.)
	7.10.5 Optimal Merging of Runs
	7.10.5 Optimal Merging of Runs (Cont.)
	Decord tree
	Huffman codes
	Huffman
	Example 7.15
	Analysis of Huffman

