3 Sorting

Introduction to Data Structures
Kyuseok Shim
SOEECS, SNU.

Terminology

List: a collection of records
= ex) Student list of CS206 Data Structure

Record: having one or more fields

= ex) a student’s data (name, age, sex, number -

Field: data

= ex) name, age, ‘-

Key: distinguishing data

= ex) name, number

Sorting: making ordered list by the key

D ata ty D e. :lass Element
public

int getKey() const { return key ;};

void serKey(int k) { key = k3};
private:

int key;

// other fields

};.

)

i /.1 Motivation

s Sequential Search

template <class E, class K>
int SegSearch (E *a, const int n, const K& k)
{ // Search a[1:n] from left to right. Return least i such that
// the key of ali] equals k. If there is no such i, return O.
int i,
for(i=1; i<=n&&alil!=k; i++);
it(i>n) return 0;
return i

}

Program 7.1: Sequential search
= Analysis
= worst case time : O(n)
= [WO ways of storage and search
= Sequential
= Nonsequential

i 7.1 Motivation (Cont.)

m Sorting

= [WO uses of sorting
= as an aid in searching

= as a means for matching entries in lists
(ex. Comparing two lists)

= |[f the list Is sorted, the searching time could be
reduced.
= from : O(n) to : O(log,n)
ex) Binary Search : O(log,n)

—xample T

s Directly comparing the two unsorted lists

void Verify1(Element *¢1, Element *x¢2, const int n, const int m)
{ // Compare two unordered lists |1 and |12 of size n and m, respectively.

bool *marked = new bool[m+11];
filllmarked+1, marked+m+1, false);

for(i=0; i<=n; i++)

{
int j = SegSearch(/2, m, ¢1[il);
if(j==0) cout << ¢1[i] << “ notin r2 ” << endl;
else
{
if(!ICompare(¢11il, ¢2[j])
cout << “Discrepancy in 7 << /1[i] << endl;
marked[j] = true; // mark ¢2[j] as being seen
}
}

for(i=1; i<=m; i++)
if(Imarked[i]) cout << ¢2[i] << “notin ¢1.” << endl;
delete [] marked;

}

Program 7.2: Verifying two lists using a sequential search

—xample 2

= Directly comparing the two sorted lists

void Verify2(Element x¢1, Element *¢2, const int n, const int m)
{ // Same task as Verify1. However, this time we fist sort ¢1, ¢2.
Sort(¢1, n); // sort into increasing order of key
Sort(¢2, m);
int i=0, j=0;
while ((i<=n) && (j<=m))
if ([i] <e[j]){
cout << /1[i] << “ not in 2" << endl;
I++;
}
else if (¢[i] > ¢ [j]) {
cout << £2[j] << “ notin 71”7 << endl;
j++;
}
else { // equal keys
if (ICompare(¢11[i], ¢2[j]))
cout << “Discrepancy in “ << ¢1[i] << endl;
i++; j++;
}
if (iKk=n) OutputRest(¢1, i, n, 1); // output records i through n of /1
else if (j<=m) OutputRest(¢2, j, m, 2); // output records j through m of ¢2

I Program 7.3: Fast verification of two lists 6

i —xample 1&2

s [IMme Complexity

= Example 1
= O(mn)

= Example 2
- O(J[sort(n) T tsort(m) tn+t m)

Another Example
. Binary Search

= INput : sorted list
s output : searched element

1 int BinarySearch (int *a, const int x, const int n)

2 // Search the sorted array a[0], ..., a[n—1] for x
31
4 for (int left = 0, right = n — 13 left <= right;) { // while more elements

5 int middle = (left + right)/2;

6 switch (compare (x, a[middle])) {

7 case '>’: left = middle + 1; break; // x > a[middle]
8 case '<’: right = middle — 1; break; // x < a[middle]

9 case '=’: return middle; /! x == a[middle]
10 } // end of switch
11 } // end of for
12 return —1; / not found

13 }// end of BinarySearch

= Analysis : O(log,n)

i Sorting Terminology

= Record : Ry, Ry, =+, R,

= List of records : (Ry, Ry, -, R,)

= Key value : K

= QOrdering relation : <

= [ransitive relation : x<yandy<z=x<z

= Sorting Problem :
= finding a permutation o such that K 4 < Ky, 1 <1< n-1
= the desired ordering is (Ry1), Ry, ***» Rg(n)

= Stable sorting : o
s Kogly € Koglirny » 1 <i<n-1
= [fi<jand K ==K, R, precedes R;in the sorted list
= ex)inputlist:6, 7,3, 2, 2,, 8
stable sorting : 24, 2,, 3, 6, 7, 8
unstable sorting : 2,, 24, 3, 6, 7, 8

i /.2 Insertion Sort

= Assume that 3 a sorted list (R, R,, -, R).

= Add one element e.

= Artificial record R, with key K, = MININT(the smallest
number)

template <class T>
void Insert(const T& e, T *a, int i)
{ // Insert e into the ordered sequence a[1:i] such that the
// resulting sequence a[1:i+1] is also ordered.
// The array a must have space allocated for at least i+2 elements.
al0] = e;
while (e<ali])
{
ali+1] = alil;

}
ali+1] = e;

}

Program 7.4: Insertion into a sorted list

10

i 7.2 Insertion Sort (Cont.)

template <class T>
void InsertionSort(T *a, const int n)
{ // Sort a[1:n] into nondecreasing order.
for (int j=2; j<=n, j++) {
T temp = aljl;
Insert(temp, a, j—1);
}
}

Program 7.5: Insertion Sort

11

i /.2 Insertion Sort Example

s Example 7.1

J 11 2] [3] [41 [5]
- 5 4 3 2 1
2 4 5 3 2 1
3 3 4 5 2 1
4 2 3 4 5 1
5 1 2 3 4 5

12

i /.2 Insertion Sort Analysis

s [IMme Complexity Analysis
= Insert(e, list, i) = i+1 comparisons
. Insertlonsort(hst n) = n—1 times

Of Z('+1)) = O(n?)
- Useful when the given list is partially
ordered.

s Stable sorting method
s Useful for small size sorting (n < 20)

13

i /.3 Quick Sort

» One type of Insertion sort

= Pivot key K,
= If K is in position sf(i),
K; < Kgy forj < s(i)
K; > Kgy forj > s(i)
= two sublists (Ry, -+, Rgg)-1)
(Rs(i)ﬂ’ B I:%n)

= Some procedure in the sublists

14

i Quick Sort Code

template <class T>
void QuickSort(T *a, const int left, const int right)
{ // Sort a[left:right] into nondecreasing order.
// alleft] is arbitrarily chosen as the pivot. Variables i and j
// are used to partition the subarray so that at any time a[m] < pivot, m <i
// and a[lm] = pivot, m > j. It is assumed that a[left] < a[right + 1]
if (left < right) {
int i=left,
j =right + 1,
pivot = a[left];
do {
do i++; while (ali] < pivot);
do j——; while (a[j] > pivot);
if(i <j) swap(alil, aljl);
} while (i<j);
swap(alleft], alj]);

QuickSort(a, left, j—1);
QuickSort(a, j+1, right);
}
¥

Program 7.6: Quick Sort

Quick Sort

s Example 7.3
= N=10
= input list (26, 5, 37, 1, 61, 11, 59, 15, 48, 19)

—xample

R,
26
11
[

[G SRR N Sy

R,
5
5

wn
—_

W h hh L Ln

R;
37
19
11
11
11
11
11
11

1 6l
1 15]
19 15]
[19 15]
15 19
15 19
15 19
15 19

R¢
11
26
26
26
26
26
26
26

R
39
[59
[59
[59
[59
[48
37
37

Ry
15
61
61
61
61
37]
43
48

Ry
48
48
48
48
48
59
59
59

Ryo
19]
]
37

37]
37]
[61]
[61]
61

Figure 7.1: Quick Sort example

16

i Quick Sort Analysis

= [ime complexity analysis
= Worst case : O(n?)
= Optimal case : T(n)
T(n) <cn + 2T(n/2), for some constant ¢
<cn + 2(cn/2 + 2T(n/4))
< 2cn + 4T(n/4)

< cnlog,n + nT(1) = O(nlogn)
= Unstable sorting

s Good(best) sorting method (average
computing time is O(nlogn))

17

i Quick Sort Average Time

= Lemma 7.1: Let T,,4(n) be the expected
time for function QuickSort to sort a list
with records. Then there exists a constant

k such that T,,4(n) < knlog,n for n = 2.

18

Quick Sort Average Time

= Proof (T,,4(n) < knlogen forn = 2)
= We have

1]] 2 n-1]
Tavg(n)scn—i_HZ(Tavg(J_1)+Tavg(n_J))zcn_i_ﬁz-ravg(]) (71)
J=1 j=0

= We assume T,,,(0)<b and T,,,(1)<b
= Induction base: For n=2,T,,(2) <2c+2b<2klog, 2.
= Induction hypothesis: Assume T, (n) <knlog,n for 1<n<m

= Induction step: From Eq. (7.1) and the induction hypothesis we
have

4b 22 . 4b 2k & . .
T (M<ecm+—+—>T <cm+—+— lo 2
avg (M) - ij:;,avg(J) - mZJ g.j (7.2)

j=2

= Since jlog,j is an increasing function of j, Eq. (7.2) yields
4b+2k[mzlogem_m2}

4b 2k & . . 4b 2k T
T (m<cm+—+— lo <cm+—+—|xlog,. xdx=cm+
g (M) > jlog, J - m! 9. = .

j=2

4 km
=cm+—+kmlogem—7£kmlogem , form =2
m

19

i /.4 How fast can we sort ?

= Worst : O(n?)
= Best : O(nlog,n)

= Decision tree : describing sorting
ProCess
= Vertex — key comparison
= branch — result

20

i /.4 How fast can we sort ?

x Example 7.4
= input (R, R,, R3) = rootis [1, 2, 3]
= maximum depth of tree is 3

K, < K3)[1,3.2112,1,3] st K, <K3)[23.1]
o =
No Yes No

[1,3,2]@0;; @[3,1,2] [2,3,11(stop @[3,2,1]

I 1T v VI

Figure 7.2: Decision tree for Insertion Sort

21

i /.4 How fast can we sort ?

m [heorem /.1

= Any decision tree that sorts n distinct elements
has a height of at least log,(n!) + 1

s Proof

= When sorting n elements, there are n! different
possible results. Thus, every decision tree for
sorting must have at least n! leaves. But a
decision tree is also a binary tree, which can
have at most 2k1 |eaves if its height is k.
Therefore, the height must be at least log,n!+1

22

/.4 How fast can we sort ?

s Corollary
= Any algorithm that sorts only by comparisons must have
a worst case computing time of Q(nlogn)
s Proof

= We must show that for every decision tree with n! leaves,
there is a path of length cnlog2n, where ¢ is a constant.
By the theorem, there is a path of length log2n!. Now

n! = n(n-1)(n-2)---(3)(2)(1) = (n/2)"2
So, logy,n! = (n/2)log,(n/2) = Q(nlogn).

23

i /.5 Merge Sort

= /.5.1 Merging
= Merge two sorted lists to a single sorted list.
(initList,, ---, initList) (initList,, -, initList,)
= (mergelist,, --, mergelist,)

= Analysis
O(n-¢+1) = O(n)

= Example

(3, 4,8,9) (57,10, 11)
= (8,4,5,7,8,9,10, 11)

= Stable sorting

24

i Merge

template <class T>
void Merge(T *initList, T *mergedList, const int ¢, const int m, const int n)

{ // initList [¢ :m] and initListfm+1:n] are sorted lists. They are merged to obtain
// the sorted list mergedList [¢ :n]
for (inti1 = ¢, iResult = ¢, i2 =m+1; // i1, i2, and iResult are list positions
i1 <=m && i2 <= n; // neither input list if exhausted

iResult++)
if (initList[i1] <= initList[i2])
{
mergedList[iResult] = initList[i1];
17 44
}
else
{
mergedList[iResult] = initList[i2];
i2++;
}

// copy remaining records, if any, of first list
copy(initList+i1, initList+m+1, mergedList+iResult);
// copy remaining records, if any, of second list
copy(initList+i2, initList+n+1, mergedList+iResult);

}

Program 7.7: Merging two sorted lists

i /.5.2 lterative Merge Sort

= We assume that the input is n sorted lists. But
each list is of length 1.

= These lists are merged by pairs to obtain n/2 lists.

template <class T>
void MergePass(T* initList, T* resultList, const int n, const int s)
{ // Adjacent pairs of sublists of size s are merged from

// initList to resultList. n is the number of records in initList.

for (inti=1; // i is first position in first of the sublists being merged
i <= n-2*s+1; // enough elements for two sublists of length s?
i += 2%s)
Merge(initList, resultlist, i, i+s—-1,i+2*s—-1);

// merge remaining list of size < 2*s
if((i+s—1) < n) Merge(initList, resultlist, i, i+ s — 1, n);
else copy(initList + i, initList + n + 1, resultList + i);

}

Program 7.8: Merge pass

26

i /.5.2 lterative Merge Sort

template <class T>
void MergeSort(T *a, const int n)
{ // Sort a[1:n] into nondecreasing order.

T+ templist = new T[n+11;
// ¢ is the length of the sublist currently being merged
for (int ¢=1; ¢<n; ¢ *=2)
{
MergePass(a, templist, n, ¢);
0 *x=2;
MergePass(templist, a, n, ¢); // interchange role of a and tempList
}
delete [] templist;

}
Program 7.9: Merge Sort

27

‘L lterative Merge Sort example

s Example 7.5
= input list (26, 5, 77, 1, 61, 11, 59, 15, 48, 19)

2] |5 77 I 61| | 11 59 481 119
N oy Sy Sy N,
1\5 216/ \;‘5 / 19 48

\/

1 26 59 61 77 19 48

N i

1 5 11 15 19 26 48 59 61 71

Figure 7.4: Merge tree

28

i [terative Merge Sort analysis

= Analysis :
= merge—pass : O(n)
= number of merge passes : O(log,n)
= O(nlog,n)

s Stable sorting

29

7.5.3. Recursive Merge Sort

= Divide the list into two sublists(left, right)
s Physical storage space is not changed.

template <class T>
int rMergeSort(T *a, intx link, const int left, const int right)
{ // alleft:right] is to be sorted. link[i] is initially O for all i.
// rtMergeSort returns the index of the first element in the sorted chain.

if (left >= right) return left;
int mid = (left + right) / 2;
return ListMerge(a, link,
rMergeSort(a, link, left, mid), // sort left half

rMergeSort(a, link, mid + 1, right)); // sort right half
}

Program 7.10: Recursive Merge Sort

30

template <class T>
int ListMerge(T* a, intx link, const int start1, const int start2)
{ // The sorted chains beginning at start1 and start2, respectively, are merged.
// link [0] is used as a temporary header. Return start of merged chain.
int iResult = 0; // last record of result chain
for (int i1 = start1, i2 = start2; i1 && i2;)
if (ali1] <=ali2]) {
link[iResult] = i1;
iResult =i1; i1 = link[i1];

}
else {

link[iResult] = i2;

iResult =i2; i2 = link[i2];
}

// attach remaining records to result chain
if(i1 == 0) link[iResult] = i2;

else link[iResult] =i1;

return link[0];

}

Program 7.11: Merging sorted chains

31

Variation
—— Natural Merge Sort

26| (5 77| |1 e1| |11 59| |15 48] |26
N/ ~N N
5 26 77| [1 11 59 61| |15 19 48
\ / \
1 5 11 26 59 61 77| |15 19 48
1 5 11 15 19 26 48 59 61 77

Figure 7.6: Natural Merge Sort

32

i /.6 Heap Sort

s Save storage space
s Use the max heap structure in Chap. 5

s Store n element in the heap, and extract
one at a time

s Adjust after the extract

s Store the extracted element In the |last
node

33

i Adjusting a Max Heap

template <class T>

void Adjust(T *a, const int root, const int n)

{ // Adjust binary tree with root to satisfy heap property. The left and right
// subtrees of root already satisfy the heap property. No node index is > n.

T e = alroot];

// find proper place for e

for (intj = 2xroot; j <=n; j *=2) {
if j<n && alj]l < alj+1]) j++; // jis max child of its parent
if (e >=alj]) break; // e may be inserted as parent of |
alj/2] = aljl; // move j th record up the tree

}

alj/2] = e;

}

Program 7.13: Adjusting a max heap

34

Heap Sort

template <class T>
void HeapSort(T *a, const int n)
{ // Sort al[1:n]) into nondecreasing order.
for (int i=n/2; i>=1; i——) // heapify
Adjust(a, i, n);

for(i=n—-1; i>=1; i-=) // sort
{
swap(al1], ali+11]); // swap first and last of current heap
Adjust(a,1,i); // heapify
}
}

Program 7.14: Heap Sort

35

i Heap Sort

= Analysis : O(nlogn)
= Adjust : log,n
= Call i n

36

—xample

s Example 7.7
= input list (26, 5, 77, 1, 61, 11, 59, 15, 48, 19)

7l

(8] (9] [10] (8] [9] [10]
(a) Input array (b) Initial heap

Figure 7.7: Array interpreted as a binary tree 37

—xample

[1}{61
4-‘/‘\ J-\\
o ™
. AN
P
[21{48] (31597
> —
a"':l; "-“x _f";ll .. LY
4715 51019y (11 (26)
-,:'_1:, o N L

(6]

=

.]
£
(8] [Y]
{a) Heap size =9

Sorted = {77]
.
[1]548]
A \\
' b -
Py S,
(2119 (3].26,
e p
— i l-""\;-\‘ ,-ﬂ{; y- m,
(41157 (5105 b} . 1Y
' 161 171
(c)Heapsize =7
Sorted = [59, 61, 77]

0 S,
(214487 13172
e >,
i -{f; --l':"’-"t‘. -~ _{.:"l- ..\:}- -
(#1015 51719 ThL :
"\I,__/' L N S
] [6] 71

b} Heap swee = 8
Sorted = [61, 77]
[11{26}
/)\"i\
R /// \\\- -
121719 131711
o s
P 4
14115 5375 {13
— NS A
[6]
(d) Heap size =6
Sorted = [48, 59, 61, 77]

Figure 7.8: Heap Sort example (continued on next page)

1]

4) [4
(¢) Heap size = 5 (f) Heap size =4 (g) Heap size =3
26,48, 59, 61, 77] [19,26,48,59,61,77] (15,19, 26,48, 59,61, 77]

Figure 7.8: Heap Sort example

39

i /.7 Sorting on Several Keys

= There are several keys K', K2, --- K
= K!is the most significant key(digit) : MSD
= Kris the least significant key(digit) : LSD
= (Ry, -+, R,) is sorted with respect to K', K2,
e Kr ”‘f (Ki1’ .o Kir) < (Kj1’ e Kjr)
= ex) a deck of cards
Ki[suits] i« < ¢ < 9w < &
K2[values] : 2 <3< 4 <10<J<Q<KK<A

Sorted deck :
2 OY‘, e A*’ e 2‘, e AA

40

i LSD Radix Sort

template <class T>

int RadixSort(T *a, int *link, const int d, const int r, const int n)

{ // Sort al[1:n] using a d—digit radix—r sort. digit(alil,j,r) returns the j th radix-r
// digit (from the left) of alil’s key. Each digit is in the range is [0,r).
// Sorting within a digit is done using a bin sort.

int elr], flr]: // queue front and end pointers
// create initial chain of records starting at first

int first = 1;
for(int i=1; i<n; i++) link[i] = i+1; // link into a chain
link[n] = 0;

for(i=d—1; i>=0; i——)
{ // sort on digit i
fill(f, f+r, 0); // initialize bins to empty queues
for(int current = first; current; current = link[current])
{ // put records into queues/bins
int k = digit(alcurrent], i, r);
if (f[k] == 0) f[k] = current;
else link[e[k]] = current;
elk] = current;

41

LSD Radix Sort (Cont.)

for(j=0; !f[j]; j++); // find first nonempty queue/bin
first = f[j1;
int last = e[j];
for(int k=j+1; k<r; k++) // concatenate remaining queues
if(f[k]) {
link[last] = f[k]:
last = e[k];
}
link[last] = 0;
}

return first;

}
Program 7.15: LSD Radix Sort

= Analysis: RadixSort makes d passes, each pass takes O(n+r)

time
=> O(d(n+r))

42

Radix Sort example

» Example 7.8
10 number in [0,999], d=3, r=10

list[1] list[2] list[3) list[4] list[5) list[6] [list[7] [list[8] list[9] list[10]
179 =/ 208 |-={ 306 93 859H984H 55 HTHW%

(a) Initial input

el0] e[l el2] el3] el4] elS] e[6] e[7] el8] el

271 93 984 55 306 208

fl01 f 0 fl21 0 f131 0 f14 fIS) flel fI7) 0 fI8] f@]

271 93 33 984 55 306 208 179 859

(b) First-pass queues and resulting chain

Figure 7.9: Radix Sort example (continued on next page)

43

Radix Sort example (Cont.)

e0] efl] ef2] 3] eld] elS] el6] e[7] e8] e[9)

9
208 859 179
306 33 55 271 984 |93

flor - foy flr o fB1 fEfIS1 Al fI f181 D)

3069208H 9 t>33|={55 9859%91799984 93

(c) Second-pass queues and resulting chain

Figure 7.9: Radix Sort example (continued on next page)

Radix Sort example (Cont.)

el0] e[l ef2] ef3] e[4] ef5] el6] e[7l e8] e[9]

93

55

33 271

9 179] |208] 306 859| | 984

florfm o f121 0 131 f14 fI51 flel fITT fI81 D)

9 33 = 55 $| 93 || 1?9%208'»271 =306 | 859 | = 948

(d) Third-pass queues and resulting chain

Figure 7.9: Radix Sort example (continued on next page)

/.8 List and Table Sorts

= Physical arrangement ?
= Radix (several keys), Recursive merge sort
: no physical change (linked list)
= Others : physical arrangement (array)
= [his requires excessive data movement
= [his tends to slow down the sorting process
= How to improve the ‘Others’?
= First perform linked—-list sort or table sort
= [hen physically rearrange the records

= [his rearranging can be accomplished in linear time
using some additional space

46

i List Sort

m |WO cases of List Sort

= doubly linked list
= list[i].linka
= list[i].linkb

= Singly linked list
= list[i].link

47

Rearranging records using linked list

s At the end of linked list sort, the pointer first points to the
first record

= We begin by interchanging records R; and Ry
= Now the record in the position R, has the smallest key

s |f first # 1, then there is some record in the list whose link
field is 1

= |f we could change this link field to indicate the new position
of the record previously at position 1, then we would left with
records R,, -+, R, linked together in nondecreasing order

s Repeating the above process, after n—1 iterations, result in
the desired rearrangement

48

Rearranging records using linked list
. Doubly linked case

template <class T>

void List1(T =*a, int *linka, const int n, int first)

{ // Rearrange the sorted chain beginning at first so that the records a[1:n]
// are in sorted order.

int *linkb = new int[n]; // array for backward links
int prev = 0;
for (int current = first; current; current = linkalcurrent])
{ // convert chain into a doubly linked list
linkb[current] = prev;
prev = current;

}
for (int i=1; i<n; i++) // move alfirst] to position i while
{ // maintaining the list
if(first I=1) {
if(linkalil) linkb[linkalil] = first;
linka[linkb[i]] = first:
swap(a[first], alil);
swap(linka[first], linkalil);
swap(linkb [first], linkb[i]);
¥
first = linkalil;
}

} Program 7.16: Rearranging records using a doubly linked list

Rearranging records using linked list
: Doubly linked case (Cont.)

+

Analysis

= [he time required to convert the chain first into
a doubly linked list is O(n)

= [he second for loop Is iterated n—1 times. In
each iteration, at most two records are
interchanged(3 record moves). if each record is

m words long , the cost per record swap is
O(m)

= Total time is therefore O(mn)

50

—xample 7.9

= input list (26, 5, 7, 1, 61, 11, 59, 15, 48, 19)

i Rl Rg R3 R4 R5 R6 R7 Rg Rg Rm
ey | 26| S| 7 1 6| 11]59] 15| 48] 19
kel 9 6] 0 2] 3] 8] s[10 7| 1

(a) Linked list following a list sort, first = 4

i Ry [Ry | Ry | Ry | Rs | Rg | Ry | Ry | Ry | Ry
ey |26 S| T 161|110 59[15 48 19
lika | 91 61 0] 2| 3| 8| 5S|10] 7| 1]
linkp | 10| 4] S| 0] 7] 2] 9] 6] 1 8

(b) Corresponding doubly linked list, first = 4

Figure 7.10: Sorted linked lists

Example for List1 (Program 7.16)

I -ﬁl Rz R-r. RA!_ Rﬁ | Rf, | Rj.! | Rg | R_:)_ :_Rm l
oy [*=a 15 |77 | 26 | 6] 11 | 59 [15 | 48 | a9
linka | 2 | 6 0 9 3 [8 5 10 | 7 [
linkb | 0 | 4 5| 10 7 2 9 6 4 8 |

i | R, [R, [Ry [Ry [Rs [R¢ [R; [Ro [Ro [Rygl
key | L[| 5] 77| 26 | 61 | 11 | 59 | 15 | 48 | 19
linka 2 6| O 9] 3] & 5 10 | 7 4
(tinkb | 0| 4| 5| 10| 7| 2| 9| 6] 4 8
(b) Configuration after second iteration, first =6

)
i Ry | R Ry | Ry | Rs | Res | Ry Rs | Ry | Ryl
key© | 1| 5 |['1t | 26 | 61 | 77 | 59 | 15 | 48 | 4=
[inka | 2| 6] 8] 9| 6| 0| 5| 10| 7| =
linkb i A e R A T | 7 g 5] 9 6 4 | .

i Ri R: | RJ R4 | R:‘, |__.|‘_?_f_?_| R'? RS Rg | R|
| key 1 5| 11 | 15 | 61 | 77 | 59 | 26 | 48 | 188
' linka 2 6 bisB {10 | 6 D] o5 9 7 [ons

linkb 0 4 2 6 | 7 5 | 9| a0 g8 | &l

(d) Configuration after fourth iteration, first = 10

Figure 7.11: Example for List1 (Program 7.16)

52

Rearranging records using linked list
. Singly linked list

= When R, is exchanged with R;, the link of R; is set to p
m first >

template <class T>
void List2(T *a, int *xlink, const int n, int first)
{ // Same function as List1 except that a second link array linkb is not required.

for(int i=1; i<n; i++)
{ // Find correct record for i th position. Its index is = i as
// records in positions 1, 2, -+, i—1 are already correctly positioned.
while(first <'i) first = link[first];
int g = link[first]; // alq] is next record in sorted order
if (first I=1)
{ // alfirst] has i th smallest key. Move record to i the position.
// Also set link from old position of ali] to new one.
swap(ali], alfirst]);
link[first] = link [il;
link[i] = first;
}
first = q;

Program 7.17: Rearranging records using only one link field 53

Rearranging records using linked list
. Singly linked list (Cont.)

+

= Analysis : O(n)

54

for

Example

[i TRy [R, [Rs [Ry | Rs [R¢ | R; | Ry | Ry
key | 1 S\ U7FF |36 | 61 | 11 | 59 | 15| 48
link 4 6 0 9 3| B | S| 7

_ist? (Program 7.17)

Ry |

19
I

(a) Configuration after first iteration of the for loop of List2, first = 2

i [R [R, | R [Ry [R; | Rg [Ry | Ry [Ry [Roygl
key | 1 5| 77| 26| 61 | 11 | 59 | 15 | 48 19 |
| link | 4 6770 i 3 [# | Sedg 7 1|
(b) Configuration after second iteration, first = 6
i | Ry | R, [Rsy | Ry | Rs _ Rg | R7 | Rg | Rg _‘ R |
key | 1 = s 26 61 | 77 | 59 | 15 | 48 | 198
link 4 6| 6 9| 3] o© 5] 10 =% .
(c) Configuration after third iteration, first = 8
i Ry [R [R; [R4 | Rs [Rg | R; | Rg | Rg | Ryp |
key 1 o114 15 | 2 59 26 48 197
link 4 6 6] 8| 3| 0] 5] @ Fi 13

(d) Configuration after fourth iteration, firsr = 10 '

F

I R]_ R__‘g R3 R4 RS | R(, | R-,.' | Rg R:__; E&]I
key | 1 & 11 15 9., . F7 59 26 48 61
adinde) |k 06 w6 8 | 10 Gl 1S:lhit8 7 .

Figure 7.12: Example for List2 (Program 7.17)

(e) Configuration after fifth iteration, first = 1

|

55

i List1 vs List2

m List1 is inferior to List2 in both space
and time

s LIStT uses two link fields

56

i Table Sort

s A auxiliary table t
= One entry per record
= | he entries serve as an indirect reference to the records

s Sorting
= At the start of the sort
« t[i] =i, 1<i<n

= When the sorting function requires a swap of ali] and alj]
= Swap t[i] and t[j], instead of ali] and alj]

= At the end of the sort
« alt[1]] < aft[2]]1=< -+ < a[t[n]]

57

‘L Table Sort (Cont.)

Auxiliary table ¢ before sorting

1 I 2 3 4
R
R, R, Rs R, R;
50 9 11 8 3
[|
‘ 5 4 [2 3 1
Table ¢ after sorting

Figure 7.13: Table Sort

i Table Sort (Cont.)

s Every permutation is made up of disjoint cycles

s |he cycle for any element i is made up of
« i, t[il, t2[i], -, t[i], where ti[i]=t[t~'[i]], t°[i]=i, and
tk[i]=]
s Figure 7.13 has two cycles
=« R1, R5
= R2, R4, R2

59

i Rearranging records using table

s Physical rearrangement of table
= Find cycles of records

= [nterchange records in a cycle using a
temporary space

60

Rearranging records using table
(Cont.)

template <class T>
void Table(T *a, const int n, int *t)
{ // Rearrange a[1:n] to correspond to the sequence a[t[1]], -+, alt[n]], n = 1.

for(int i=1; i<n; i++)
if(t[i] !=1i) { // there is a non-trivial cycle starting at i
T p = alil;
intj=1,
do {
int k =t[j1; alj] = alk]; tljl=j;
j=k;
} while (t[j] I=1i);
aljl = p; // jis position for record p
tlj] =j;

Program 7.18: Table Sort

= Analysis : O(mn) when the record length is m.
But O(n) if m is fixed

61

Cycle 1 : Ry, Ry, Rg, Rg, R;
Cycle 2 : Ry, R:, R,, R,

—xample 7.11

key | 35 | 14 | 12 | 42 | 26 | 50 | 31 18
t 3 2 8 5 Y/ 1 4 6
(a) Initial configuration
key | 12 | 14 | 18 | 42 | 26 | 35 | 31 | 50
t 1 2 3 5 7 6 | 4 8

(b) Configuration after rearrangement of first cycle

key

12

14

18

26

31

35

42

50

{

1

2

3

4

5

6

7

8

(c) Configuration after rearrangement of second cycle

Figure 7.14: Table Sort example

62

‘L /7.9 Summary of Internal Sorting

Method Worst Average
Insertion Sort n2 n2
Heap Sort nlogn nlogn
Merge Sort nlogn nlogn
Quick Sort n2 nlogn

Figure 7.15: Comparison of sort methods

63

i Average times for sort methods

Insert Heap Merge Quick

0.000 0.000 0.000 0.000

50 0.004 0.009 0.008 0.006
100 0.011 0.019 0.017 0.013
200 0.033 0.042 0.037 0.029
300 0.067 0.066 0.059 0.045
400 0.117 0.090 0.079 0.061
500 0.179 0.116 0.100 0.079
1000 0.662 0.245 0.213 0.169
2000 2.439 0.519 0.459 0.358
3000 5.390 0.809 0.721 0.560
4000 9.530 1.105 0.972 0.761
5000 15.935 1.410 1.271 0.970

Figure 7.16: Average times for sort methods (milliseconds)
64

} ;'W]
: 0 500 1000

Figure 7.17:

Insertion Sort

2000 3000 4000

!

Plot of average times(miliseconds)

Heap Sort
-~ Merge Sort

Quick Sort

5000

65

/.10 External Sorting

= When the lists to be sorted are so large

= |he whole list cannot be contained in the internal
memory

= Making an internal sort impossible

= |he most popular method for sorting on external
storage devices is Merge Sort
s External Merge Sort

= Segments of the input list are sorted using a good
internal sort method

= | he sorted segments are merged together until only one
run is left

66

7.10 External Sorting (Cont.)

s Block

= |he unit of data that is read or written to a disk at one
time
= Consists of several records
= Three factors contributing to the read/write time

s Seek time: time taken to position the read/write heads to
the correct cylinder

= Latency time: time until the right sector of the track is
under the read/write head

= |ransmission time: time to transmit the block of data
to/from the disk

6/

Example 7.12

s lists: 4500 records
internal memory capable of sorting: 750 records

block length: 250 records

1. Internally sort three blocks at a time to obtain six runs R; to

Re
= Heap Sort, Merge Sort, or Quick sort could be used

o These six runs are written onto the scratch disk

run 1 run 2 run 3 run 4 run 5 run 6

1-750 751-1500 1501-22502251-30003001-37503751-4500

3 blocks per run

Figure 7.20: Blocked runs obtained after internal sorting 68

Example 7.12 (Cont.)

3. Set aside three blocks of internal memory
= each capable of holding 250 records
= [wo for input buffers, one for an output buffer

4. Merge a pair of runs

= First Read one block of each of two runs into input
buffers

= Blocks of runs are merged from the input buffers into the
output buffer

= When the output buffer gets full, it is written onto the disk
= |f an input buffer gets empty, it is refilled with another
block from the same run
5. Merge a pair of runs generated In the previous
step until only one run is left

69

i Example 7.12 (Cont.)

run 1 run 2 run 3 run 4 run 5 run 6

NS NS NS

.
N

Figure 7.21: Merging the six runs

Time Complexity Analysis

t, = maximum seek time

= = maximum latency time

= t, =time to read or write one block of 250 records

= t, =time to input or output one block =t, +t +1t,,

= {5 =time to internally sort 750 records

= nxt_ =time to merge n records from input buffers to the output buffer

operation time

(1) read 18 blocks of input, 18t, 36ty + 6tg
internally sort, 6t5, write 18 blocks,

18t

(2) merge runs 1 to 6 in pairs 36t + 4500t
(2) merge two runs of 1500 records 24t + 3000t

each, 12 blocks

(4) merge one run of 3000 records with 36t,5 + 4500t,,
one run of 1500 records

total time 132t + 12,000t + Bt

Figure 7.22: Computing times for disk sort example

71

i k—Way Merging

= |he number of merge passes can be reduced by
using higher—order merge than two—way merge

123 4 56 7 8 9 101112 13141516

N2 2\ 4
T

Figure 7.23: A four—way merge on 16 runs

72

k—Way Merging (Cont.)

= |f we start with m runs, the two way merge tree will have

[log, m| + 1 levels
[log, m| passes

= K—way merge on m runs requires |_|Ogk m_| passes over the
data

= Kruns of size s;kS,, S, ***, S, can no longer be merged
internally in O(D_S;) time

= |In the most diréct way, k—1 comparisons areneeded to
determine the next record to output O((k — 1)23

= total number of key comparisons is
n(k—1)logym = n(k—1)log,m/log,k

= As k increases, the reduction in input/output time will be
outweighed by the resulting increasing in CPU time

s Atleast, k + 1 buffers are needed

73

k—Way Merging (Cont.)

= Forlarge k (say, k=6), Loser tree may reduce the number of
comparisons
= Total time needed per level of the merge tree O(nlog,k)

= | he asymptotic internal processing time becomes
O(nlog,klog,m) = O(nlog,m)

= |his is independent of k
= Disk IO will be reduced
= | he buffer size must be reduced as k increases

= |f the buffer size is reduced even smaller than block size, the
number of block reading/writing will increase

= [he optimal value for k depends on disk parameters and the
amount of internal memory

74

/7.10.3 Buffer Handling for Parallel
Operation

= While the output buffer is being written out,
internal merging has to be halted
= NO place to collect the merged records
= [his can be overcome through the use of two output
buffer
= With only k input buffers, internal merging will have
to be held up whenever one of these input buffers
becomes empty
= [his can be avoided if we have 2k input buffers

= 2K input buffers have to be used cleverly to avoid a lack
of input records from any one run

75

oul0] oull]
I 2
4

in[0] in|l]

in[2] in[3]

merge into ou [0]
(a) input into in [2]

6

oul[0] oull]
8
9
0] in[l]
) 15

in[2] in[3]
output ou [0]

merge into ou [1]
(d) input into in [1]

~

oul0] oull]

4 |
in|0] in|l]

5

in[2] in[3]
output ou [0]

merge into ou [1]
(b) input into in [3]

8
oul0] oull]
20

in[0] in]|l]

15
in[2] in]3]
output ou [1]

merge into ou [0]
(e) input into in (2]

=xample 7.13

4

oul0] oull]

two—way merge

ou[0] and ou[1] are output buffers
in[0~3] are input buffers

in[0] and in[2] are assigned to run 0
in[1] and in[3] are assigned to run 1
* Assume times to input, output, and
generate an output buffer are all the
same

in[0] in[l]

in[2] in[3]
output ou [1]

merge into ou [0]
(¢) input into in [0]

9] - e run 0:
o I .-

,3,5,7,9
* run 1

1,3,5,7,
oul0] oull] 2’ 4’ 6, 5, 20, 25

20

25

in[0] in[1]

15

in|2] in[3]

() 76

k—way merge with floating buftfers

An individual buffer may be assigned to any run depending
upon need

The run which will be empty first is the one from which the
next buffer will be filled

The remaining buffers will be filled on a priority basis
Run—exhaustion prediction

= Compare the keys of the last record read from each of the k
runs

= Use a looser tree

77

k—way merge with floating buftfers
(Cont.)

= 2K input buffers and two output buffers are used

= |nput buffers are queued in k queues, one queue for each
run

s Empty buffers are placed on a linked stack

= [he end of each run has a sentinel records with a very large
key, say +o©

= |f the time to merge one output buffer load equals the time
to read a block, almost all input, output, and computation
will be carried out in parallel

/8

{ steps in buffering algorithm }

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:
Step 8:

Input the first block of each of the k runs, setting up k linked queues,
each having one block of data. Put the remaining k input blocks into a
linked stack of free input blocks. Set ouvto O.

Let /astKey/[/] be the last key input from run i. Let nextRun be the run
for which /astKey is minimum. If /astKey/nextRun] #+ +oo, then initiate
the input of the next block from run nextRun.

Use a function Kwaymerge to merge records from the k input queues
into the output buffer ou. Merging continues until either the output
buffer gets full or a records with key +o is merged into ow. If, during
this merge, an input buffer becomes empty before the output buffer
gets full or before + is merged into ou, the Kwaymerge advances to
the next buffer on the same queue and returns the empty buffer to the
stack of empty buffers. However, if an input buffer becomes empty at
the same time as the output buffer gets full or +o is merged into ov,
the empty buffer is left on the queue, and Awaymerge does not
advance to the next buffer on the queue. Rather, the merge terminates.
Wait for any ongoing disk input/output to complete.

If an input buffer has been read, add it to the queue for the
appropriate run. Determine the next run to read from by determining
NextRun such that /astKey/[nextRun] is minimum.

If /astKey[nextRun] + +o0, then initiate reading the next block from
run nextRun into a free input buffer.

Initiate the writing of output buffer ouw. Set ouv to 1 — ou.

If a record with key +o0 has been not been merged into the output
buffer, go back to Step 3. Otherwise, wait for the ongoing write to
complete and then terminate.

Program 7.21: k—=way merge with floating buffers
79

Example 7.14

Run O 20 25 26 28 29 30 33 +00
Run 1 23 29 34 36 38 60 70 +00
Run 2 24 28 31 33 40 43 50 +00
Figure 7.25: Three runs
Quene Run 11 Riun | Lin mn Churp
L5 | |
Wy | l = 4[)
N T | 14
W | f l | 1 M ih 3%
Wt | o hY|
1 M { il
Wl 1 i WY

Figure 7.27 Buffering example

80

7.10.4 Run Generation

= [he runs generated in this algorithm will be twice as long as
obtainable by conventional methods(as large as the number
of records that can be held in internal memory)

= [his algorithm uses a loser tree
= [he variables used in this algorithm

= r[i],0<i<k the k records in the tournament tree

« I[i], 1 <i<Kk loser of the tournament played at node i
= [[O] winner of the tournament

= mli], 0 <i<k therun number to which r[i] belongs

= IC run number of current run

= Q overall tournament winner

= g run number for r[q]

= max number of runs that will be generated

= |astRec last record output

= MAXREC a record with maximum key possible

81

Run Generation using a loser tree
. Brief Explanation

= The loop repeatedly plays the tournament outputting records (lines
11 to 34)

= |he variable /astKey is made use of in line 22 to determine whether

or not the new record input, r[ql, can be output as part of the
current run

= if(keylql < /astKey) then r[q] cannot be output as part of the current
run rc

= A record with larger key value has already been output in this run
= When the tree is being readjusted (line 27 to 33)

= A record with lower run number winds over one with a higher run
number

= When run numbers are equal, the record with lower key value wins

s /max is used to terminate the function. In line 19, when we
run out of input, a record with num number rmax+1 is
introduced. When this record is ready for output, the
function terminates from line 14

82

Run Generation using a loser tree
. Code

template <class T>
1. void Runs(T *r)
{
r = new T[K];
int xrn = new int[k], *l = new int[k];
for (int i=0; i<k; i++) { // input records
InputRecord(r[il); rn[i] = 1;
}

InitializeLoserTree();

T q=1[0]; // tournament winner

10. intrg=1,rc =1, rmax =1; T lastRec = MAXREC;
11. while(1) { // output runs

e L

12. if(ra !=rc) { // end of run

I &} output end of run marker;

14. if (ra > rmax) return;

15. else rc = raq;

16. }

17. WirteRecord(r[ql); lastRec =r[q]; // output record r[q]
18. // input new record into tree

19. if (end of input) gl = rmax + 1;

Run Generation using a loser tree

. Code (Cont.)

20. else {

21. ReadRecord(r[ql);

22. if (rla] < lastRec) // new record belongs to next run
23. mlql = rmax =rqg + 1;

24. else r[ql =rc;

25. }

26. ra =rnlal;

27. // adjust losers

28. for (t=(k+q)/2; t; t/=2) // tis initialized to be parent of g
29. if ((n[I{t]] <ra) |1 ((n[I[t]] ==rq) && (r[I[t]] < r[al)))
30. { // tis the winner

31. swap(a, I[t]);

32. ra =rnlal;

IO, }

34. }

25, delete [] r; delete [] rn; delete [] |;

36. }

Program 7.22: Run generation using a loser tree

= Analysis of Runs: When the input list is already sorted, only one run is
generated. On the average, the run size is almost 2k. The time required to
generate all the runs for an r run list is O(nlogk), as it takes O(logk) time to
adjust the loser tree each time a record is output 84

7.10.5 Optimal Merging of Runs

= [he runs generated by Auns may not be of the same size

= When runs are of different size, the merging does not yield
minimum runtimes

= [he merging runtimes depend on the order of merging

(a) (b)

Figure 7.27: Possible two—way merges 85

7.10.5 Optimal Merging of Runs (Cont.)

= |he number of merges that an individual records is
involved in is

= Given by the distance of the corresponding external node
from the root

= ex) In Fig 7.27, the records of the run with 15 records are
involved in
= (a) : one merge
= (b) : two merge
= ex) In Fig 7.27, total numbers of merges are
s () 1 2x3 + 4x3 + 5%x2 + 15%1 = 23
s (D) 1 2%2 + 4%2 + 5x2 + 15%2 = /2

= We shall consider the case k = 2 only

86

Decord tree

A decord tree is a binary tree in which external nodes
represent messages

The binary bits determine the branching needed at each
level

A zero as a left branch and a one as a right branch
000, 001, 01, and 1 for message M,, M,, Mg, and M,

M,

M,

Figure 7.28: A decord tree

Huffman codes

87

Huffman codes

= Expected decoding time for messages M;, -, M,

Zqidi

1<i<n+l
= d, is the distance of the external node for message Mi from the root
node.
= Q;is the relative frequency with which message M, will be transmitted

= A solution to the problem of finding minimum weighted
external path length has been given by D. Huffman
= begins with a min heap of n single—node tree
i, extract two minimum-weight trees a and b

o, combine a and b into a single binary tree ¢ by creating a new root
whose left and right subtrees are a and b respectively

3. weight of c is the sum of the weight of aand b
4. Iinsert c into the min—heap
Repeat step 1 ~ 4 for n—1 times

88

Huffman

template <class T>
void Huffman(MinHeap<TreeeNode <T> x> heap, int n)
{ // heap is initially a min heap of n single—node binary trees as described above
for (int i=0; i<n—1; i++)
{ // combine two minimum-weight trees
TreeNode <T> xfirst = heap.Pop();
TreeNode <T> *second = heap.Pop();
TreeNode <T> *bt = new BinaryTreeNode <T>(first, second,
first.data+second.data);
heap.Push((bt);

Program 7.23: Finding a binary tree with minimum weighted external path length

89

i =xample 7.15

0;=2, 0,=3, 05=5, 44=7, 0s=9, 95=13 @
/@\ ONE
2 3 5 3

(d) Figure 7,29: Construction of a Huffman tree 90

i Analysis of Huffman

= he main loop is executed n—1 times
= Each call to Pop and Push requires O(logn) time
= Hence, the asymptotic computing time is O(nlogn)

91

	�Sorting
	Terminology
	7.1 Motivation
	7.1 Motivation (Cont.)
	Example 1
	Example 2
	Example 1&2
	Another Example�: Binary Search
	Sorting Terminology
	7.2 Insertion Sort
	7.2 Insertion Sort (Cont.)
	7.2 Insertion Sort Example
	7.2 Insertion Sort Analysis
	7.3 Quick Sort
	Quick Sort Code
	Quick Sort Example
	Quick Sort Analysis
	Quick Sort Average Time
	Quick Sort Average Time
	7.4 How fast can we sort ?
	7.4 How fast can we sort ?
	7.4 How fast can we sort ?
	7.4 How fast can we sort ?
	7.5 Merge Sort
	Merge
	7.5.2 Iterative Merge Sort
	7.5.2 Iterative Merge Sort
	Iterative Merge Sort example
	Iterative Merge Sort analysis
	7.5.3. Recursive Merge Sort
	슬라이드 번호 31
	Variation�-- Natural Merge Sort
	7.6 Heap Sort
	Adjusting a Max Heap
	Heap Sort
	Heap Sort
	Example
	Example
	Example
	7.7 Sorting on Several Keys
	LSD Radix Sort
	LSD Radix Sort (Cont.)
	Radix Sort example
	Radix Sort example (Cont.)
	Radix Sort example (Cont.)
	7.8 List and Table Sorts
	List Sort
	Rearranging records using linked list
	Rearranging records using linked list�: Doubly linked case
	Rearranging records using linked list�: Doubly linked case (Cont.)
	Example 7.9
	Example for List1 (Program 7.16)
	Rearranging records using linked list �: Singly linked list
	Rearranging records using linked list �: Singly linked list (Cont.)
	Example for List2 (Program 7.17)
	List1 vs List2
	Table Sort
	Table Sort (Cont.)
	Table Sort (Cont.)
	Rearranging records using table
	Rearranging records using table (Cont.)
	 Example 7.11
	7.9 Summary of Internal Sorting
	Average times for sort methods
	Plot
	7.10 External Sorting
	7.10 External Sorting (Cont.)
	Example 7.12
	Example 7.12 (Cont.)
	Example 7.12 (Cont.)
	Time Complexity Analysis
	k-Way Merging
	k-Way Merging (Cont.)
	k-Way Merging (Cont.)
	7.10.3 Buffer Handling for Parallel Operation
	Example 7.13
	k-way merge with floating buffers
	k-way merge with floating buffers (Cont.)
	슬라이드 번호 79
	Example 7.14
	7.10.4 Run Generation
	Run Generation using a loser tree�: Brief Explanation
	Run Generation using a loser tree�: Code
	Run Generation using a loser tree �: Code (Cont.)
	7.10.5 Optimal Merging of Runs
	7.10.5 Optimal Merging of Runs (Cont.)
	Decord tree
	Huffman codes
	Huffman
	Example 7.15
	Analysis of Huffman

