Heat and Mass Transfer

이 윤 우 서울대학교 화학생물공학부

NUMERICAL, GRAPHICAL, AND ANALOG METHODS

IN THE ANALYSIS OF HEAT CONDUCTION

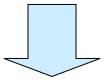
Introduction

The differential equations, based on the differential energy balance, can be written readily enough.

However, the mathematical boundary conditions are difficult to apply when the physical boundaries of the object are complex and when the temperatures at these boundaries are not uniform.

In general, few analytical solutions exist for heat-transfer systems which do not possess some elements of symmetry in both shape and temperature

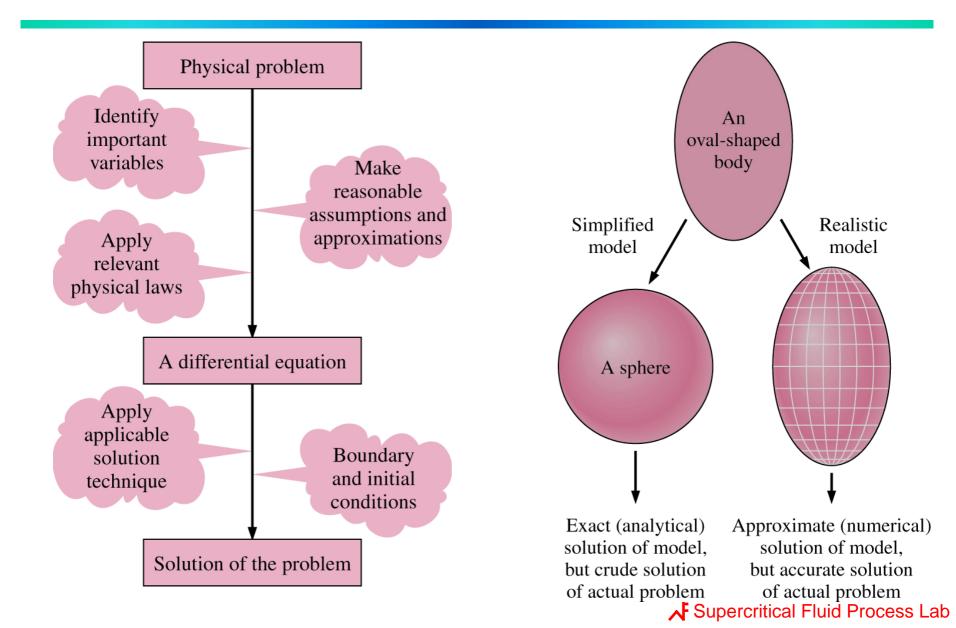
Numerical, Graphical, and Analog Methods



Numerical, Graphical, and Analog Methods

Accuracy? Performing time? Converge?

Analytical solution vs. Numerical solution



Analytical Solution vs. Numerical Solution

Numerical solutions are also accurate.

It should not be be assumed that the numerical and graphical solutions are necessarily less accurate than the analytical solutions. In fact, many of them can be made as accurate as desired by mere repetition of routine steps which, if performed an infinite number of times, would give an exact solution.

Analytical Solution vs. Numerical Solution

An analytical solution must be carried out to the end before any answer whatsoever is obtained.

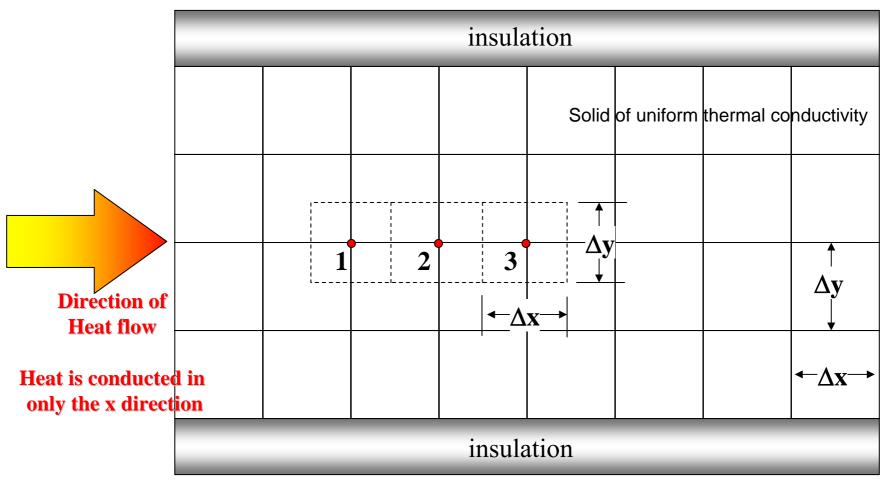
This characteristic of numerical method is often an advantage, because the accuracy required of a solution is usually known beforehand, and the solution can be stopped when this is reached.

Analytical Solution vs. Numerical Solution

Sometimes numerical procedures do not readily converge to the correct result.

The principal disadvantage of numerical methods is that they are *tedious to perform*, but with the use of high-speed computer, this disadvantage is overcome. Sometimes numerical procedures, however, do not readily converge to the correct result, no matter how many iterations are performed.

Relaxation technique applied to 1-D conduction



As the heat in the element surrounding point 1 flows into the block surrounding point 2, the rate of heat flow will be

$$q_{12} = -kA\frac{dt}{dx} = k\Delta z\Delta y\frac{t_1 - t_2}{\Delta x}$$
(20-1)

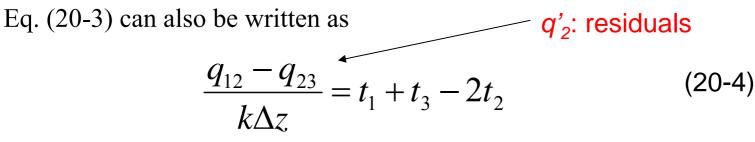
The rate of heat flow from the block solid around point 2 to the block around point 3 will be

$$q_{23} = -kA\frac{dt}{dx} = k\Delta z\Delta y\frac{t_2 - t_3}{\Delta x}$$
(20-2)

The rate at which heat accumulates at point 2 is

$$q_{12} - q_{23} = k\Delta z (t_1 + t_3 - 2t_2) \frac{\Delta y}{\Delta x}$$
 (20-3)

1



If the system is at steady state, q_{12} equals q_{23} , and Eq. (20-4) can be rearranged to give

$$t_2 = \frac{t_1 + t_3}{2} \tag{20-5}$$

If an arbitrary temperature distribution is chosen for all the points in the system, it can be tested for correctness using Eq. (20-5). If the temperature t_2 is in error, it may be revised by adding or subtracting (dimensionless temperature)

$$\frac{1}{2} \frac{q_{12} - q_{23}}{k\Delta z}$$

to the temperature t_2 .

$$\frac{1}{2} \frac{q_{12} - q_{23}}{k\Delta z}$$

Dimensionless temperature

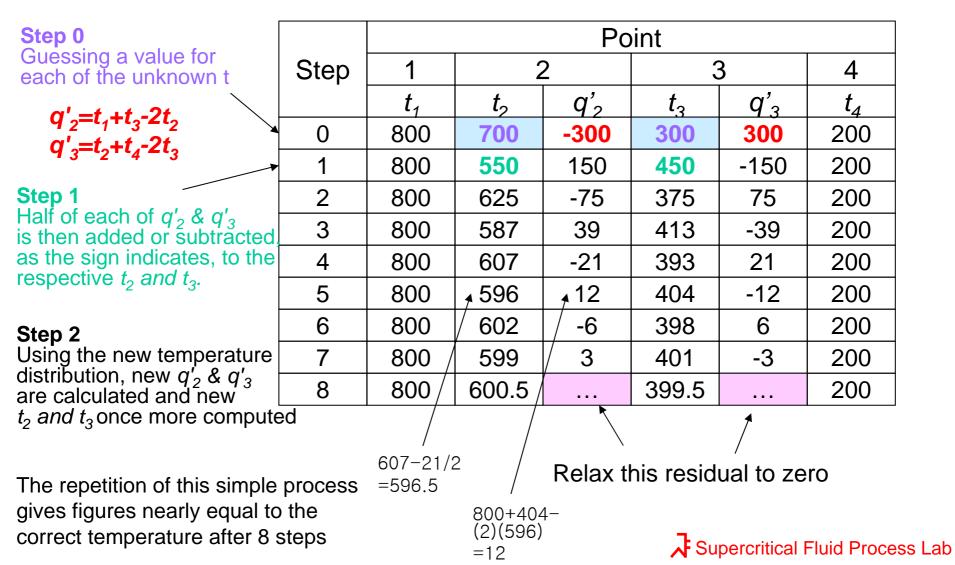
If all but one of the temperature at the nodes of the grid are correct, then alternations at this point will destroy the consistency among the temperatures at the remaining points. However, the magnitude of the correction diminishes by halves with succeeding points and if not too great initially, soon vanishes as a significant quantity.

Relaxation techniques for one-dimensional conduction

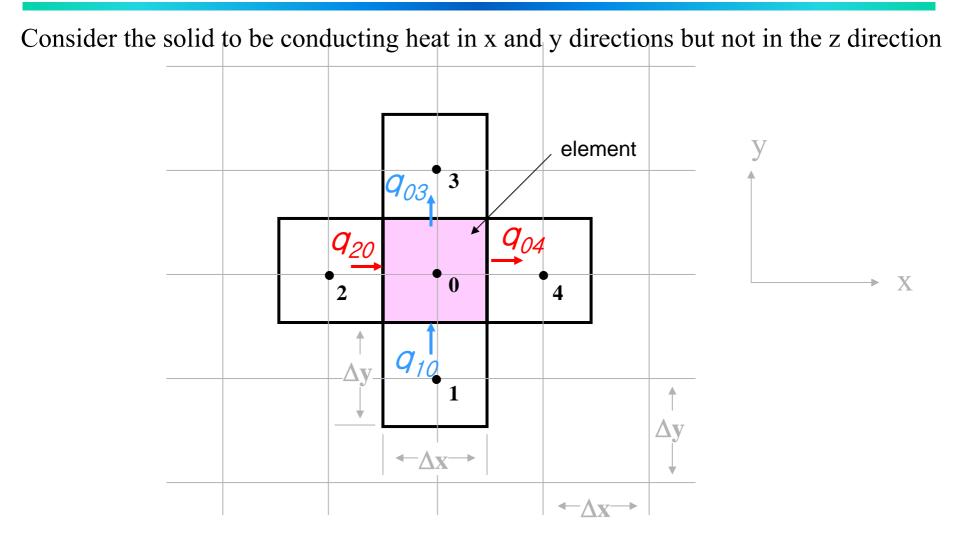
A solid rod conducts heat from a heat source at 800°F to a heat sink **Ex 20-1** at 200°F. The side of the rod are insulated as shown in Fig.20-2. Find the temperature distribution in the rod. insulation Heat Heat sink source 2 3 800°F 200°F $q_2' = \frac{q_{12} - q_{23}}{k \Lambda_7}$ $q_3' = \frac{q_{23} - q_{34}}{k\Delta z}$ **Residuals:**

Relaxation techniques for one-dimensional conduction

Ex 20-1



Two Dimension Relaxation



Two Dimension Relaxation

If the solid has a thickness Δz in the z direction, we can write

$$q_{10} = k\Delta z \Delta x \frac{t_1 - t_0}{\Delta y}$$
(20-6)

$$q_{20} = k\Delta z \Delta y \frac{t_2 - t_0}{\Delta x}$$
(20-7)

$$q_{03} = k\Delta z \Delta x \frac{t_0 - t_3}{\Delta y}$$
(20-8)

$$q_{04} = k\Delta z \Delta y \frac{t_0 - t_4}{\Delta x}$$
(20-9)

Energy Balance on an element

An equation for the net heat flux into the element

$$q_{10} + q_{20} - q_{03} - q_{04} = k\Delta z(t_1 + t_2 + t_3 + t_4 - 4t_0)$$

$$q'_0 = \frac{q_{10} + q_{20} - q_{03} - q_{04}}{k\Delta z} = t_1 + t_2 + t_3 + t_4 - 4t_0$$

If the heat is being transferred at steady state, $q'_0=0$

$$t_0 = \frac{t_1 + t_2 + t_3 + t_4}{4}$$

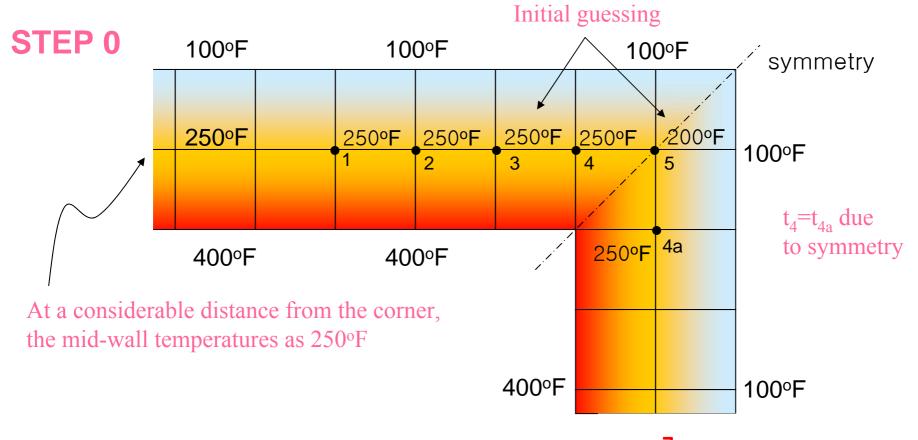
Arithmetic average of the temperature at the four surrounding points.

An approach to this problem

... is to set the residual q'_0 quantities at all nodal points equal to zero.

This generates a system of linear equations for the temperatures at the nodal points which can be solved using direct or iterative methods

The wall of a furnace has an inside temperature of 400°F and an outside temperature of 100°F. Find the centerline temperature of the wall.



Initial guessing:

Because of the plane of symmetry through the corner, the temperature at point 4 will be the same as at point 4 will be the same as at point 4 a.

At a considerable distance from the corner the mid-wall temperature will obviously be 250°F.

If we choose all the centerline temperatures as 250°F, we shall introduce some error, because the temperature at point 5 would seem to be lower. Therefore we choose t_5 =200°F and t_1 = t_2 = t_3 = t_4 =250°F.

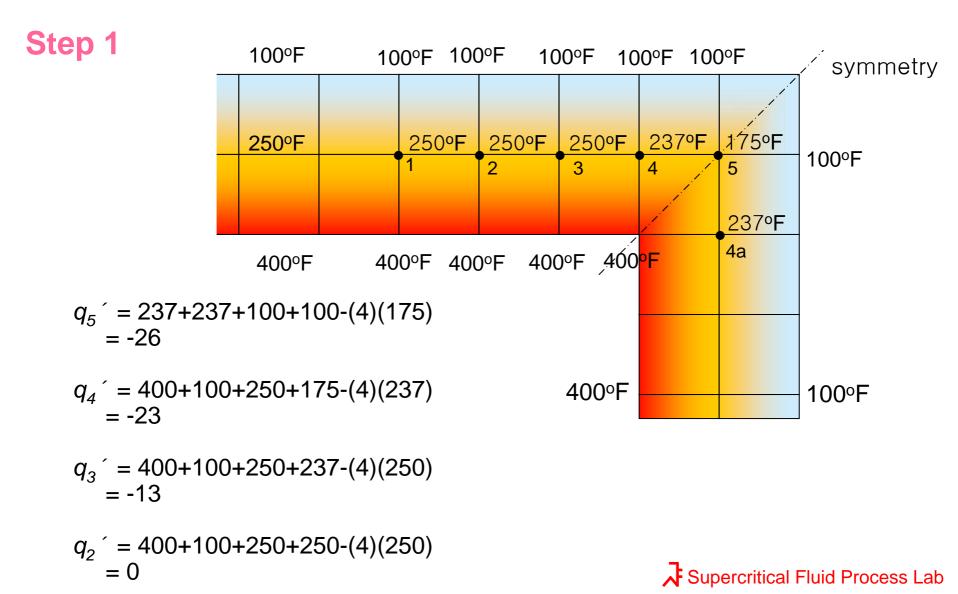
In step 0:

$$q'_1 = 250 + 100 + 250 + 400 - (4)(250) = 0$$

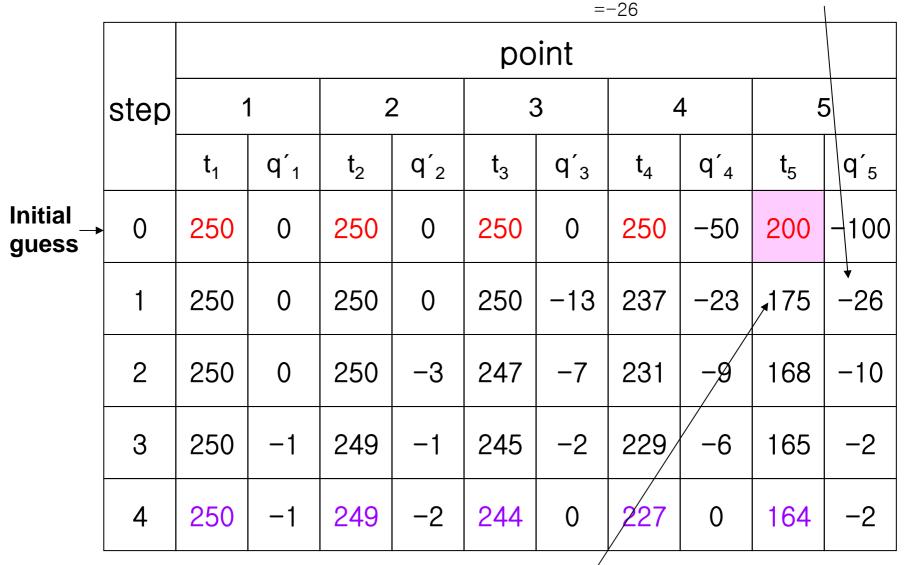
 $q'_2 = 250 + 100 + 250 + 400 - (4)(250) = 0$
 $q'_3 = 250 + 100 + 250 + 400 - (4)(250) = 0$
 $q'_4 = 250 + 100 + 200 + 400 - (4)(250) = -50$
 $q'_5 = 250 + 100 + 100 + 250 - (4)(200) = -100$

We then add or subtract one-fourth (1/4) the value of q' to or from each corresponding temperature to obtain the new temperature profile, with which we repeat the calculations until the values of q' are negligible.

Example 20-2 (Relaxation model)



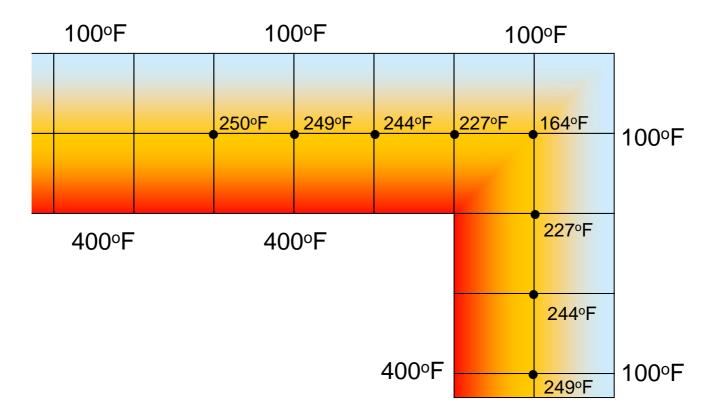
237+237+100+100-(4)(175)



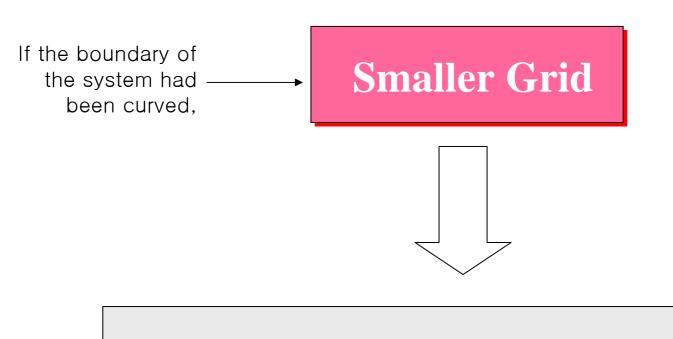
200-(100)/(4) 200-25=175 =25

Example 20-2 (Relaxation model)

Step 4

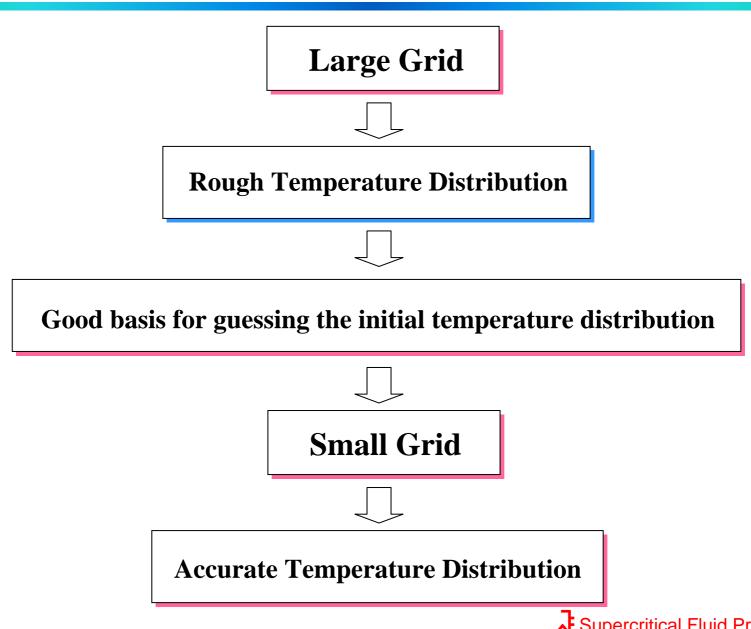


Relaxation Technique



Higher accuracy of the temperature

Initial Guessing for Relaxation Technique



Other factor affecting heat transfer

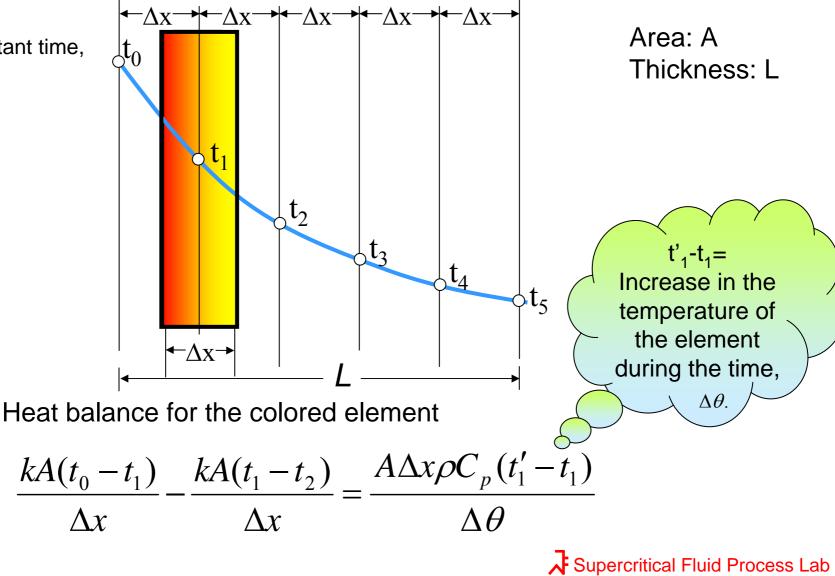
Heat Generation in the solid, q_r

$$q'_{0} = t_{1} + t_{2} + t_{3} + t_{4} - 4t_{0} + \frac{q_{r}(\Delta x)^{2}}{k}$$
(20-12)
$$t_{0} = \frac{t_{1} + t_{2} + t_{3} + t_{4} + \frac{q_{r}(\Delta x)^{2}}{k}}{4}$$

Relaxation equation for three-dimensional conduction

$$q'_{0} = t_{1} + t_{2} + t_{3} + t_{4} + t_{5} + t_{6} - 6t_{0}$$
(20-13)
$$t_{0} = \frac{t_{1} + t_{2} + t_{3} + t_{4} + t_{5} + t_{6}}{6}$$

At an instant time,



$$\frac{kA(t_0 - t_1)}{\Delta x} - \frac{kA(t_1 - t_2)}{\Delta x} = \frac{A\Delta x\rho C_p(t_1' - t_1)}{\Delta \theta}$$

$$t_1' - t_1 = \frac{k}{\rho C_p} \frac{\Delta \theta}{(\Delta x)^2} (t_0 + t_2 - 2t_1) = \frac{1}{M} (t_0 + t_2 - 2t_1) \quad (20-14)$$

$$M = \frac{(\Delta x)^2}{\alpha \Delta \theta} = \frac{1}{Fo} \qquad M = \frac{1}{Fo} = \frac{L^2}{\alpha \theta} = \frac{\dot{Q}_{stored}}{\dot{Q}_{conducted}}$$

$$t_1' = \frac{t_0 + t_1(M - 2) + t_2}{M}$$
(20-15)

If M = 2, Eq (20-15) reduces to
$$t'_1 = \frac{t_0 + t_2}{2}$$

$$\Delta \theta = \frac{\rho C_p}{k} \frac{(\Delta x)^2}{2}$$
(20-16)

If more accuracy is desired, a smaller value of Δx , giving finer space mesh with more nodal points, must be used. For a given value of M, this will produce shorter time steps.

Choice of values of M

$$M = \frac{1}{Fo} = \frac{L^2}{\alpha \theta} = \frac{\dot{Q}_{stored}}{\dot{Q}_{conducted}}$$

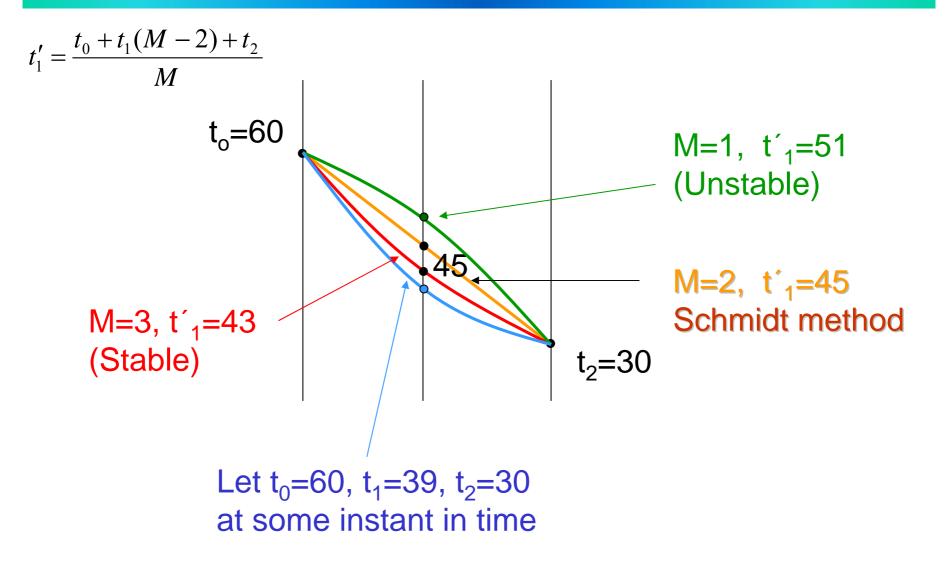
If M < 2, the solution is unstable.

Result in the accumulation and amplification of the numerical errors as the solution progresses.

If $M \ge 2$, the solution is stable.

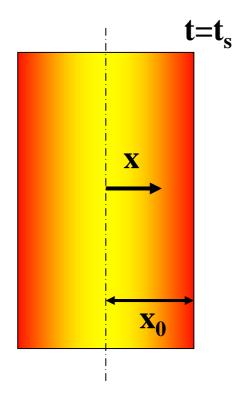
→ The errors diminish

Choice of value of M is restricted



Example 20-3

Conduction into a plate of finite thickness



$$\frac{\partial t}{\partial \theta} = \alpha \frac{\partial^2 t}{\partial x^2} \quad (19-1)$$
I.C. : at $\theta = 0$, $t = t_0 = 70^\circ F$
B.C. 1: at $x = x_0 = 1/4^{"}$, $t = t_s = 292^\circ F$
B.C. 2: at $x = 0$, dt/dx = 0
 $\theta = ?$ @ $x = 0$ and $t = 290^\circ F$
 $\alpha = \frac{k}{\rho C_p} = 0.028 ft^2 / h$

Example 20-3

If M=2 is chosen and sheet is considered as six slabs, each of thickness 0.0833 in, the time increment is

$$\Delta \theta = \frac{\rho C_p}{k} \frac{(\Delta x)^2}{2} = \frac{(0.0833/12)^2}{(2)(0.0028)} = 0.00858 \ h \ (0.515 \ mim)$$

If we carried the solution to the point of finding how long it took for the centerline temperature to reach 290°F, the number of increments would be 18.7 min/0.515 min =36.3.

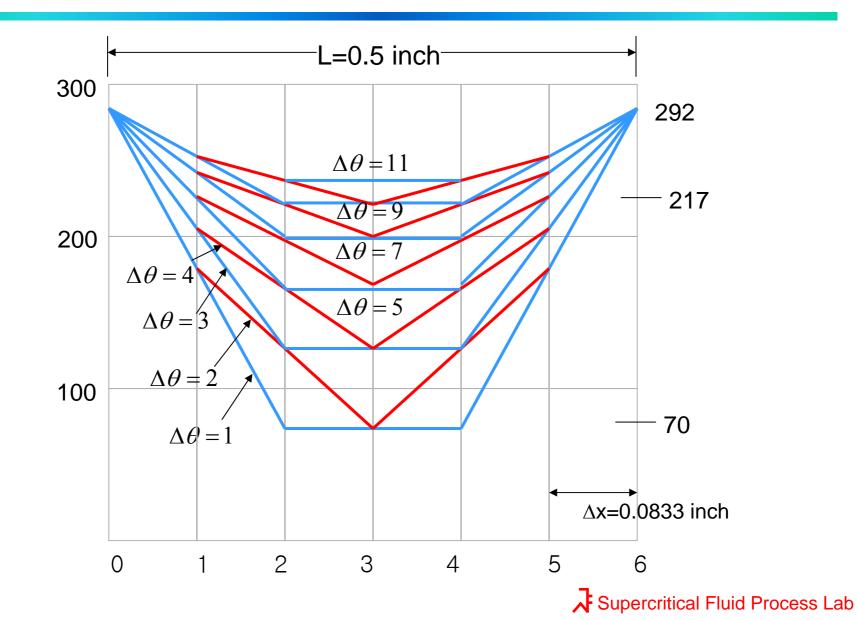
Example 20-3:

Numerical Analysis of unsteady state conduction in a rubber sheet

	$\Delta heta$	tO	t1	t2	t3	t4	t5	t6
	0	292	70	70	70	70	70	292
	1	292	181	70	70	70	181	292
	2	292	181	125	70	125	181	292
	3	292	209	125	125	125	209	292
	4	292	209	167	125	167	209	292
	5	292	230	167	167	167	230	292
	6	292	230	199	167	199	230	292
	7	292	246	199	199	199	246	292
9.7($\Delta heta$)	8	292	246	223	199	223	246	292
Increment	9	292	258	223	223	223	258	292
(5 min)	10	292	258	240	223	240	258	292

t₃=217°F

Example 20-3: Graphical Solution



HOMEWORK #3

PROBLEMS

20-2 20-4

Due on October 24

