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Large exciton binding energy?

. Organic semiconductor: small band width, low dielectric constant (3~4).
Photoexcitation = formation of excitons with strong Coulomb energy
e.d. poly-diacetylene (PDA), Eg~0.5 eV.

Mechanism of the carrier generation upon photoexcitation.

. The applied electric field appears to enhance the carrier generation efficiency upon
photoexcitation.

- Reduction of the thermal ionization energy for the separation of two charges under their
mutual Coulomb attraction.

(1) Poole-Frenkel mechanism

(2) Onsager mechanism
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. . .o kT N —F
Equation of Brownian motion : m =—(w, + 1,)V-(e ¥Vfetl)
Probability that two oppositely charged carriers are separated by an external electric field,
E, as a function of the initial separation of the carriers, 1, and orientation of the field,

assuming that the carrier motion is described by hopping transport.

w0 ® m Bm+n 2

p(r,0,E)=ee" A=—C  B-E 14 c0s0)
o S m! (m+n)' 4re erkT 2kT

If the efficiency of production of thermalized ion pairs per absorbed photon is ¢, and the initial spatial distribution
of separation between ions of each ion pair is g(r,0), the overall generation efficiency is given by

1
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where 7. (T) = € . critical Onsager distance
dree, D. M. Pai and R. L. Enck, Phys. Rev. B 11, 5163 (1975)
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Fig. 1 Ficld-induced PL quenching in McLFFP (@) [33] and
() [19). PPPV () [32]). and PhPPV () [34]. The solid line
is caleulied from Eq. (10). The inset shows the chemical
structure of MeLPPP.
V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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* Electric field dissociation of excitons :
Sl, Tl E—field X+’ X-

J.Szmytkowski, W. Stampor, J. Kalinowski and Z. H. Kafafi, Appl. Phys. Lett. 80, 1465 (2002)
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Ralph H. Young, Ching W. Tang, and Alfred P. Marchetti, Appl. Phys. Lett.80, 874 (2002)
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* Doped AlQ3 layers demonstrate smaller EFIFQ than undoped ones. = The narrower energy band gap of the guest
molecule relative to that of the host material makes it less prone to electric-field-induced dissociation of the excited state.
« Results also show that increasing the concentration of the guest material or decreasing its band gap leads to a decrease in
EFIFQ.
Y. Luo, H. Aziz, Z. D. Popovic, and G. Xu, Appl. Phys. Lett. 89, 103505 (2006).
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Fig. 2 Spectral dependence of relative fluorescence quenching and optical density in a MeLPPP film at

different applied voltages. The film thickness was 100 nm. (C. Im. unpublished results.)

V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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Electromodulated differential absorption spectra of MeLPPP
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Electromodulated differential absorption
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Fig. 3 Electromodulated differential absorption
spectra of MeLPPP obmined at different delay
times alter excitation. The upper curve shows the
clectric field induced differential absorption,
measured without excitation. The dashed line is
EDA spectrum corrected for the Stark erfect.

V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)

16/33

Changhee Lee, SNU, Korea




A model of field-assisted dissociation of optical excitations

Organic Semiconductor

EE 4541.617A

2009. 15t Semester

020
RS E eV
TU08S
F ey (180
" === 070
osE T 1.0 — 060
it
[y ----08 Q
o 07 T g2
§ —_—06 g
- 2
Bon r=5nm’
d X I = 13 0
= ¥=5nm . v,=10"s
£ B ' 's 3
= =10 s : 2 n =4 :
g ] g , i
= n,=4 ¥ » = 1074
o t=10"s . b | N= 107 em®
005 1 | M=t em® a=060m -
/ //'
-
iy ,.//
0.00 - - 00 & sl -
10 of 10
Flald, Viem Fleld, Wem
Fig. 5 Field dependence of the PL. quenching par- Fig. 6 Field dependence of the PL quenching par-
ameter caleulated for different values of the exciton ameter calculated for different values of Fy in a mate-
binding energy in a material with uncorrelaed posi- rial with correlated positions of neighboring localized
tions of neighbouring localized states, slates,
V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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Exciton dissociation in doped conjugated polymers
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Exciton quenching can occur whenever the energy of an eh-pair, if coulombically bound, is less than
that of its excitonic precursor.

Criterion of exciton quenching

(dopant) _ y~(host) __ yr(Geminate pair) (host or dopant)
ELUMO EHOMO Eb < ESl

exciplex (charge transfer excited state or
geminately bound eh pair )

q—

V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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ph()lon energy (e\/) PhPPV: HOMO= -5.5 +/-0.5 eV
2.0 25 3.0 a5 trinitrofluorene (TNF): LUMO=-3.9 eV,
t : L L-1.0 a strong electron donor.
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a ——1%TNF, 290K | 0.8
Lol —=—1%TNF, 80K

PAR L0.6

optical density

Fig. 7 (online colour at: www.,
interscience.wiley.com)  Steady
state photoluminescence and absorp-
tion spectra of spin-coated PhPPV
films with and without TNF at 290
and 80 K.

PL intensity (a. u.)

700 600 500 400
wavelength (nm)

V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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Fig.9 (online colour at: www.
interscience.wiley.com) KWW  plots
for PhPPV films with various TNF
concentrations.

Kohlrausch—Williams—Watts” (KWW)
stretched exponential law
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The fact that the KWW plots of the fluorescence intensity from both doped and neat PhPPV films approach a straight line with
B =0.65 £ 0.05 asymptotically while the kinetics of fluorescence from an isolated PhPPV chain in solution is exponential
indicates that it is due to intra- as well as interchain exciton transport, which ultimately leads to the formation of a (TNF) and
(PhPPV)* geminate pairs via short range electron transfer.

V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
@ 22/33 Changhee Lee, SNU, Korea

11



Organic Semiconductor

A model of dopant-assisted exciton dissociation EE 4541617A
2009. 1%t Semester

* The concentration of impurities in a device-quality organic material is normally below 0.1% unless
it is doped intentionally. At such small densities of CT centers the quenching rate has to be limited
by exciton diffusion towards the quenchers.

* The underlying microscopic mechanism is the Forster energy transfer among the polymer chains
followed by short range charge transfer to the electron acceptor.

* Exciton diffusion is time-dependent due to spectral relaxation because the jump rate decreases with
time due to energy relaxation. In the course of energy relaxation an exciton of an energy £ will, most
probably, jump to a molecule in which its energy will be smaller than E. The density of accessible
molecules will decrease after every exciton jump and, therefore, the distance to a next accessible
acceptor molecule will, on average, increase with time.

Exciton diffusion @ quencher
Exciton
V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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Probability density of havin% an acceptor over the distance 7 is given by the Poisson distribution as
T3
“LRN(E)

w(r) =4m’N(E)e *

where N(E) is the density of acceptor molecules, accessible for an exciton of an energy E.
If an exciton has the nearest accessible molecule over the distance 7, the probability p(7; ¢) that it has not
yet jumped to this molecule until the time 7 is also described by the Poisson formula
L TF 6 1
—(== T
p(r t) = e“’(’)t —e 77 Forster energy tra nsfer rate : v(r) = —(-2)°
? Tor

SNy

2
w(E,r,t)=4m"N(E)e r
The energy distribution of such states is given by the product of W(E, ¢, r) and the excitonic DOS distribution
g(E) as
_Amos

5 PN(E)-L(E )
S(E,r,t)=A(t)r"g(E)N(E)e * o
where A(7) is the normalization constant.

A(t) = e’f[ jo“’ drr’ j: dEg(E)N(E)e

Iy 4 tr
P N(E)-—(L£)° __
3 T

r]l

V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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Average number of jumps, 1, to be made by an exciton during its entire lifetime as

LI 1]

¥ T
n=-"+ J. di"exp| ——
T 0 T

. : |

T [ (AN, O AN, AT, 1. r(aY]
—5 |[1-exp| ————r |-———rexp|————r |[|exp| ——| —| |
r 3 3 3 J rir) |

In conjugated polymers, excitons are delocalized within conjugated molecular segments /. If deep traps are
distributed homogeneously, the probability w, that a given segment is an exciton quencher is determined by the
Poisson distribution 2
—m, "IN,
w, =l-e ™"
q 7,
The probability to be quenched at a quencher, I¥,, is given by Wq =
Tq + Tj
Estimating the exciton jump time as t; = v/ and using the Poisson distribution of probabilities yields the following
expression for the probability 1 that an exciton has not been quenched and eventually decayed radiatively
—mled
nt, +7e
_ q n+l
n=l————
n Tq +7

V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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5= [n Z'q Te ntl
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Fig. 10 Dopant concentration dependence
10" of the PL intensity in PhPPV films. Ex-
Average number perimental data are taken from Fig. 8 B, the
of jumps =4,0 solid line was calculated from Eq. (24).
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V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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The average exciton jump rate at a time ¢

v, (r)= Ecxp [—LJ

T

_ -l
“j-LIr ( 4nN, ) 4N, 4N, ] 10

xy | = | 1-exp| - P m——rexp ripexp|——|—| |
3T 3 3 3 ] T\r _|J

" 47N, 4T N, 4N, Y] (Y]
xf% I—cxp[— nq “r"}— n ’r'“cxp{— n‘ ’r’J;cxp —_[VLJ [.
ar 3 3 3 i r _|

Integrating over time from ¢ to infinity yields the average number of jumps between different conjugated
segments, n(?), to be made by an exciton after the time 7.

,,(;):/fojd;exp(—;)ﬁ dr []—cxp(—x)—xCXP(—X)]CXP[—fz:'} |

2
X

Hr

41 ¥
£ = L;N;;J .
hl

an' j—f [Ifcxp(fx)fx cxp(fx)]cxp£fﬂ;'}

X

V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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V. 1. Arkhipov and H. Bissler, phys. stat. sol. (a) 201, 11521187 (2004)
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FIG. 2. The dependence of the peak rrann:ent photocurrent  FIG. 4. The dependence of the transient photocurrent at 77 K on
.Up) nn_d dark cuurent (1a) on 'extemnl ficld at various ren’]peramreS external field is compared to that of the dark current at the same
n tensnle_ drawn, 01'1‘“““_1 PPV, I/1;=10. The top curve (O) shows temperature on a semilogarithmic graph. The arrows show the onset
that I, is temperature independent. The lower curves represent o e nonlinearity.

I, 300 K (@), 250 K (M), 200 K (), 150 K (A), 100 K
(a).
D. Moses, H. Okumoto, C. H. Lee, A. J. Heeger, T. Ohnishi and T. Noguchi, Phys. Rev. B 54, 4748 (1996).
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FIG. 5. The dependence of the normalized change in the tran- FIG. 6. The normalized change in the transient photocurrent
sient photocurrent AIFC:’Igc and the photoluminescence lumines- (Al /I,) is plotted ws the photoluminescence luminescence
cence quenching —AJ;(E)/I7 on external field in oriented PPV quenching [ — A;(E)/I%]. The solid curve is a fit to a power-law
(1/lg=2) at 77 K. The arrows denote the onset of the nonlinearity functional form of y=A+Bx". where y=AT pe -'If,t. and
in the photoconductivity (open circles) and the onset of the photo- x=—AI;(E)/I} : the best fit to the power law yields 3=0.78.
luminescence quenching (open squares).
D. Moses, H. Okumoto, C. H. Lee, A. J. Heeger, T. Ohnishi and T. Noguchi, Phys. Rev. B 54, 4748 (1996).
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* The fast transient photocurrent is independent of temperature (T);

» The fast transient photocurrent is linearly proportional to the light intensity;

* The fast transient photocurrent is linearly proportional to the external field (E) in the low-field
regime, at fields orders of magnitude below the onset of nonlinear transport.

= a carrier generation mechanism independent of external field.

At high fields, the transient and steady-state photoconductivity both increase exponentially with
E. The better the polymer chain alignment, the lower the threshold field for the onset of
nonlinear transport. The dependence of the nonlinearity on sample orientation and order, and
the appearance of a similar exponential component in the dark current imply that the
nonlinearity must arise from nonlinear carrier transport rather than nonlinear carrier generation;
the nonlinear increase in transient photocurrent with field results from a field-induced increase
in the transport mobility.

* The absence of correlation between Ac(£)/c,,(0) and Al,(E)/I;, (0) implies that field-induced
dissociation of strongly bound excitons is not the mechanism responsible for the luminescence
quenching.

* The relatively low field required for the onset of luminescence quenching implies a weak
exciton binding energy.

D. Moses, H. Okumoto, C. H. Lee, A. J. Heeger, T. Ohnishi and T. Noguchi, Phys. Rev. B 54, 4748 (1996).
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