

Comb Resonator Design (1)

Dong-il "Dan" Cho

School of Electrical Engineering and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

> Email: dicho@snu.ac.kr URL: http://nml.snu.ac.kr

Why is Comb Drive Type ?

• Principle :

Interlacing comb fingers create large capacitor area; electrostatically actuated suspended microstructures

- Features :
 - Fairly linear relationship between capacitance and displacement
 - Higher surface area/ capacitance than parallel plate capacitor
 - Electrostatic actuation: low power (no DC current)

Electrostatic Comb Drive Type

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

What is Comb Drive Resonator ?

- Comb drives combine mechanical and electrostatic issues :
 - Mechanical issues
 - Elasticity
 - Stress and strain
 - Resonance (natural frequency)
 - Damping
 - Electrical issues
 - Capacitance
 - Electrostatic forces
 - Electrostatic work and energy

Tang, Nguyen and Howe JMEMS 1989.

💦 Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Normal Stress and Strain

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Shear Stress and Strain

Shear Stress: force applied parallel to surface

 $\tau = F / A$

measured in N/m² or Pa,

Share Strain: ratio of deformation to length

 $\gamma = \Delta l / l$

Nano/Micro Systems & Controls Lab.

Poisson's Ratio

Tensile stress in x direction results in compressive stress in y and z direction (object becomes longer and thinner)

Poisson's Ratio:

 $v = \left| -\frac{\varepsilon_y}{\varepsilon_y} \right| = \left| -\frac{\text{transverse strain}}{\text{longitudinal strain}} \right|$

- < Materials >
- Homogeneous
- Isotropic
- Anisotropic
- Heterogeneous

Nano/Micro Systems & Controls Lab.

Mechanical Property for Poly Crystalline Silicon

Young's modulus for different deposition processes ۲

Doping Conditions		PSG diffusion doping			POCI ₃ diffusion doping							
Deposition temp		1000℃ 60min	1050℃ 30min	1000 ℃ 120min	850℃ 180min	850℃ 210min	850 ℃ 240min	950℃ 60min	950℃ 90min	950 ℃ 120min	1000℃ 60min	1000 ℃ 90min
Young's modulus (GPa)	625 ℃	154.3 ±2.3	155.1 ±1.8	151.1 ±3	149.6 ±2.6	150.7 ±2.5	153.1 ±2.1	149 ±1.7	151.1 ±1.1	150.4 ±1.1	152.6 ±1.4	148.6 ±2
	605 °C	159.3 ±3.4	160.5 ±1.7	161.8 ±1.4	162.6 ±0.6	161.9 ±2.3	163.1 ±0.4	161.2 ±2	155.6 ±5.6	161.8 ±1.4	157.1 ±3.7	156 ±5.9
	585 ℃	170.1 ±2.2	169.4 ±6.2	162.4 ±1.6	168.5 ±1.9	162.2 ±2.6	163.5 ±3.1	159 ±3.3	165.6 ±1.4	160.6 ±1	159.8 ±1	156.6 ±2

[Ref] S. Lee et al., IOP Journal of Micromechanics and Microengineering, vol. 8, no. 4, pp. 330-337, Dec. 1998.

Nano/Micro Systems & Controls Lab.

Silicon Crystall	ography _			
		Plane	()	{ }
		Direction	< >	[]
and a constant of the second s	rand range for the second seco	(101)	(110) (110)	(010)
Silicon (100)	Silicon (110)	Sil	icon (11	L 1)

Dong-il "Dan" Cho Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

Young's modulus

• Shear modulus

Poisson's ratio

[Ref] J. Kim et al., Proceedings of Transducers 2001, pp. 662-665, Munich, Germany, June 2001.

Nano/Micro Systems & Controls Lab.

- Torsional stiffness (1) •
 - Schematic of torsional spring

✓ The dimension splits of torsional springs

- Thickness(t) : 10 μm, 20 μm
- Length(I) : 40 μm
- Width(w) : 2 μm, 4 μm

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

The torsional stiffness on silicon (110) varies from -31.2 % to -26.6 %

Nano/Micro Systems & Controls Lab.

The torsional stiffness on silicon (100) varies from -1.6 % to 9.6 %.

Nano/Micro Systems & Controls Lab.

The torsional stiffness on silicon (111) varies from 1.7 % to 2.3 %.

Nano/Micro Systems & Controls Lab.

- Torsional stiffness (5) •
 - Summary for results

The average for the normalized maximum torsional stiffness variation ratio (%)

[Ref] D. Kwak et al., Proceedings of IMECE 2003, Washington D.C, USA, November 2003.

Nano/Micro Systems & Controls Lab.

Electrostatic Forces

- Parallel Plate Capacitor:
 - **Capacitance:** •

$$C = Q/V = \varepsilon_0 \varepsilon_r A/d$$

 ε_0 ; dielectric constant of free space

 $(\approx 8.854 \times 10^{-12} F/m)$

 ε_r ; dielectric permittivity

• Stored energy:

$$W = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} \left(\rightarrow C = \frac{\varepsilon A}{d} \right)$$

 $\mathcal{E} = \mathcal{E}_0 \mathcal{E}_r$ • Electrostatic force between plates:

$$F_{x} = -\frac{\partial W}{\partial x} = -\frac{1}{2}\frac{\varepsilon A}{d^{2}}V^{2} = -\frac{1}{2}\frac{CV^{2}}{d}$$

Nano/Micro Systems & Controls Lab.

Electrostatic Actuation

Positioning of capacitor plate: ٠

$$F_{el} = -\frac{1}{2}\varepsilon_0\varepsilon_r AV^2 / x^2 < C$$

 $F_{\rm S}=K(x-d_{\rm o})<0$

where d_0 : distance at rest

(no applied voltage)

Stable equilibrium when $F_{el} = F_{s}$ ٠ Fmechanical **▲** *X* $F_{el}(V)$ Kd_0 Felectrical anchored plate $-F_{S}$ ITITI d_0 х

Nano/Micro Systems & Controls Lab.

The higher V, the closer the plate is pulled in. $F_{el} \rightarrow \infty$ when $d \rightarrow 0$. What is the closest stable distance x_{min} ?

- F_{el} and F_s must be tangential: $\varepsilon_0 \varepsilon_r A / x^3 V^2 = K$, so $V^2 = K x^3 / \varepsilon_0 \varepsilon_r A$
- Substitute into F_{el}=F_s to get
 x_{min} = 2/3d₀
 can control x only from 2/3d₀
 to d₀

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Electrostatic Comb Drive

- Capacitance is approximately: $C = \varepsilon_0 \varepsilon_r A / d$ (L>>d)(ignore fringing field effect) $=2n\varepsilon_0\varepsilon_r lh/d$
- Change in capacitance when ۲ moving by Δx : $\Delta C = \varepsilon_0 \varepsilon_r \Delta A / d$ $=2n\varepsilon_{0}\varepsilon_{r}\Delta xh/d$
- Electrostatic force : $F_{a'} = 1/2V^2 dC / dx = n\varepsilon_0 \varepsilon_r h / dV^2$

Electric field distribution in com-finger gaps

Note: F_{el} is independent of $\triangle x$ over wide range (fringing field), and quadratic in V.

Nano/Micro Systems & Controls Lab.

Comb Drive Design

[Folded suspension type]

[Serpentine suspension type]

[U spring suspension type]

[Fishhook suspension type]

Nano/Micro Systems & Controls Lab.

Comb Drive Design (cont'd)

[Bent beam serpentine suspension type]

[Spiral spring suspension type]

Dong-il "Dan" Cho This material is intende

Nano/Micro Systems & Controls Lab.

Comb Drive Failure Modes

Comb drives require low stiffness in x direction but high stiffness in y, z direction as well as rotations.

Note: comb fingers are in unstable equilibrium with respect to the y direction.

Nano/Micro Systems & Controls Lab.

Summary of Translation Motion

Acceleration, velocity, distance •

 $a = \dot{v} = \ddot{x}$

Force, momentum F

$$p = mv = Fi$$

Kinetic energy

$$E=\frac{1}{2}mv^2$$

- Dynamic (spring, damper, mass) $F = Kx + b\dot{x} + m\ddot{x}$
- Oscillation (assume b=0)

$$f = \frac{1}{2\pi} \sqrt{\frac{K}{m}}$$
 (Hz) $\omega = \sqrt{\frac{K}{m}}$

Nano/Micro Systems & Controls Lab.

Summary of Rotation Motion

- Angular acceleration, angular velocity, angle $\alpha = \dot{\omega} = \ddot{\phi}$
- Torque, angular momentum $\vec{T} = \vec{r} \times \vec{F}$ $\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega}$
- Kinetic energy •

$$E=\frac{1}{2}I\omega^2$$

- Dynamic (moment of inertia) $T = K\phi + \beta\dot{\phi} + I\ddot{\phi}$
- Oscillation (assume b=0) $f = \frac{1}{2\pi} \sqrt{\frac{K}{I}}$

Nano/Micro Systems & Controls Lab.

Lumped-Parameter Model

- The dynamic of motion is based on the lumped-parameter model
 - Input: external fore F, output: displacement x

 $m\ddot{x}(t) + b\dot{x}(t) + Kx(t) = F_0 \sin(wt)$ where m: mass, b: damping, K: stiffness

Schematic microdevice

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Lumped-Parameter Model (cont'd)

Transfer function:

Schematic microdevice

Nano/Micro Systems & Controls Lab.

Resonators

- Analogy between mechanical and electrical system:
 - Mass m Inductivity L
 - Spring K Capacitance 1/C
 - Damping b Resistance R (depending where R is placed in circuit)
- Solution to 2nd order differential equation:

$$H(s) = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2} \text{ or } \frac{\omega_0^2}{s^2 + 2\xi\omega_0 s + \omega_0^2}$$

where $\omega_0 = 2\pi f_o$: natural frequency

$$\omega_0 = \sqrt{\frac{K}{m}}$$
: mechanical system,
 $\omega_0 = \sqrt{\frac{1}{LC}}$: electrical system

Q quality factor ($Q = 1/2\xi$, ξ : damping ratio)

Nano/Micro Systems & Controls Lab.

Mechanical Resonators

• Frequency and phase shift under damping:

$$x(t) = Ae^{-t/2\tau} \cos(\omega_1 t + \varphi)$$

where $\tau = \frac{m}{b}$: damping time
$$\omega_1 = \omega_0 \sqrt{1 - \frac{1}{4\omega_0^2 \tau^2}} = \omega_0 \sqrt{1 - \frac{b^2}{4Km}} = \omega_0 \sqrt{1 - \xi^2} = \omega_d$$

 φ : phase shift

• **Energy dissipation:** $E(t) = E_0 e^{-t/\tau}$

Dong-il "Dan" ChoNano/Micro Systems & Controls Lab.This material is intended for students in 4541.844 class in the Spring of 2009. Any other

usage and possession is in violation of copyright laws

Quality Factor

- Definition: Quality factor (Q factor) ۲
 - Ratio of stored energy and lost energy: —

$$Q = 2\pi \frac{E}{\left|\Delta E\right|} = 2\pi \frac{\tau}{T} = \omega_0 \tau$$

Mechanical system: $Q = \omega_0 \frac{m}{b} = \frac{\sqrt{Km}}{b}$ —

- Similar for electric systems: (a)
$$Q = \omega_0 \frac{L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

(b)
$$Q = \omega_0 RC = R \sqrt{\frac{C}{L}}$$

Nano/Micro Systems & Controls Lab.

Quality Factor (cont'd)

How fast does energy dissipate? ٠

$$\tau = \frac{Q}{\omega_0} = \frac{m}{b}$$
 (mechanical)

- What is the maximum amplitude for a given frequency? ٠
 - : At resonance, amplitude is Q times the DC response

Nano/Micro Systems & Controls Lab.

Summary: Mechanical/Electrical Resonator

- Mechanical
 - resonator :
- $m\ddot{x}(t) + b\dot{x}(t) + Kx(t) = 0$ *m*: mass, *b* damping, *K*: stiffness natural frequency $\omega_0 = \sqrt{K/m}$ (for small b)
- Torsional resonator :
- $I\ddot{\theta}(t) + b\dot{\theta}(t) + k\theta(t) = 0$
- *I*: moment of inertia, *b* damping, *k*: stiffness natural frequency $\omega_0 = \sqrt{k} / I$
- **Electrical** resonator :

 $L\ddot{q}(t) + R\dot{q}(t) + \frac{1}{C}q(t) = 0$ L: inductivity, R resistance, C: capacitance natural frequency $\omega_0 = \sqrt{1/LC}$

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Measurement

 V_{ρ} : DC bias Spring beam Electrostatic comb actuator Spectrum analyze V_d : drive signal at ω_d Electrostatic sense -Shuttle plate comb structure I_0 : output current $\propto V_P dC / dt$ Feedback Resonant frequency: via transimpedance amplifier Anchon t = thickness of spring beam $v_d(\omega_d)$ $v_c(\omega_c)$ W = width of spring beam V_c carrier signal at ω_c Carrier signal Drive signal L =length of spring beam E = Young's modulusv_p Drive DC bias Mn= mass of shuttle plate M = mass of comb structure

Output signal:

frequency spectrum includes $\omega_{d'}$, $\omega_{c'}$, but also $\omega_{c} \pm \omega_{d'}$

basis for frequency transfer

Nano/Micro Systems & Controls Lab.

Application of Comb Drive

Accelerometer (NML SNU)

Gyroscope (NML SNU)

Dong-il "Dan" Cho This material is intended Nano/Micro Systems & Controls Lab.

Application of Comb Drive (cont'd)

Micromirror (UC Davis & Stanford)

x/y stage (MiSA SNU)

Dong-il "Dan" Cho This material is intende

Nano/Micro Systems & Controls Lab.

Reference

- Lee, S. W., Cho, C. H., Kim, J. P., Park, S. J., Yi, S. W., Kim, J. J., and <u>Cho, D. I.</u>, "The Effects of Post-deposition Processes on Polysilicon Young's Modulus, IOP Journal of Micromechanics and Microengineering, vol. 8, no. 4, pp. 330-337, Dec. 1998.
- Kim, J. P., Cho, D. I., and Muller, R. S., "Why is (111) Silicon a Better Mechanical Material for MEMS," Proceedings of Transducers 2001: 11th International Conference on Solid State Sensors and Actuators, pp. 662-665, Munich, Germany, June 10-14, 2001.
- Kwak, D. H., Kim, J. P., Park, S. J., Ko, H. H., and Cho, D. I., "Why is (111) Silicon a better Mechanical Material for MEMS: Torsion Case," 2003 ASME International Mechanical Engineering Congress (IMECE 2003), Washington D.C., USA, Nov. 15-21, 2003.
- Lee, S. W., Park, S. J., Yi, S. W., Lee, S. C., Cho, D. I., Ha, B. J., Oh, Y. S., and Song, C. M., "Electrostatic Actuation of Surface/Bulk Micromachined Single-crystal Silicon Microresonators," Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1057-1062, Kyeongju, Korea, Oct. 17-21, 1999.
- Ko, H. H., Kim, J. P., Park, S. J., Kwak, D. H., Song, T. Y., Setiadi, D., Carr, W., Buss, J., and Cho, D. I., "A High-performance X/Y-axis Microaccelerometer Fabricated on SOI Wafer without Footing Using the Sacrificial Bulk Micromachining (SBM) Process," 2003 International Conference on Control, Automation and Systems (ICCAS 2003), pp. 2187-2191, Gyeongju, Korea, Oct. 22-25, 2003.
- Kim, C. H., Jeong, H. M., Jeon, J. U., Kim, Y. K., "Silicon micro XY-stage with a large area shuttle and no-etching holes for SPM-based data storage", Journal of Microelectromechanical Systems, vol. 12, issue 4, pp. 470 - 478, Aug 2003.
- Chang Liu, "Foundations of MEMS", Pearson, 2006.
- Nicolae O. Lobontiu, "Mechanical design of microresonators", McGraw-Hill, 2006.

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.