Lecture 6:

Comb Resonator Design (2) -Intro. to Mechanics of Materials

Dong-il "Dan" Cho

School of Electrical Engineering and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

Email: dicho@snu.ac.kr URL: http://nml.snu.ac.kr

Stress

Normal Stress: force applied to surface

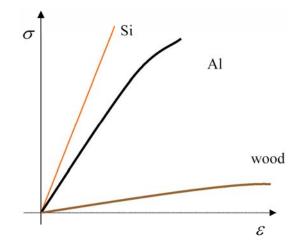
$$\sigma = F/A$$

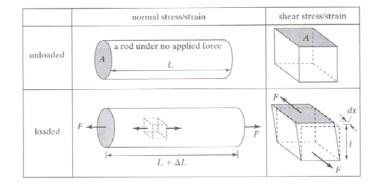
measured in N/m² or Pa, compressive or tensile

Shear Stress: force applied parallel to surface

$$\tau = F / A$$

measured in N/m² or Pa





Young's Modulus:

$$E = \sigma / \varepsilon$$

Hooke's Law:

$$K = F / \Delta l = EA / l$$

Strain

• Strain: ratio of deformation to length

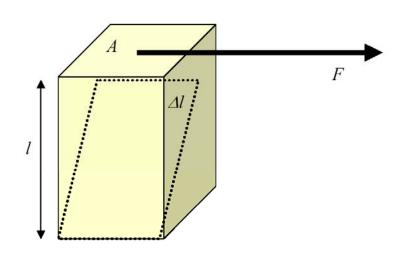
$$\gamma = \Delta l / l$$

Shear Modulus

$$G = \tau / \gamma$$

• **Relation among:** G, E, and v

$$G = \frac{E}{2(1+\nu)}$$



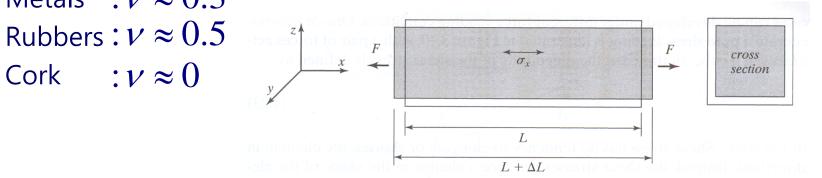
Poisson's Ratio

Tensile stress in x direction results in compressive stress in y and z direction (object becomes longer and thinner)

Poisson's Ratio:

$$v = \left| -\frac{\varepsilon_y}{\varepsilon_x} \right| = \left| -\frac{\varepsilon_z}{\varepsilon_x} \right| = \left| -\frac{\text{transverse strain}}{\text{longitudinal strain}} \right|$$

Metals : $v \approx 0.3$



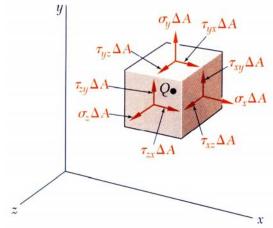
State of Stress

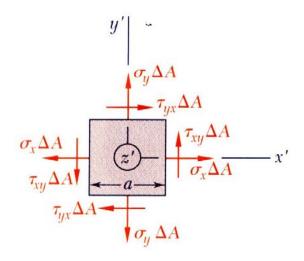
 The combination of forces generated by the stresses must satisfy the conditions for equilibrium:

$$\sum F_x = \sum F_y = \sum F_z = 0$$
$$\sum M_x = \sum M_y = \sum M_z = 0$$

$$\sum M_z = 0 = (\tau_{xy} \Delta A) a - (\tau_{yx} \Delta A) a$$
$$\tau_{xy} = \tau_{yx}, \quad \tau_{yz} = \tau_{zy} \text{ and } \tau_{yz} = \tau_{zy}$$

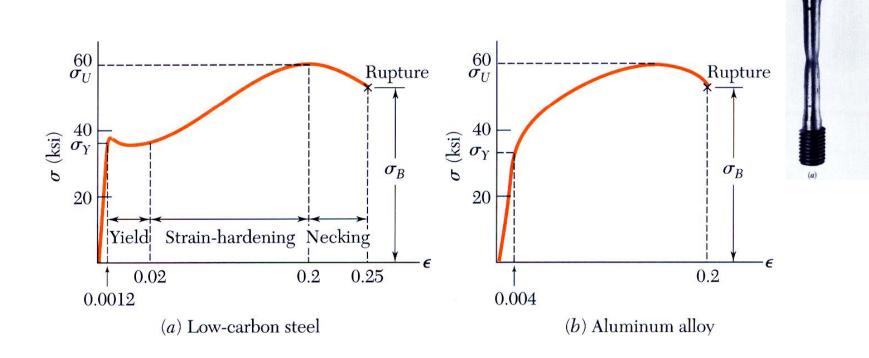
 Only 6 components of stress are required to define the complete state of stress.





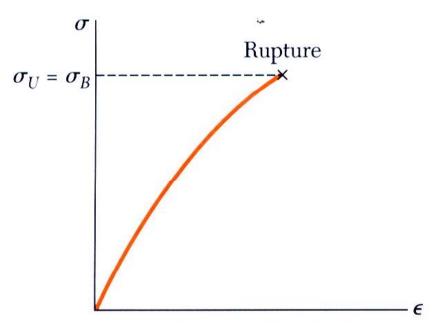
Stress and Strain Diagram

• Ductile Materials



Stress and Strain Diagram (cont'd)

• Brittle Materials



Stress-strain diagram for a typical brittle material

Deformations Under Axial Loading

• From Hooke's Law:

$$\sigma = E\varepsilon$$
 $\varepsilon = \frac{\sigma}{E} = \frac{P}{AE}$

• From the definition of strain:

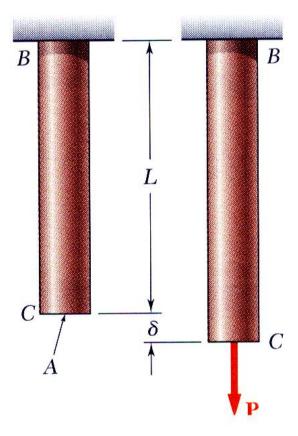
$$\varepsilon = \frac{\delta}{L}$$

Equating and solving for the deformation:

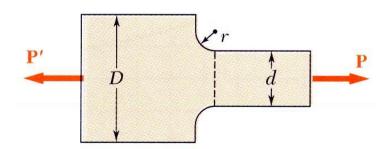
$$\delta = \frac{PL}{AE}$$

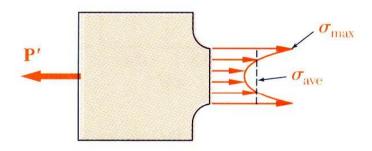
 With variations in loading, cross-section or material properties:

$$\delta = \sum_{i} \frac{P_{i}L_{i}}{A_{i}E_{i}}$$

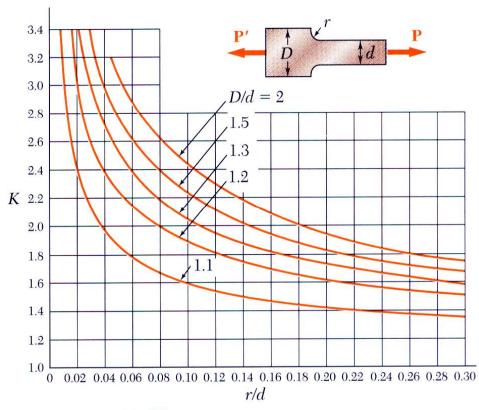


Stress Concentration: Fillet





$$K = \frac{\sigma_{\text{max}}}{\sigma_{\text{ave}}}$$



Flat bars with fillets

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

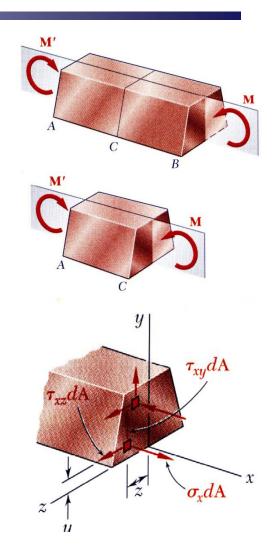
Symmetric Member in Pure Bending

- Pure Bending: Prismatic members subjected to equal and opposite couples acting in the same longitudinal plane
- Internal forces in any cross section are equivalent to a couple. The moment of the couple is the section bending moment

$$F_{x} = \int \sigma_{x} dA = 0$$

$$M_{y} = \int z\sigma_{x} dA = 0$$

$$M_{z} = \int -y\sigma_{x} dA = M$$



Strain Due to Bending

Consider a beam segment of length L.
 After deformation, the length of the neutral surface remains L.
 At other sections,

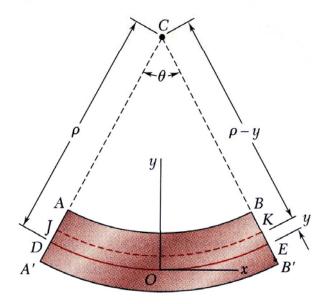
$$L' = (\rho - y)\theta$$

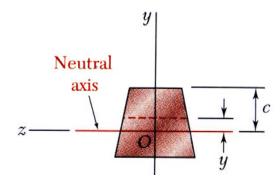
$$\delta = L' - L = (\rho - y)\theta - \rho\theta = -y\theta$$

$$\varepsilon_{x} = \frac{\delta}{L} = -\frac{y\theta}{\rho\theta} = -\frac{y}{\rho} \quad \text{(strain varies linearly)}$$

$$\varepsilon_m = \frac{c}{\rho}$$
 or $\rho = \frac{c}{\varepsilon_m}$

$$\varepsilon_{x} = -\frac{y}{c} \, \varepsilon_{m}$$





Stress Due to Bending

For a linearly elastic material,

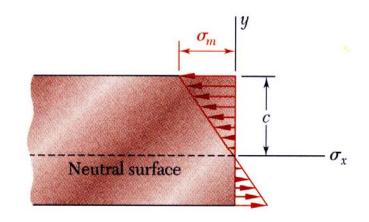
$$\sigma_x = E\varepsilon_x = -\frac{y}{c}E\varepsilon_m$$
$$= -\frac{y}{c}\sigma_m \quad \text{(stress varies linearly)}$$

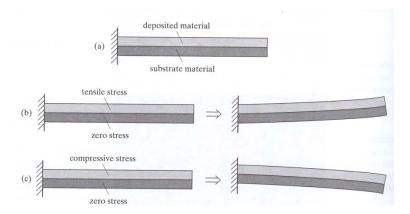
For static equilibrium,

$$F_x = 0 = \int \sigma_x dA = \int -\frac{y}{c} \sigma_m dA$$

$$0 = -\frac{\sigma_m}{c} \int y \ dA$$

First moment with respect to neutral plane is zero. Therefore, the neutral surface must pass through the section centroid.





Stress Due to Bending (cont'd)

• For static equilibrium, Bending Momentum M

$$M = \iint_A dF(h)h = \iint_W \int_{h=-\frac{t}{2}}^{\frac{t}{2}} (\sigma(h)dA)h$$

$$M = \int_{w}^{\infty} \int_{h=-\frac{t}{2}}^{\frac{t}{2}} (\sigma_{\max} \frac{h}{(\frac{t}{2})} dA) h = \frac{\sigma_{\max}}{(\frac{t}{2})} \int_{w}^{\frac{t}{2}} \int_{h=-\frac{t}{2}}^{h^{2}} h^{2} dA = \frac{\sigma_{\max}}{(\frac{t}{2})} I$$

$$s_{\text{max}} = \frac{Mt}{2EI}$$

where σ_{max} : magnitude of stress

I: moment of inertia of the cross-section

h: height of a beam

t: thickness of a beam

s_{max}: maximum longitudinal strain

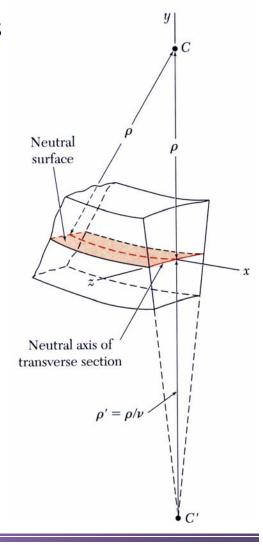
Deformations in a Transverse Cross Section

 Deformation due to bending moment M is quantified by the curvature of the neutral surface

$$\frac{1}{\rho} = \frac{\varepsilon_m}{c} = \frac{\sigma_m}{Ec} = \frac{1}{Ec} \frac{Mc}{I}$$
$$= \frac{M}{EI}$$

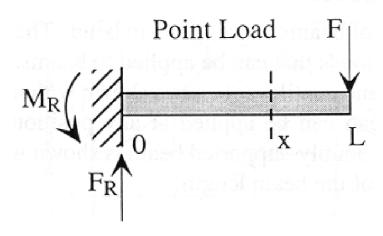
 Although cross sectional planes remain planar when subjected to bending moments, in-plane deformations are nonzero,

$$\varepsilon_{y} = -v\varepsilon_{x} = \frac{vy}{\rho}$$
 $\varepsilon_{z} = -v\varepsilon_{x} = \frac{vy}{\rho}$



Bending of Beams

Reaction Forces and Moments

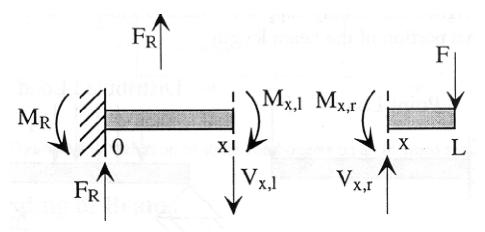


$$\sum F = 0 = F - F_R = 0$$
, therefore $F_R = F$

$$\sum M_0 = 0 = -M_R + FL = 0$$
, therefore $M_R = FL$

Bending of Beams (cont'd)

• Shear Forces and Moments (at any point in the beam)

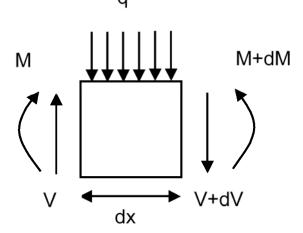


At every point along the beam equilibrium requires that,

$$\sum F = 0$$
 and $\sum M = 0$
 $\sum F = 0 = -F + V(x) = 0 \rightarrow \underline{V = F}$
 $\sum M_L = 0 = -M(x) + F(L - x) = 0 \rightarrow M(x) = -F(L - x)$

Bending of Beams – Differential Element

• Equilibrium of a fully loaded differential element:



For equilibrium, $\sum F = 0$ and $\sum M = 0$

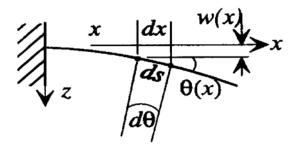
$$\sum F = 0 = qdx + (V + dV) - V = 0 \rightarrow q = -\frac{(V + dV) - V}{dx} = -\frac{dV}{dx}$$

$$\sum M = 0 = (M + dM) - M - (V + dV)dx - qdx \frac{dx}{2} = 0$$

$$\to V = \frac{(M + dM) - M}{dx} = \frac{dM}{dx} \text{ (neglecting } q(dx^2) \text{ terms)}.$$

Bending of Beams – Differential Element (cont'd)

• Approximation for radius of curvature:



An increment of beam length dx is related to ds via

$$cos(\theta) = \frac{dx}{ds}$$
, for small $\theta \rightarrow dx \approx ds$

The slope of the beam at any point is given by

$$\frac{dw}{dx} = \tan(\theta)$$
, for small $\theta \rightarrow \theta \approx \frac{dw}{dx}$

For a given radius of curvature, ds is related to $d\theta$ via

$$ds = \rho d\theta$$
, so for small $\theta \rightarrow \frac{d\theta}{dx} \approx \frac{1}{\rho} \approx \frac{d^2w}{dx^2}$

Bending of Beams – Differential Element (cont'd)

• Basic Differential Equations for Beam Bending:

For small
$$\theta \to \frac{d^2w}{dx^2} = \frac{1}{\rho}$$

Now that we have a relationship between w(x) and P.

We can express the moment and shear forces as a function of w(x).

Moments:
$$M = -\frac{d^2w}{dx^2}EI$$
, now recall $V = \frac{dM}{dx}$

Shear:
$$V = -\frac{d^3w}{dx^3}EI$$
, now recall $q = -\frac{dV}{dx}$

Uniform Load:
$$q = \frac{d^4w}{dx^4}EI$$

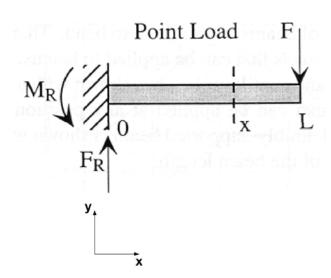
Analysis of Cantilever Beam

Cantilever Beam with Point Load:

$$\frac{d^2w}{dx^2} = -\frac{M}{EI} = \frac{F}{EI}(L - x)$$

Integrating the above equation twice, we have

$$w(x) = A + Bx + \frac{FL}{2EI}x^2 - \frac{F}{6EI}x^3$$



Boundary conditions:

$$w(0) = 0 \qquad \frac{dw}{dx}\bigg|_{x=0} = 0$$

Analysis of Cantilever Beam (cont'd)

Cantilever Beam with Point Load (cont'd):

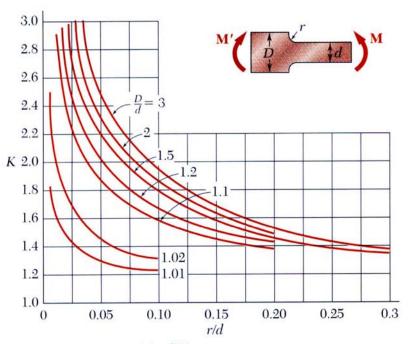
Using the boundary conditions, we obtain the beam deflection equation,

$$w(x) = \frac{FLx^2}{2EI}(1 - \frac{x}{3L})$$

Maximum deflection :
$$w(x) = \frac{FL^3}{3EI}$$

Spring constant:
$$k = \frac{3EI}{L^3} = \frac{EWH^3}{4L^3}$$

Stress Concentration: Fillet



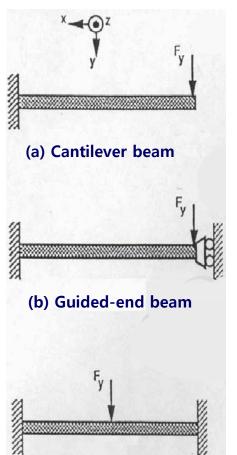
3.0 2.8 2.6 2.4 2.2 K 2.01.8 1.6 1.4 1.2 1.0 0.05 0.10 0.15 0.20 0.25 0.30 r/d

Flat bars with fillets

$$K = \frac{\sigma_{\text{max}}}{\sigma_{\text{ave}}}$$

Simple Beam Equations

• Relation between Load and deflection (1)- concentrated load



	Cantilever	Guided-end	Fixed-fixed
Elongation	$X = \frac{F_x L}{Ehw}$	$X = \frac{F_x L}{Ehw}$	$X = \frac{F_x L}{4Ehw}$
Deflection	$y = \frac{4F_y L^3}{Ehw^3}$	$y = \frac{F_y L^3}{Ehw^3}$	$y = \frac{1}{16} \frac{F_y L^3}{Ehw^3}$
	$z = \frac{4F_z L^3}{Ewh^3}$	$z = \frac{F_z L^3}{Ewh^3}$	$z = \frac{1}{16} \frac{F_z L^3}{Ewh^3}$

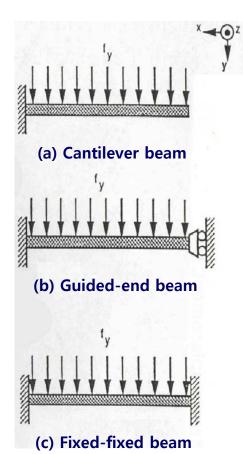
L: length of beamh: height of beam

w: width of beam

(c) Fixed-fixed beam

Simple Beam Equations (cont'd)

• Relation between Load and deflection (2)-Distributed load

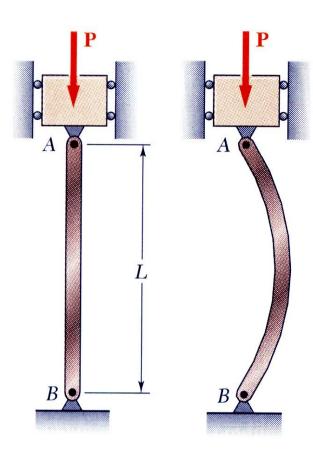


	Cantilever	Guided-end	Fixed-fixed
Elongation	$X = \frac{f_x L}{E}$	$X = \frac{f_{x}L}{E}$	$X = \frac{f_x L}{4E}$
Deflection	$y = \frac{3}{2} \frac{f_y L^4}{Ehw^3}$	$y = \frac{1}{2} \frac{f_y L^4}{Ehw^3}$	$y = \frac{1}{32} \frac{f_y L^4}{Ehw^3}$
	$z = \frac{3}{2} \frac{f_z L^4}{Ewh^3}$	$z = \frac{1}{2} \frac{f_z L^4}{Ewh^3}$	$z = \frac{1}{32} \frac{f_z L^4}{Ewh^3}$

L: length of beam h: height of beam

w: width of beam

Stability of Structures



- In the design of columns, cross-sectional area is selected such that
 - Allowable stress is not exceeded

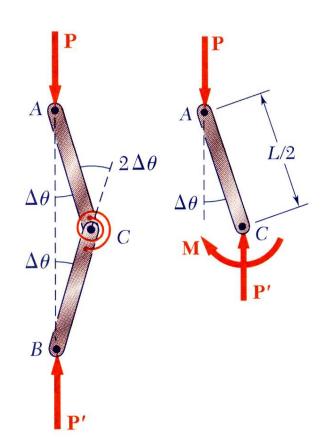
$$\sigma = \frac{P}{A} \le \sigma_{all}$$

- Deformation falls within specifications

$$\delta = \frac{PL}{AE} \le \delta_{spec}$$

 After these design calculations, may discover that the column is unstable under loading and that it suddenly becomes sharply curved or buckles.

Stability of Structures (cont'd)



 Consider model with two rods and torsional spring. After a small perturbation,

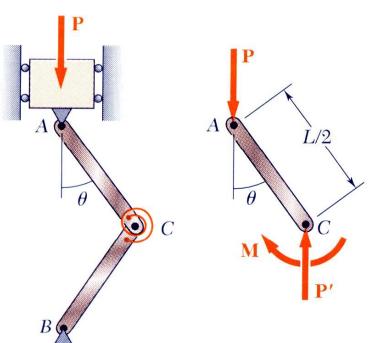
$$K(2\Delta\theta)$$
 = restoring moment
 $P\frac{L}{2}\sin\Delta\theta = P\frac{L}{2}\Delta\theta$ = destabilizing moment

 Column is stable (tends to return to aligned orientation) if

$$P\frac{L}{2}\Delta\theta < K(2\Delta\theta)$$

$$P < P_{cr} = \frac{4K}{L}$$

Stability of Structures (cont'd)



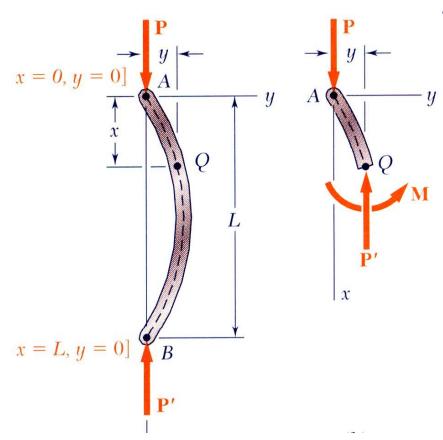
Assume that a load P is applied.
 After a perturbation, the system settles to a new equilibrium configuration at a finite deflection angle.

$$P\frac{L}{2}\sin\theta = K(2\theta)$$

$$\frac{PL}{4K} = \frac{P}{P_{cr}} = \frac{\theta}{\sin\theta}$$

• Noting that $\sin \theta < \theta$, the assumed configuration is only possible if $P > P_{cr}$

Euler's Formula for Pin-Ended Beams for Buckling



 Consider an axially loaded beam.
 After a small perturbation, the system reaches an equilibrium configuration such that

$$\frac{d^2y}{dx^2} = \frac{M}{EI} = -\frac{P}{EI}y \rightarrow \frac{d^2y}{dx^2} + \frac{P}{EI}y = 0$$

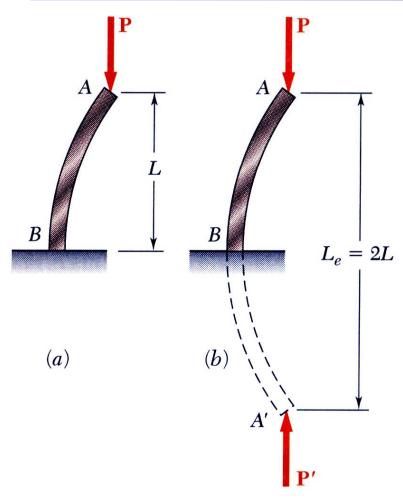
 Solution with assumed configuration can only be obtained if

$$P > P_{cr} = \frac{\pi^2 EI}{L^2}$$

$$\sigma = \frac{P}{A} > \sigma_{cr} = \frac{\pi^2 E(Ar^2)}{L^2 A} = \frac{\pi^2 E}{(L/r)^2}$$

where
$$r = \sqrt{I/A}$$

Extension of Euler's Formula



- A column with one fixed and one free end, will behave as the upper-half of a pin-connected column.
- The critical loading is calculated from Euler's formula,

$$P_{cr} = \frac{\pi^2 EI}{L_e^2}$$

$$\sigma_{cr} = \frac{\pi^2 E}{\left(L_e/r\right)^2}$$

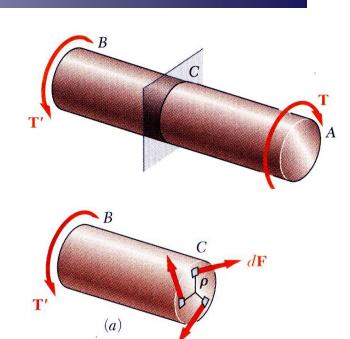
$$L_e = 2L = equivalent length$$

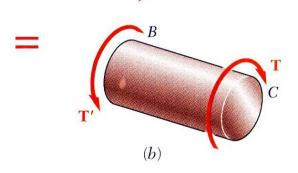
Net Torque Due to Internal Stresses

 Net of the internal shearing stresses is an internal torque, equal and opposite to the applied torque:

$$T = \int \rho \, dF = \int \rho (\tau \, dA)$$

 Unlike the normal stress due to axial loads, the distribution of shearing stresses due to torsional loads can not be assumed uniform.



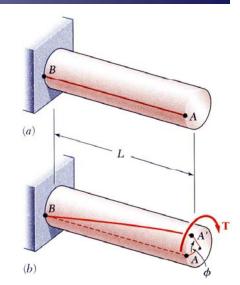


Shaft Deformations

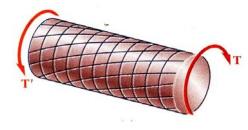
• From observation, the angle of twist of the shaft is proportional to the applied torque and to the shaft length:

$$\phi \propto T$$

$$\phi \propto L$$



- Cross-sections for hollow and solid circular shafts remain plain and <u>undistorted</u> because a circular shaft is axisymmetric.
- Cross-sections of noncircular (non-axisymmetric) shafts are <u>distorted</u> when subjected to torsion.



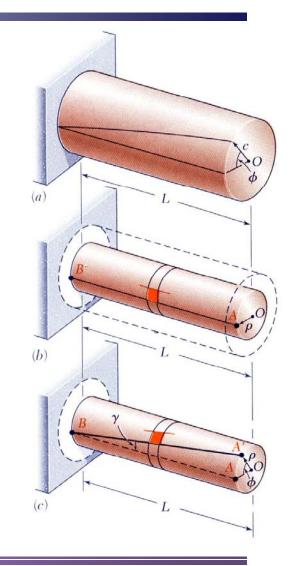
Shearing Strain

 Since the ends of the element remain planar, the shear strain is equal to angle of twist:

$$L\gamma = \rho\phi$$
 or $\gamma = \frac{\rho\phi}{L}$

Shear strain is proportional to twist and radius

$$\gamma_{\text{max}} = \frac{c\phi}{L}$$
 and $\gamma = \frac{\rho}{c}\gamma_{\text{max}}$



Stresses in Elastic Range

 Multiplying the previous equation by the shear modulus,

$$G\gamma = \frac{\rho}{c}G\gamma_{\text{max}}$$

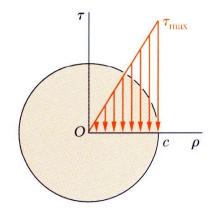
From Hooke's Law, $\tau = G\gamma$, so

$$\tau = \frac{\rho}{c} \tau_{\text{max}}$$

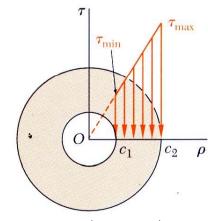
The shearing stress varies linearly with the radial position in the section.

$$T = \int \rho \tau \, dA = \frac{\tau_{\text{max}}}{c} \int \rho^2 \, dA = \frac{\tau_{\text{max}}}{c} J$$

$$\tau_{\text{max}} = \frac{Tc}{J}$$
 and $\tau = \frac{T\rho}{J}$



$$J = \frac{1}{2}\pi c^4$$



$$J = \frac{1}{2}\pi \left(c_2^4 - c_1^4\right)$$

Deformations Under Axial Loading

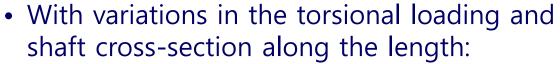
 The angle of twist and maximum shearing strain are related:

$$\gamma_{\text{max}} = \frac{C\phi}{L}$$

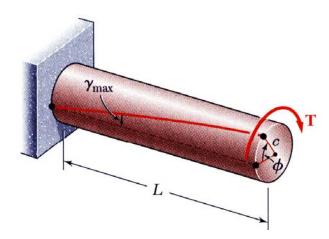
• The shearing strain and shear are related by Hooke's Law,

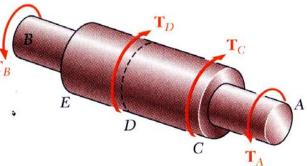
$$\gamma_{\text{max}} = \frac{\tau_{\text{max}}}{G} = \frac{Tc}{JG}$$

$$\phi = \frac{TL}{JG}$$

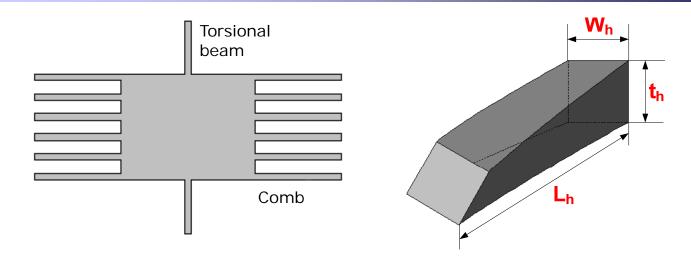


$$\phi = \sum_{i} \frac{T_{i}L_{i}}{J_{i}G_{i}}$$





Torsion of a Rectangular Bar



Assume that the torsional beam is isotropic material Torsional stiffness (when, $t_h > W_h$)

$$k = \frac{2}{3} \cdot \frac{G}{L_h} t_h w_h^3 \cdot \left[1 - \frac{192}{\pi^5} \cdot \frac{w_h}{t_h} \cdot \left(\sum_{n} \frac{1}{n^5} \tanh \left(\frac{1}{2} n \pi \cdot \frac{t_h}{w_h} \right) \right) \right], \quad n = 1, 3, 5...$$

[Ref] S. P. Timoshenko and J. N. Goodier, "Theory of Elasticity," McGraw-Hill, pp. 309 – 313, 1970.

Reference

- F. P. Beer, E. R. Johnston, and Jr. J.T. DeWlof, "Mechanics of Materials", McGraw-Hill, 2002.
- J. M. Gere and S. P. Timoshenko, "Mechanics of Materials", PWS Publishing Company, 1997.
- S. P. Timoshenko and J. N. Goodier, "Theory of Elasticity", McGraw-Hill, 1970.
- Chang Liu, "Foundations of MEMS", Pearson, 2006.
- Nicolae O. Lobontiu, "Mechanical design of microresonators", McGraw-Hill, 2006.