

Oxidation

Dong-il "Dan" Cho

School of Electrical Engineering and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

Oxide Formation Depending on Temperature

- T < 200 °C :
 - Anodization: ethylene glycol + KNO_3
 - Vacuum deposition : SiO_2 , $Si + O_2$
 - Sputtering: coverage, stoichiometric
 - Plasma deposition: H containing film
- 250 °C < T < 600 °C · SiH4
 - ~400 °C SiO₂ for passivation
 - doped SiO₂ by B_2H_6 , PH_3
- 600 °C < T < 900 °C
 - TEOS (tetra-ethyl-orthosilicate)
 - SiH₄ or SiCl₄ + CO₂
- 900 °C < T < 1200 °C: thermal oxidation
 - Dry and wet, or Cl incorporated oxidation

Thermal Oxidation Formation (1)

Due to the relationships in these reactions and the difference between the densities of silicon and silicon oxide, about 44 % of the silicon surface is "consumed" during oxidation

Silicon consumption for oxidation

Nano/Micro Systems & Controls Lab.

Thermal Oxidation Formation (2)

- There are two types of the thermal oxidation of SiO_2 .
- This type depends on which oxidant type is used (O_2 or H_2O)
 - Dry oxidation (the oxidant is O₂): Si_2 (solid) + O_2 (vapor) = SiO_2 (solid)
 - Wet oxidation (the oxidant is H_2O): Si_2 (solid) + $2H_2O(vapor) = SiO_2$ (solid) + $2H_2$
- The growth of oxide is the reaction of surface only
 - The chemical reaction occurs at the $Si SiO_2$ surface.
 - After the SiO_2 thickness begins to build up, the arriving oxygen must diffuse through the growing oxide layer to get to the silicon surface

Oxidation Furnace

Electric furnace, tubes and gas lines for oxidation •

Nano/Micro Systems & Controls Lab.

Thermal Oxide Properties

• Thermal oxide properties

DC Resistivity (Ω cm), 25°C Density (g/cm ³)	10 ¹⁴ - 10 ¹⁶ 2.27	Melting Point (°C) Molecular Weight	~1700 60.08
Dielectric Constant	3.8 - 3.9	Molecules (/cm ³)	2.3×10^{22}
Dielectric Strength (V/cm)	5 - 10 x 10 ⁶	Refrctive Index	1.46
Energy Gap (eV)	~ 8	Specific Heat (J/g °C)	1.0
Etch rate in BHF (Å/min)	1000	Stress in film on Si	2 - 4 x 10 ⁹
Infrared Absorption Peak	9.3	(dyne/cm²)	(compression)
Linear Expansion Coefficient (cm/ºC)	5.0 x 10 ⁻⁷	Thermal Conductivity (W/cmºC)	0.014

Characterization of Oxide Film

- Oxide thickness
 - UV-visible photospectrometer, ellipsometer, color chart
- Reflection index •
 - Ellipsometer
 - Depends on stoichiometric composition
 - SiO₂ (1.46) ~ Si(3.75)
- Etch rate
 - Oxide structure and composition

Etch rate depends on oxides (etch solution is HF:HNO₃:H₂O = 15:10:100)

Nano/Micro Systems & Controls Lab.

Usages of Oxide in Micromachining (1)

- Oxide hare mask for silicon etching •
 - Hard mask for silicon dry etching
 - Typical etch selectivity in deep RIE → Si:SiO2 = 200:1
 - Hard mask for silicon wet etching
 - High etch selectivity in KOH and TMAH wet etching \rightarrow >1000:1

Wet etch mask

Deep RIE mask

Nano/Micro Systems & Controls Lab.

Usages of Oxide in Micromachining (2)

- Sidewall passivation layer
 - Thermal oxide layer protects sidewall of silicon structures in wet etching or dry etching
 - CVD oxide is not suitable for this application, because the CVD oxide can not reach the bottom of deep trenches

SBM process: sidewall is protected by thermal oxide in anisotropic silicon etch

SCREAM process: sidewall is protected by thermal oxide in isotropic silicon etch

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Usages of Oxide in Micromachining (3)

- Electrical isolation layer ٠
 - Oxide is excellent electrical insulator for device isolation or interconnection line Top (ground) Active Cell Electrode (AI)

through-hole inter connection

Nano/Micro Systems & Controls Lab.

Usages of Oxide in Micromachining (4)

- Sacrificial layer in structure releasing
 - SOI (Silicon On Insulator) process
 - Structures are released by etching the sacrificial buried oxide layer
 - HEXSIL (High aspect ratio molded polysilicon) process
 - Poly-Si structure is demolded by etching away the sacrificial oxide

Typical SOI Process: (a) Oxide hard mask patterning. (b) Deep RIE. (c) HF release

Nano/Micro Systems & Controls Lab.

Usages of Oxide in Micromachining (5)

- Bonded SOI wafer
 - By using bonding chemistry between Si and SiO₂ or between SiO₂ and SiO₂ effectively, two Si wafers are tightly bonded with a SiO₂ layer
 - After one side of the Si bulk is thinned down properly with a desired active layer thickness, bonded SOI wafers are obtained
 - The fabrication process
 - The first step is to mate a **thermally** oxidized wafer on a non-oxidized wafer at room temperature.
 - The second step is to anneal the bonded pair to increase bonding strength.
 - The third step is to thin down one side SOI of the bonded pair to an appropriate thickness by grinding, etching and polishing.

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

oxidation

Usages of Oxide in CMOS

- Diffusion masking material
- Passivation layer
- Resistive layer($\rho \approx 1018 \ \Omega \cdot cm$)
- Doping source
- Gate oxide(gate capacitor)
 - gate length/oxide thickness: 1 μm/250 Å, 0.5 μm/150 Å,

0.2 µm/70 Å, 0.1 µm/30 Å

Field oxide

Nano/Micro Systems & Controls Lab.

Oxidation Kinetics

- Oxidation Kinetics Model by Deal and Grove:
 - Oxidation proceeds by *the diffusion of an oxidant* (molecular H₂O or O₂)
 - Reaction occurs at the Si/SiO_2 interface.
 - Si is consumed and the interface moves into Si
- Concentration of oxidants :
 - C_G : concentration of oxidant in the bulk of the gas
 - C_S : concentration of oxidant at the oxide surface
 - C_0 : equilibrium C of the oxidant at the oxide surface
 - C_i : concentration of the oxidant at growth interface
- Flux of oxidant :
 - F_1 : the bulk of the gas \rightarrow the gas/oxide interface
 - F₂ : the diffusion through the existing oxide
 - F₃ : the reaction. at the SiO2/Si

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Oxidation Kinetics (Flux in Gas Phase)

 F_1 : Due to the concentration difference between C_G and C_S

 $F_1 = h_G(C_G - C_S)$ h_G : mass transfer coefficient

From the ideal gas law PV = NRT
$$C = \frac{N}{V} = \frac{P}{kT}$$
 $C_G = \frac{P_G}{kT}$ $C_S = \frac{P_S}{kT}$

From Henry's law: "The concentration of a species dissolved in a solid at Equilibrium is proportional to the partial pressure of the species at the solid surface"

> K_{H} : Henrian Constant $C_0 = K_H P_{\varsigma} C^* = K_H P_G$ C: equilibrium concentration in the oxide

$$F_1 = h_G(C_G - C_S) = \frac{h_G}{kT}(P_G - P_S) = \frac{h_G}{K_H kT}(C^* - C_0)$$

$$\therefore \quad F_1 = h(C^* - C_0) \qquad h = h_G / K_H kT$$

Nano/Micro Systems & Controls Lab.

Oxidation Kinetics (Flux in Oxide and Silicon)

F₂ : Due to the concentration difference between C_o and C_i

From the Fick's first law

$$F_2 = -D\left(\frac{dC}{dx}\right) = -D\frac{(C_i - C_0)}{x_0 - 0} = D\frac{(C_0 - C_i)}{x_0}$$

D: diffusion coefficient of the oxidant in oxide

 F_3 : Due to the consumption by the interface reaction at SiO₂/Si

Proportional to the concentration of the oxidant at the interface

$$F_3 = k_S C_i$$
 k_S : chemical rxn. rate const.

Oxidation Kinetics (Steady-State Flux)

Under steady-state condition (no build-up or depletion of oxidizing species)

$$F_{1} = F_{2} = F_{3} = F \implies C_{i} = \frac{C^{*}}{1 + \frac{k_{s}}{h} + \frac{k_{s}x_{0}}{D}} \qquad C_{0} = \frac{(1 + k_{s}\frac{x_{0}}{D})C^{*}}{1 + \frac{k_{s}}{h} + \frac{k_{s}x_{0}}{D}}$$

Dong-il "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2009. Any other

usage and possession is in violation of copyright laws

Y.

Oxidation Kinetics (Rate Limiting Step)

I. When the diffusion constant D is very small,

II. When the diffusion constant D is very large,

Oxidation Kinetics (Oxidation Rate)

Oxidation Rate
$$\frac{dx_0}{dt} = \frac{F}{N} = \frac{1}{N} \frac{DC_0k_s}{D+k_sx_0}$$
 Boundary Condition $x = x_i$, when $t = 0$

N: # of oxidant molecules per unit volume $N(dry) = 2.3 \times 10^{22} \text{ cm}^{-3}$ $N(wet) = 2.3 \times 10^{22} \text{ cm}^{-3}$

$$\int_{x_i}^{x_0} (D+k_s x_0) dx_0 = \frac{DC_0 k_s}{N} \int_0^t dt$$
$$\frac{1}{2} k_s x_0^2 + Dx_0 = \frac{DC_0 k_s}{N} t + \frac{1}{2} k_s x_i^2 + Dx_i$$
$$x_0^2 + \frac{2D}{k_s} x_0 = \frac{2DC_0}{N} t + x_i^2 + \frac{2D}{k_s} x_i$$

 $\therefore x_0^2 + Ax_0 = B(t + \tau)$

$$A = 2D/k_{s}$$

$$B = 2DC_0/N,$$

$$\tau = (x_i^2 + Ax_i)/B$$

Nano/Micro Systems & Controls Lab.

Oxidation Kinetics (Oxidation Rate)

$$x_{0} = \frac{A}{2} \left(\sqrt{1 + \frac{t + \tau}{A^{2} / 4B}} - 1 \right)$$

I. For short time $(t + \tau \ll A^2/4B)$ $x_0 = B/A (t + \tau)$: Linear Growth Law linear rate constant B/A $B/A = C^*/N$: independent of D II. For long time $(t + \tau \gg A^2/4B)$ $x_0^2 = B(t + \tau)$: Parabolic Growth Law parabolic rate constant B $B = 2DC^*/N$ \rightarrow proportional to D (diffusion controlled)

Nano/Micro Systems & Controls Lab.

Factors Affecting Oxidation Rate

- Oxidant Species (Dry and Wet), temperature •
- Oxidant Gas Pressure
- Crystallographic Orientation of Si Substrate
- Substrate Doping
- Gas Ambient

Oxidation Rate (Temperature & Oxidant)

Nano/Micro Systems & Controls Lab.

Oxidation Rate (Pressure)

High pressure increases the oxide growth rate, by increasing the linear and parabolic rate constants. (The increase in the rate constants arises from the increased C^* .)

$$\frac{B}{A} = \frac{k_s C_0}{N} \cong \frac{k_s}{N} C^* = \frac{k_s}{N} K_H P_G$$
$$B = \frac{2DC_0}{N} \cong \frac{2D}{N} C^* = \frac{2D}{N} K_H P_G$$

Trade off: $\Lambda P = 1$ atm $\Leftrightarrow \Lambda T = 30$ °C. > Low temperature oxidation can be achieved by high pressure oxidation for the same oxidation rate.

Method

1. Pressurizing water-pumping

2. Producing water by pyrogenic system

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Oxidation Rate (Crystallographic Orientation)

- SiO2/Si interface is strongly related to the cystallographic orientation of Si.
 - i.e., # of available Si-Si bonds per unit area
- The growth rate ratio (v111/v100) decreases at high temperatures, since the parabolic rate constant is predominant.

Nano/Micro Systems & Controls Lab.

Oxidation Rate (Doping)

- Group III and V dopants enhance the oxidation rate when heavily doped.
- The oxidation rate depends on
 - > the $C_{\rm B}$ in SiO₂ for diffusion controlled oxidation (*B* dominates).
 - > the $C_{\rm B}$ at Si surface for reaction controlled oxidation (*B*/A dominates).

Nano/Micro Systems & Controls Lab.

Oxidation Rate (Additional Gases)

- Halogenic Oxidation:
 - The presence of chlorine mixed with O_2 gas during dry oxidation
 - Enhance the oxidation rate.
 - Improves device characteristics.

Nano/Micro Systems & Controls Lab.

Mask for Thermal Oxidation

• Oxidation can be masked with silicon nitride, which prevents O_2 diffusion

Color Chart (1)

Film Thickness (microns)	Order (5450 Å)	color and comments
0.050 0.075		Tan Brown
0.100 0.125 0.150 0.175	l	Dark violet to red violet Royal blue Light blue to metallic blue Metallic to very light yellow-green
0.200 0.225 0.250 0.275		Light gold or yellow slightly metallic Gold with slight yellow orange Orange to melon Red-violet
0.300 0.310 0.325 0.345 0.350 0.365 0.375 0.390		Blue to violet-blue Blue Blue to blue-green Light green Green to yellow-green Yellow-green Green-yellow Yellow

Nano/Micro Systems & Controls Lab.

Color Chart (2)

Film Thickness (microns)	Order (5450Å)	color and comments
0.412		Light orange
0.426		Carnation pink
0.443		Violet-red
0.465		Red-violet
0.476		Violet
0.480		Blue-violet
0.493		Yellow
0.502		Blue-green
0.520		Green(broad)
0.540		Yellow-green
0.560		Green-yellow
0.574		Yellow to "yellowish"
0.585		Light orange or yellow to pink borderline
0.60		Carnation pink
0.63		Violet-red
0.68		"Bluish"

Color Chart (3)

Film Thickness (microns)	Order (5450 Å)	color and comments
<mark>0.72</mark> 0.77	IV	Blue-green to green (quite broad) "Yellowish"
0.80 0.82 0.85 0.86 0.87 0.89		Orange(rather broad for orange) Salmon Dull,light red-violet Violet Blue-violet Blue
0.92 0.95 0.97 0.99	V	Blue-green Dull yellow-green Yellow to "yellowish" Orange
1.00 1.02 1.05 1.06 1.07		Carnation pink Violet-red Red-violet Violet Blue-violet

Color Chart (4)

Film Thickness (microns)	Order (5450 Å)	color and comments
1.10		Green
1.11		Yellow-green
1.12	VI	Green
1.18		Violet
1.19		Red-violet
1.21		Violet-red
1.24		Carnation pink to salmon
1.25		Orange
1.28		"yellowish"
1.32	VII	Sky blue to green-blue
1.40		Orange
1.45		Violet
1.46		Blue-violet
1.50	VIII	Blue
1.54		Dull yellow-green

Rapid Thermal Oxide (RTO)

Furnace	RTP
Batch	Single-wafer
Hot wall	Cold wall
Long time	Short time
Small dT/dt	Large dT/dt
	(100 - 300 °C/sec)
High cycle time	Low cycle time
Environment	Wafer temp.
temp. measure	
Issues	
Thermal budget	Uniformity
Particles	Repeatability
Atmosphere	Throughput
	Wafer stress
	Absolute temp.

Nano/Micro Systems & Controls Lab.

Wet Oxidation Recipe

• Standard wet oxidation recipe in ISRC

			1000℃					
STANDBY								900 °C
900%	PUSH	PRE-HEAT	RAMP UP	STABILIZ,	PRE OXID.	WET OXID.	RAMP DOWN	PULL
Nz	5,00 SLPM	5,00 SLPM	5,00 SLPM	5.00 SLPM	1 1 1	1 1 1	5,00 SLPM	5.00 SLPM
LOW O2	0,2 SLPM	0,2 SLPM	0,2 SLPM	0,2 SLPM		1 1 1 1	1 1 1 1	1 1 1 1
HIGH O₂		1 1 1 1	1 1 1 1		4,50 SLPM	4,50 SLPM		1 1 1 1
H2		1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	6,75 SLPM		
TIME	10 MIN	10 MIN	20 MIN	5 MIN	ЗMIN	144 MIN	30 MIN	10 MIN

Dong-il "Dan" ChoNano/Micro Systems & Controls Lab.This material is intended for students in 4541.844 class in the Spring of 2009. Any other

usage and possession is in violation of copyright laws

Furnace at ISRC (CMOS)

- Model No : SELTRON CO. SHF Series
 - Annealing, Wet Oxidation, Dry Oxidation, Reflow, POCl₃, Drivein, Alloy
 - Wet oxidation
 - Gas : H_2 , O_2 , N_2
 - Process temp. : 800~1000 ℃
 - Wafer size/quantities : 6" or 4" wafer/ 1~25
 - Temperature uniformity : $\pm 1 \ ^{\circ}C$
 - Oxide thickness uniformity : ±1%

Furnace at ISRC (MEMS)

- Model No : Sungjin Semitech JSF-2000-T43
 - Annealing , Wet oxidation , Reflow , $POCI_3$
 - Wet oxidation
 - Gas : H_2 , O_2 , N_2
 - Process temp. : 900~1000 $^\circ\!\mathrm{C}$
 - Wafer size/quantities : 4"wafer/ 1~25
 - Temperature uniformity : ±1 $^{\circ}\!\!C$
 - Oxide thickness uniformity: ±1%

Furnace at ISRC (mini)

- Model No : Seoul Electron SMF-800
 - Dry oxidation, Annealing, Alloy
 - Dry Oxidation : <2000Å, 1000°C (gas $: N_{2'} O_2$)
 - Annealing : N+, P+ annealing, <1000°C

RTP/RTA at ISRC (CMOS)

- RTP (Rapid Thermal Process)
 - Model No : NYMTECH.CO., RTA200H-SVP1
 - RTA (Rapid Thermal Annealing), RTO (Rapid Thermal Oxidation), RTN (Rapid Thermal Nitridation)
 - Rapid annealing : < 1250°C
 - Temperature uniformity : ± 2.0°C
 - MFC (N₂, O₂, Ar, NH₃)
- RTA (Rapid Thermal Annealing)
 - Model No : Korea Vacuum Tech., KVRTP-020
 - Annealing, Alloy
 - Wafer Size : 4"~6"wafer, chip
 - Temperature uniformity : ±5°C
 - Process time : < 60sec

RTP (Rapid Thermal Process)

RTA (Rapid Thermal Annealing)

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Reference

- J. D. Lee, "Silicon Integrated Circuit microfabrication technology," 2nd edition
- Gregory T. A. Kovacs, "Micromachined Transducers Sourcebook," 1st edition
- S. Lee, S. Park, and D. Cho, "The Surface/Bulk Micromachining (SBM) Process: A New Method for Fabricating Released Microelectromechani-cal Systems in Single Crystal Silicon", Microelectromechanical Systems, Journal of, Vol. 8, no. 4, pp. 409-416, 1999
- K. A. Shaw, Z. L. Zhang, and N. C. MacDonald, "SCREAM I: A single mask, single-crystal silicon, reactive ion etching process for microelectromechanical structures," Sens. Actuators A, vol. 40, p. 63-70, 1994

