
Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-1

Chapter 3: Dataflow Modeling

Prof. Soo-Ik Chae

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-2

Objectives

After completing this chapter, you will be able to:
 Describe what is the dataflow modeling
 Describe how to use continuous assignments
 Describe how to specify delays in continuous assignments
 Describe the data types allowed in Verilog HDL
 Describe the operation of the operators used in Verilog HDL
 Describe the operands may be used associated with a

specified operator

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-3

Why Dataflow ?

 Rationale of dataflow: any digital system can be constructed
by interconnecting registers and a combinational logic put
between them for performing the necessary functions.
 Dataflow provides a powerful way to implement a design.
 Logic synthesis tools can be used to create a gate-level

circuit from a dataflow design description.
 RTL (register transfer level) is a combination of dataflow

and behavioral modeling.

pipelining

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-4

Assignments

 Two basic forms of assignments
 Continuous assignment: assign values to nets
 Procedural assignment: assign values to variables

 Two additional forms of assignments: procedural continuous
assignments
 assign/deassign
 force/release

 An assignment consists of two parts: a LHS and a RHS
separated by = or <=
 RHS: any expression that evaluates to a value to which

the LHS value is to be assigned.
 LHS: can take one of the forms given in Table 30.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-5

Assignments

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-6

Continuous Assignments

 Continuous assignment: the most basic statement of dataflow
modeling.
 It is used to drive a value onto a net.
 It is always active.
 Provides a way to model combinational logic without

specifying an interconnection of gates. Instead, it
specifies the logical expression that drives the net.

 It can only update values of net data types such as wire,
triand, etc.

 This assignment shall occur whenever the value of the
right-hand side changes.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-7

Continuous Assignments

 A continuous assignment begins with the keyword assign.

assign net_lvalue = expression;

assign net1 = expr1,
net2 = expr2,
...,
netn = exprn;

 net_lvalue is a scalar or vector net, or their concatenation.
 RHS operands can be variables or nets or function calls.
 Registers or nets can be scalar or vectors.
 Delay values can be specified.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-8

Continuous Assignments

 Assignments on nets shall be continuous and automatic
 This means that
 whenever an operand in the RHS expression changes

value, the whole RHS shall be evaluated and if the new
value is different from the previous value, then the new
value shall be assigned to the LHS.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-9

Continuous Assignments

 An implicit continuous assignment
 is the shortcut of declaring a net first and then writing a

continuous assignment on the net.
 is always active.
 can only have one implicit declaration assignment per net.

wire out; // net declaration
assign out = in1 & in2; // regular continuous assignment

wire out = in1 & in2; // implicit continuous assignment

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-10

Continuous Assignments

 An implicit net declaration
 is a feature of Verilog HDL.
 will be inferred for a signal name when it is used to the

left of a continuous assignment.

Note that: out is not declared as a wire, but an implicit
wire declaration for out is done by the simulator.

wire in1, in2;
assign out = in1 & in2;

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-11

Delays

 Three ways of specifying delays
 Regular assignment delay
 Implicit continuous assignment delay
 Net declaration delay

 Regular assignment delays
 The delay value is specified after the keyword assign.
 The inertial delay model is used (default model).

wire in1, in2, out;
assign #10 out = in1 & in2;

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-12

Delays

 Implicit continuous assignment delays
 An implicit continuous assignment is used to specify both

the delay and assignment on the net.
 The inertial delay model is used (default model).

// implicit continuous assignment delay
wire #10 out = in1 & in2; // the delay is part of the continuous assignment

// and is not a net delay.
// regular assignment delay
wire out;
assign #10 out = in1 & in2;

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-13

Continuous assignment and delays

 In situations where a RHS operand changes before a previous change
has had to propagate to the LHS, then the following steps are taken.

1. The value of the RHS expression is evaluated
2. If the RHS value differs from the value currently scheduled to

propagate the LHS, then the currently scheduled propagation event
is descheduled.

3. If the new RHS value equals the current LHS value, no event is
scheduled.

4. If the new RHS value differs from the current LHS value, a delay is
calculated in the standard way using the current value of the LHS,
the newly calculated value of the RHS, and the delays indicated on
the statement; a new propagate event is then scheduled to occur
delay time units in the future.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-14

Delays

 Net declaration delays
 A net can be declared associated with a delay value.
 Net declaration delays can also be used in gate-level

modeling.

// net delays
wire #10 out; // transport delay
assign out = in1 & in2;

// regular assignment delay
wire out;
assign #10 out = in1 & in2; // inertial delay

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-15

The Basis of Dataflow Modeling

 The essence of dataflow modeling is
expression = operators + operands
 Operands can be any one of allowed data types.
 Operators act on the operands to product desired results.

Operands:
- constants
- integers
- real numbers
- nets
- registers

- time
- bit-select
- part-select
- memories
- function calls

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-16

Operators

LogicalShift

Arithmetic

+: add
- : subtract
* : multiply
/ : divide
% : modulus

Bitwise

~ ：N OT

Reduction

&：A N D

| ：OR

^：X OR

~^, ^~：X N OR

&：A N D

|：OR

~&：N A N D

~|：N OR

^：X OR

<< : left shift
>> : right shift

Relational

>= : greater than or equal
<=: less than or equal

>: greater than
<: less than

==: equality
!=: inequality

&&: AND
|| : OR
! : NOT

case equality

===: equality
!==: inequality

Miscellaneous

{ , }: concatenation
{c{ }}: replication
? : conditional

<<< : arithmetic left shift
>>>: arithmetic right shift

**: exponent ~^, ^~：X N OR

Equality

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-17

Precedence of Operators

Operators
Unary

Multiply, divide, modulus

Symbols
+ - ! ~

* / %

Precedence
Highest

Add, subtract + -
<< >> <<< >>>Shift

Relational < <= > >=
== != === !==Equality

Reduction

Logical

& ~&
^ ^~
| ~|
&&
||

Conditional ?: Lowest

Exponent **

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-18

Operands

 The operands in an expression can be any of:
 constants,
 parameters,
 nets,
 variables (reg, integer, time, real, realtime),
 bit-select,
 part-select,
 array element, and
 function calls

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-19

Constants

 Three types of constant in Verilog HDL are
 integer: a general-purpose variable used of manipulating

quantities that are not regarded as hardware registers.
 real, and
 string

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-20

Constants

 Integer constant
 simple decimal form

-123 // is decimal -123
12345 // is decimal 12345

 base format notation
16’habcd // a 16-bit hexadecimal number
2006 // unsized number--a 32-bit decimal number
4’sb1001 // a 4-bit signed number, it represents -7.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-21

Constants

 Real constant
 decimal notation

1.5 //
.3 // illegal ---
1294.872 //

 scientific notation
15E12
32E-6
26.176_45_e-12

 String constant
 A string is a sequence of characters enclosed by double

quotes ("").
 It may not be split into multiple lines.
 One character is represented as an 8-bit ASCII code.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-22

Data Types

 Two classes of data types:
 nets: Nets mean any hardware connection points.
 variables: Variables represent any data storage elements.

 Variable data types
 reg
 integer
 time
 real
 realtime

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-23

Variable Data Types

 A reg variable
 holds a value between assignments.
 may be used to model hardware registers.
 need not actually represent a hardware storage element.

reg a, b; // reg a, and b are 1-bit reg
reg [7:0] data_a; // an 8-bit reg, the msb is bit 7
reg [0:7] data_b; // an 8-bit reg, the msb is bit 0
reg signed [7:0] d; // d is an 8-bit signed reg

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-24

The integer Variable

 The integer variable
 contains integer values.
 has at least 32 bits.
 is treated as a signed reg variable with the lsb being bit 0.

integer i,j; // declare two integer variables
integer data[7:0]; // array of integer

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-25

The time Variable

 The time variable
 is used for storing and manipulating simulation time

quantities.
 is typically used in conjunction with the $time system

task.
 holds only unsigned value and is at least 64 bits, with the

lsb being bit 0.
time events; // hold one time value
time current_time; // hold one time value

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-26

The real and realtime Variables

 The real and realtime variables
 cannot use range declaration and
 their initial values are defaulted to zero (0.0).

real events; // declare a real variable
realtime current_time; // hold current time as real

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-27

Vectors

 A vector (multiple bit width) describes a bundle of signals as
a basic unit.
 [high:low] or [low:high]
 The leftmost bit is the MSB.
 Both nets and reg data types can be declared as vectors.

 The default is 1-bit vector or called scalar.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-28

Bit-Select and Part-Select

 Bit-Select and Part-Select
 integer and time can also be accessed by bit-select or

part-select.
 real and realtime are not allowed to be accessed by bit-

select or part-select.
 Constant part select: data_bus[3:0], bus[3]
 Variable part select:

[<starting_bit>+:width]: data_bus[8+:8]
[<starting_bit>-:width]: data_bus[15-:8]

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-29

Array and Memory Elements

 Array and Memory Elements
 all net and variable data types are allowed to be declared

as multi-dimensional arrays.
 an array element can be a scalar or a vector if the element

is a net or reg data type.

wire a[3:0]; // a scalar wire array of 4 elements
reg d[7:0]; // a scalar reg array of 8 elements
wire [7:0] x[3:0]; // an 8-bit wire array of 4 elements
reg [31:0] y[15:0]; // a 32-bit reg array of 16 elements
integer states [3:0]; // an integer array of 4 elements
time current[5:0]; // a time array of 6 elements

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-30

The Memory

Memory
 Memory is used to model a read-only memory (ROM), a

random access memory (RAM), and a register file.
 Reference to a memory may be made to a whole word or

a portion of a word of memory.

reg [3:0] mema [7:0]; // 1-d array of 4-bit vector
reg [7:0] memb [3:0][3:0]; // 2-d array of 8-bit vector
wire sum [7:0][3:0]; // 2-d array of scalar wire

mema[4][3] // the 3rd bit of 4th element
mema[5][7:4] // the higher four bits of 5th element
memb[3][1][1:0] // the lower two bits of [3][1]th element
sum[5][0] // [5][0]th element

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-31

Bitwise Operators

 Bitwise operators
 They perform a bit-by-bit operation on two operands.
 A z is treated as x in bit-wise operation.
 The shorter operand is zero-extended to match the length

of the longer operand.

Symbol
~
&
|
^

~^, ^~

Operation
Bitwise negation
Bitwise and
Bitwise or
Bitwise exclusive or
Bitwise exclusive nor

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-32

A 4-to-1 MUX

module mux41_dataflow(i0, i1, i2, i3, s1, s0, out);
// Port declarations
input i0, i1, i2, i3;
input s1, s0;
output out;
// Using basic and, or , not logic operators.
assign out = (~s1 & ~s0 & i0) |

(~s1 & s0 & i1) |
(s1 & ~s0 & i2) |
(s1 & s0 & i3) ;

endmodule

 un8_out

 un1_out

 un4_out

 un6_out

 out

out

s0
s1

i3

i2

i1

i0

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-33

Arithmetic Operators

 Arithmetic operators
 If any operand bit has a value x, then the result is x.
 The operators + and – can also used as unary operators to

represent signed numbers.
 Modulus operators produce the remainder from the

division of two numbers.
 In Verilog HDL, 2’s complement is used to represent

negative numbers. Symbol
+
-
*
/

%

Operation
Addition
Subtraction
Multiplication
Division

Modulus
** Exponent (power)

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-34

Concatenation and Replication Operators

 Concatenation operators
 The operands must be sized.
 Operands can be scalar nets or registers, vector nets or

registers, bit-select, part-select, or sized constants.
 Example: y = {a, b[0], c[1]};

 Replication operators
 They specify how many times to replicate the number

inside the braces.
 Example: y = {a, 4{b[0]}, c[1]};

Symbol
{ , }

{const_expr{}}

Operation
Concatenation
Replication

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-35

A 4-bit Full Adder

module four_bit_adder(x, y, c_in, sum, c_out);
// I/O port declarations
input [3:0] x, y; // declare as a 4-bit array
input c_in;
output [3:0] sum; // declare as a 4-bit array
output c_out;

// Specify the function of a 4-bit adder.
assign {c_out, sum} = x + y + c_in;

endmodule
 sum_1[4:0]

+
 sum[3:0]

[3:0]

[4:0][3:0] [3:0][3:0]

c_out[4]

sum[3:0][3:0]

c_in

y[3:0] [3:0]

x[3:0] [3:0]

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-36

A multiply and accumulate (MAC) unit

// an example to illustrate arithmetic operators
module multiplier_accumulator (x, y, z, result);
input [7:0] x, y, z;
output [15:0] result;

assign result = x * y + z;
endmodule

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-37

Result size of an expression
// an example to illustrate arithmetic operators
module arithmetic_operators (a, b, e, c, d);
input [3:0] a, b;
input [6:0] e;
output [3:0] c;
output [7:0] d;

assign c = a + b;
assign d = a + b + e;

endmodule

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-38

Mixed signed and unsigned operands

// an example to illustrate arithmetic operators
module arithmetic_operators (a, b, e, c, d);
Input signed [3:0] a, b;
input [6:0] e;
output signed [3:0] c;
output [7:0] d;

assign c = a + b;
assign d = a + b + e;

endmodule

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-39

A 4-bit two’s complement adder

module twos_adder(x, y, c_in, sum, c_out);
// I/O port declarations
input [3:0] x, y; // declare as a 4-bit array
input c_in;
output [3:0] sum; // declare as a 4-bit array
output c_out;
wire [3:0] t; // outputs of xor gates

// Specify the function of a two's complement adder
assign t = y ^ {4{c_in}};
assign {c_out, sum} = x + t + c_in;

endmodule

 t[3:0]
 sum_1[4:0]

+
 sum[3:0]

[3:0]
[3:0]

[3:0]

[4:0][3:0] [3:0][3:0]

c_out[4]

sum[3:0][3:0]

c_in

y[3:0] [3:0]
x[3:0] [3:0]

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-40

Reduction Operators

 Reduction operators
 perform only on one vector operand.
 carry out a bit-wise operation on a single vector operand

and yield a 1-bit result.
 work bit by bit from right to left.

Symbol
&

~&
|

~|
^

Operation
Reduction and
Reduction nand
Reduction or
Reduction nor
Reduction exclusive or

~^, ^~ Reduction exclusive nor

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-41

Reduction Operators --- A 9-Bit Parity Generator

module parity_gen_9b_reduction(x, ep,op);
// I/O port declarations
input [8:0] x;
output ep, op;
// dataflow modeling using reduction operator
assign ep = ^x; // even parity generator
assign op = ~ep; // odd parity generator
endmodule

 ep

 op

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

op

epx[8:0] [8:0]

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-42

Reduction Operators --- An All-Bit-Zero/One detector

module all_bit_01_detector_reduction(x, zero,one);
// I/O port declarations
input [7:0] x;
output zero, one;
// dataflow modeling

assign zero = ~(|x); // all-bit zero detector
assign one = &x; // all-bit one detector

endmodule

one

 un1_zero

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

x[7:0] [7:0]

one

zero

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-43

Logical Operators

 Logical operators
 They always evaluate to a 1-bit value, 0, 1, or x.
 If any operand bit is x or z, it is equivalent to x and

treated as a false condition by simulators.

Symbol
!

&&
||

Operation
Logical negation
Logical and
Logical or

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-44

Relational Operators

 Relational operators
 They return logical value 1 if the expression is true and 0

if the expression is false.
 The expression takes a value x if there are any unknown

(x) or z bits in the operands.

Symbol
>
<

>=
<=

Operation
Greater than
Less than
Greater than or equal
Less than or equal

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-45

Equality Operators

 Equality operators
 compare the two operands bit by bit, with zero filling if

the operands are of unequal length.
 return logical value 1 if the expression is true and 0 if the

expression is false.
 The operators (==, !=) yield an x if either operand has x or z

in its bits.
 The operators (===, !==) yield a 1 if the two operands match

exactly and 0 if the two
operands not match
exactly.

Symbol
==
!=

===
!==

Operation
Logical equality
Logical inequality
Case equality
Case inequality

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-46

Relational Operators --- A 4-b Magnitude Comparator

module four_bit_comparator(Iagtb, Iaeqb, Ialtb, a, b, Oagtb, Oaeqb, Oaltb);
// I/O port declarations
input [3:0] a, b;
input Iagtb, Iaeqb, Ialtb;
output Oagtb, Oaeqb, Oaltb;
// dataflow modeling using relation operators

assign Oaeqb = (a == b) && (Iaeqb == 1); // equality
assign Oagtb = (a > b) || ((a == b)&& (Iagtb == 1)); // greater than
assign Oaltb = (a < b) || ((a == b)&& (Ialtb == 1)); // less than

endmodule

A0A1A3 A2

B0B1B3 B2

IA>B
IA=B
IA<B

OA>B
OA=B
OA<B

4-bit comparator

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-47

Shift Operators

 Logical shift operators
 >> operator: logical right shift
 << operator: logical left shift
 The vacant bit positions are filled with zeros.

 Arithmetic shift operators
 >>> operator: arithmetic right shift

• The vacant bit positions are filled with the MSBs (sign bits).

 <<< operator: arithmetic left shift
• The vacant bit positions are filled with zeros.

Symbol
>>
<<

>>>
<<<

Operation
Logical right shift
Logical left shift
Arithmetic right shift
Arithmetic left shift

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-48

Shift Operators

// example to illustrate logic and arithmetic shifts
module arithmetic_shift(x,y,z);
input signed [3:0] x;
output [3:0] y;
output signed [3:0] z;
assign y = x >> 1; // logical right shift
assign z = x >>> 1; // arithmetic right shift
endmodule

Note that: net variables x and z must be declared with the keyword signed.
Replaced net variable with unsigned net (i.e., remove the keyword signed)
and see what happens.

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-49

The Conditional Operator

 Conditional Operator
Usage: condition_expr ? true_expr: false_expr;
 The condition_expr is evaluated first.
 If the result is true then the true_expr is executed;

otherwise the false_expr is evaluated.
if (condition_expr) true_expr;
else false_expr;

 a 2-to-1 multiplexer

assign out = selection ? in_1: in_0;

Chapter 3: Dataflow Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-50

The Conditional Operator --- A 4-to-1 MUX

module mux4_to_1_cond (i0, i1, i2, i3, s1, s0, out);
// Port declarations from the I/O diagram
input i0, i1, i2, i3;
input s1, s0;
output out;
// Using conditional operator (?:)
assign out = s1 ? (s0 ? i3 : i2) : (s0 ? i1 : i0) ;
endmodule

 un1_s1_1

 un1_s1_2

 un1_s0_1

 un1_s0_2

 out

e
d
e
d
e
d
e
d

out

s0
s1

i3

i2
i1

i0

	Chapter 3: Dataflow Modeling
	Objectives
	Why Dataflow ?
	Assignments
	Assignments
	Continuous Assignments
	Continuous Assignments
	Continuous Assignments
	Continuous Assignments
	Continuous Assignments
	Delays
	Delays
	Continuous assignment and delays
	Delays
	The Basis of Dataflow Modeling
	Operators
	Precedence of Operators
	Operands
	Constants
	Constants
	Constants
	Data Types
	Variable Data Types
	The integer Variable
	The time Variable
	The real and realtime Variables
	Vectors
	Bit-Select and Part-Select
	Array and Memory Elements
	The Memory
	Bitwise Operators
	A 4-to-1 MUX
	Arithmetic Operators
	Concatenation and Replication Operators
	A 4-bit Full Adder
	A multiply and accumulate (MAC) unit
	Result size of an expression
	Mixed signed and unsigned operands
	A 4-bit two’s complement adder
	Reduction Operators
	Reduction Operators --- A 9-Bit Parity Generator
	Reduction Operators --- An All-Bit-Zero/One detector
	Logical Operators
	Relational Operators
	Equality Operators
	Relational Operators --- A 4-b Magnitude Comparator
	Shift Operators
	Shift Operators
	The Conditional Operator
	The Conditional Operator --- A 4-to-1 MUX

