
Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-1

Chapter 4: Behavioral Modeling

Prof. Soo-Ik Chae

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-2

Objectives

After completing this chapter, you will be able to:
 Describe the behavioral modeling structures
 Describe procedural constructs
 Understand the features of initial blocks
 Understand the features of always blocks
 Distinguish the differences between blocking and

nonblocking assignments
 Understand the features of timing controls
 Understand the features of selection constructs
 Understand the features of loop constructs

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-3

Behavioral Modeling Structures

 Assignments:
 continuous assignment (assign expression) (Dataflow modeling)
 blocking assignment (=)
 nonblocking assignment (<=)
 procedural continuous assignment

• assign … deassign
• force … release

 Selection structures:
 if … else
 case (case, casex, casez)

 Iterative structures:
 repeat
 for
 while
 forever

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-4

Procedural Constructs

 Procedural Constructs
 initial statements are used to initialize variables and set

values into variables or nets.
 always statements are used to model the continuous

operations required in the hardware modules.
 Each always statement corresponds to a piece of logic

circuit.
 initial and always statements:

• Each represents a separate activity flow.
• Each activity starts at simulation 0.
• They cannot be nested.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-5

Procedural Constructs

 All procedures in the Vrilog HDL are specified within one of
the follwing four statements:
 initial construct
 always construct
 Task
 Function

 Tasks and functions are procedures that are enabled from
one or more places in other procedures.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-6

initial Statements (p. 143 in LRM)

 An initial block
 is composed of all statements inside an initial statement.
 executes exactly once during simulation.
 is used to initialize signals, or monitor waveforms, etc.
 starts to execute concurrently at simulation time 0 and

finishes execution independently when multiple initial
blocks exist.

reg x, y, z;
initial

begin // complex statement
x = 1`b0; y = 1`b1; z = 1`b0;

#10 x = 1`b1; y = 1`b1; z = 1`b1;
end

initial x = 1`b0; // single statement

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-7

initial Statements

 Combined variable declaration and initialization

 Combined port/data declaration and initialization

reg clk; // regular declaration
initial clk = 0;

reg clk = 0; // can be used only at module level

module adder(x, y, c , sum, c_out);
input [3:0] x, y;
input c_in;
output reg [3:0] sum = 0;
output reg c_out = 0;

module adder(input [3:0] x, y,
input c_in,
output reg [3:0] sum = 0,
output reg c_out = 0

); // ANSI C style

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-8

always Statements (p. 144 in LRM)

 An always block
 consists of all behavioral statements inside an always

statement.
 starts at simulation time 0.
 executes continuously during simulation.
 is used to model a block of activity being repeated

continuously in a digital circuit.

Q: What will be happened in the following statement?

reg clock; // a clock generator
initial clock = 1`b0; // initial clock = 0

always #5 clock = ~clock; // period = 10
always begin
initial clock = 1`b0;

#5 clock = ~clock;
end

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-9

Procedural Assignments

 The bit widths of both left-hand and right-hand sides need
not be the same.
 The right-hand side is truncated if it has more bits.

• by keeping the least significant bits

 The right-hand side is filled with zeros in the most
significant bits when it has fewer bits.

 Two types of procedural assignments:
 blocking: using the operator “=“
 nonblocking: using the operator “<=“

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-10

Procedural Assignments
 Procedural assignments

 must be placed inside initial or always blocks.
 update values of variable data types (reg, integer, real, or time.) under

the control of the procedural flow constructs that surround them.

variable_lvalue = [timing_control] expression
[timing_control] variable_lvalue = expression

variable_lvalue <= [timing_control] expression
[timing_control] variable_lvalue <= expression

 variable_lvalue can be:
• a reg, integer,
• real, time, or
• a memory word,
• a bit select, a part select, a concatenation of any of the above.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-11

Blocking Assignments

 Blocking assignments
 are executed in the order they are specified.
 use the “=“ operator.

// an example illustrating blocking assignments
module blocking;
reg x, y, z;
// blocking assignments
initial begin

x = #5 1'b0; // x will be assigned 0 at time 5
y = #3 1'b1; // y will be assigned 1 at time 8
z = #6 1'b0; // z will be assigned 0 at time 14

end
endmodule

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-12

Blocking Assignments

module twos_adder_behavioral(x, y, sub_or_add, sum, c_out);
// I/O port declarations
input [3:0] x, y; // declare as a 4-bit array
input sub_or_add; // add if 0, subtract if 1
output reg [3:0] sum; // declare as a 4-bit array
output reg c_out;
reg [3:0] t; // outputs of xor gates
// specify the function of a two's complement adder
always @(x, y, sub_or_add) begin // define two’s complement adder function

t = y ^ {4{sub_or_add}}; // What is wrong with: t = y ^ c_in ?
{sub_or_add, sum} = x + t + sub_or_add;

end
endmodule

A reg variable doe not
correspond to a memory
element after synthesizing
the circuit.

Q: What will happen if we change blocking operators (=) into nonblocking
operators (<=)?

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-13

Nonblocking Assignments (p. 118 in LRM)

 Nonblocking assignments
 are executed without blocking the other statements.
 use the <= operator.
 are used to model several concurrent data transfers.

// an example illustrating nonblocking assignments
module nonblocking;
reg x, y, z;
// nonblocking assignments
initial begin

x <= #5 1'b0; // x will be assigned 0 at time 5
y <= #3 1'b1; // y will be assigned 1 at time 3
z <= #6 1'b0; // z will be assigned 0 at time 6

end
endmodule

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-14

Nonblocking Assignments

// an example of right-shift register without reset.
module shift_reg_4b(clk, din, qout);
input clk;
input din;
output reg [3:0] qout;
// the body of a 4-bit shift register
always @(posedge clk)

qout <= {din, qout[3:1]}; // Right shift
endmodule

Q: What will happen if we change nonblocking operator (<=) into blocking operator (=)?

Answer: same as before. Why ?

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-15

Nonblocking Assignments

// an example of right-shift register without reset.
module shift_reg_4b(clk, din, qout);
input clk;
input din;
output reg [3:0] qout;
// the body of a 4-bit shift register
always @(posedge clk)

qout = {din, qout[3:1]}; // Right shift
endmodule

fork qout[3]=din; qout[2]=qout[3]; qout[1]=qout[2]; qout[0]=qout[1]; join
// vector blocking assignment: parallel assignment

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-16

Right-shift register with reset

// an example of right-shift register
module shift_reg_4b(clk, din, qout, dout, reset);
input clk, reset;
input din;
output dout;
output reg [3:0] qout;
// the body of a 4-bit shift register
assign dout = qout[0];
always @(negedge reset or posedge clk)

begin
if (reset=1b’0) qout <= 4’b0;
else qout <= {din, qout[3:1]}; // Right shift

end
endmodule

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-17

Race Conditions

// using blocking assignment statements
always @(posedge clock) // has race condition

x = y;
always @(posedge clock)

y = x;

// using nonblocking assignment statements
always @(posedge clock) // has no race condition

x <= y;
always @(posedge clock)

y <= x;

Note that: In simulation stage, three steps are performed for nonblocking statements:
1. Read the values of all right-hand-side variables;
2. Evaluate the right-hand-side expressions and store in temporary variables;
3. Assign the values stored in the temporary variables to the left-hand-side variables.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-18

Blocking vs. Nonblocking Assignments

// shift register module example ---a correct implementation
module shift_reg_nonblocking(clk, sin, qout);
input clk;
input sin; // serial data input
output reg [3:0] qout;
// The body of a 4-bit shift register
always @(posedge clk)

begin // using nonblocking assignments
qout[0] <= sin;
qout[1] <= qout[0]; // better to use qout <= {qout[2:0], sin};
qout[2] <= qout[1];
qout[3] <= qout[2];

end
endmodule

qout[3:0]
qout[3:0][3:0]

clk

sin
[2:0] [3:0]Q[3:0]D[3:0]

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-19

Nonblocking Assignments

// shift register module example --- an correct implementation
module shift_reg_blocking(clk, sin, qout);
input clk;
input sin; // serial data input
output reg [3:0] qout;
// The body of a 4-bit shift register
always @(posedge clk)

qout <= {qout[2:0], sin}; // using blocking assignments
endmodule

qout[3:0]
qout[3:0][3:0]

clk

sin
[2:0] [3:0]Q[3:0]D[3:0]

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-20

Blocking Assignments

// shift register module example --- an correct implementation
module shift_reg_blocking(clk, sin, qout);
input clk;
input sin; // serial data input
output reg [3:0] qout;
// The body of a 4-bit shift register
always @(posedge clk)

begin // using blocking assignments
qout[3] = qout[2];
qout[2] = qout[1];
qout[1] = qout[0];
qout[0] = sin;

end
endmodule

// four bit-select blocking
assignments are sequentially executed.

qout[3:0]
qout[3:0][3:0]

clk

sin
[2:0] [3:0]Q[3:0]D[3:0]

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-21

Blocking Assignments

// shift register module example --- an incorrect implementation
module shift_reg_blocking(clk, sin, qout);
input clk;
input sin; // serial data input
output reg [3:0] qout;
// The body of a 4-bit shift register
always @(posedge clk)

begin // using blocking assignments
qout[0] = sin;
qout[1] = qout[0];
qout[2] = qout[1];
qout[3] = qout[2];

end
endmodule qout[3:0]

qout[3:0][3:0]

clk

sin

[3:0]Q[3:0]D[3:0]

// four bit-select blocking
assignments are sequentially executed.

Reverse
order

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-22

Blocking Assignments

// shift register module example --- an correct implementation
module shift_reg_blocking(clk, sin, qout);
input clk;
input sin; // serial data input
output reg [3:0] qout;
// The body of a 4-bit shift register
always @(posedge clk)

qout = {qout[2:0], sin}; // using blocking assignments
endmodule

// a vector blocking assignment is
currently executed bit by bit.

qout[3:0]
qout[3:0][3:0]

clk

sin
[2:0] [3:0]Q[3:0]D[3:0]

Note that: When using qout = {qout[2:0], sin} instead of qout <= {qout[2:0], sin},
the result will not be different.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-23

Blocking vs. Nonblocking Assignments

 Consider the difference between the following two always
blocks. Assume that the value of count is 1 and finish is 0
before entering the always block at time n.

always @(posedge clk) begin: block_a
count = count – 1;
if (count == 0) finish = 1;

end

always @(posedge clk) begin: block_b
count <= count – 1;
if (count == 0) finish <= 1;

end
Result:
@[n,n+p): count=0, finish = 1.
@[n+p,n+2p): count=-1, finish=1.

Compare with Figure 4.3 (p. 116 in Lin)

Result:
@[n,n+p): count=0, finish = 0.
@[n+p,n+2p): count=-1, finish=1.

p p
@posedge(clk) @posedge(clk)

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-24

Coding Style for Blocking / Nonblocking Assignments

 Coding style: In the always block
 Use nonblocking operators (<=) when it is a piece of

sequential logic;
• Otherwise, the result of RTL behavioral may be inconsistent with

that of gate-level.

 Use blocking operators (=) when it is a piece of
combinational logic.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-25

Procedural continuous assignments

 The assign statement shall
override all procedural
assignments to a variable.

 The deassign statement shall end
a procedural assignment to a
variable.

 Asynchronous clear/preset D-
type edge-triggered flip-flop

module dff (q, d, clear, preset, clock);
output q;
input d, clear, preset, clock;
req q;

always @ (clear or preset)
if (!clear)

assign q = 0;
else if (!preset)

assign q = 1;
else

deassign q;

always @ (posedge clock)
q = d;

endmodule;

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-26

Procedural continuous assignments

 The force/release statements
have a similar effect to the
assign/deassign pair, but a force
can be applied to nets as well as
variables.

 The LHS of the assignment
cannot be a memory word (array
reference) or a bit-select or a
part-select of a vector variable

 force until release

module test;
reg a, b, c, d;
wire e;
and and1(e, a, b, c);
initial begin

$monitor (“%d d=%b,e=%b”,$stime, d, e);
a=1; b=0; c=1;
#10;
force d = (a | b | c);
force e = (a | b | c);
#10;
release d;
release e;
#10;
$finish;

end;
endmodule;

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-27

Timing Controls
 Timing controls specify the simulation time at which

procedural statements will be executed.
 In Verilog HDL, if there are no timing control statements, the

simulation time will not advance.
 Timing Controls
 Delay timing control

• Delay control (#)
• Intra assignment delay control (#)

 Event timing control
• Edge-triggered event control

o Named event control (event declaration, event triggering(->))
o Event control (@)
o Event or operator (,)

• Level-sensitive event control (wait)

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-28

Delay Control

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-29

Delay Control

 Delay control
 A non-zero delay is specified to the left of a procedural

assignment.
 It defers the execution of the entire statement.

reg x, y;
integer count;
// The “<=” operators in the following statements can be replaced with “=”
// without affecting the results.

#25 y <= ~x; // execute at time 25
#15 count <= count + 1; // execute at time 40

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-30

Intra-Assignment Delay Control

 Intra-assignment delay control
 A non-zero delay is specified to the right of the

assignment operator.
 It defers the assignment to the left-hand-side variable.

y = #25 ~x; // evaluate at time 0 but assign to y at time 25
count = #15 count + 1; // evaluate at time 25 but assign to count at time 40

y <= #25 ~x; // evaluate at time 0 but assign to y at time 25
count <= #15 count + 1; // evaluate at time 0 but assign to count at time 15

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-31

Delay Control

module
reg [1:0] a, b;

initial begin
a = ‘b1;
b = ‘b0;

end

always begin
#50 a <= ~a;

end

always begin
#100 b<= ~b;

end

endmodule

begin-end block: sequential block

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-32

Delay Control

#25; //wait 25 time units
x= a + 6; // execute immediately

#25 x = a +6; // wait 25 time units and execute

reg x, y, z;
integer count;

initial begin
y<= ~x; // execute at time 0

#10 z = z +1; // execute at time 10
count <= count + 1; // execute at time 10

end

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-33

Event Timing Control

 Event Timing Control
 An event is the change in the value on a variable or a net.
 The execution of a procedural statement can be

synchronized with an event.
 Two types of event control
 Edge-triggered event control

• Named event control
• Event or operator

 Level-sensitive event control

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-34

Edge-Triggered Event Control

 Edge-triggered event control
 The symbol @ is used to specify such event control.

• @(posedge clock): at the positive edge
• @(negedge clock): at the negative edge

always @(posedge clock) begin
reg1 <= #25 in_1; // intra-assignment delay control
reg2 <= @(negedge clock) in_2 ^ in_3; // edge-triggered event control
reg3 <= in_1; // no delay control

end

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-35

Detecting posedge and negedge

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-36

Named Event Control

 A named event triggering scenario consists of three steps
1. (Declaration) is declared with the keyword event.

• does not hold any data.

2. (Triggering) triggered by the symbol ->.
3. (Recognition) recognized by the symbol @.

event received_data; // declare an event

// trigger event received_data
always @(posedge clock) if (last_byte) -> received_data;

always @(received_data) begin
…..

end // execute event-dependent operations

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-37

Event or Control

 Event or control
 uses the keyword or to specify multiple triggers.
 can be replaced by the “,”.
 can use @* or @(*) to mean a change on any signal.

always @(posedge clock or negative reset_n) // event or control
begin

if (!reset_n) q <= 1`b0; // asynchronous reset.
else q <= d;

end

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-38

Level-Sensitive Event Control

 Level-sensitive event control
 uses the keyword wait.
 If the condition is false, the procedural statements

following the wait statement shall remain blocked until
that condition becomes true.

always
wait (count_enable) count = count –1 ;

always
wait (!enable) #10 a = b ;
#10 c = d;

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-39

Intra-assignment timing control

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-40

Intra-assignment timing control

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-41

Intra-assignment timing control

fork // a race condition
#5 a =b;
#5 b=a;

join

fork // a data swap
a = # 5 b;
b = #5 a;

join

fork // a data shift
a = @(posedge clk) b;
b = @(posedge clk) c;

join

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-42

Intra-assignment timing control

a <= repeat(5) @(posedge clk) data;

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-43

Block statements

 Sequential block: begin-end block

 Parallel block: fork-join block

begin : block_1
areg = breg;
creg = areg; // creg stores the value of breg

end

fork : block_2
50 r = ‘h35;
#100 r = ‘hE2;
#150 r = ‘h00;
#200 r = ‘hF7;
#250 -> end_wave;

join

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-44

Start and finish time of Block statements

 Sequential block: begin-end block
 Start time: when the first statement is executed
 Finish time: when the last statement has been executed

 Parallel block: fork-join block
 Start time: the same for all statements
 Finish time: when the last time-ordered statement has

been executed

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-45

Block statements
parameter d= 50;
reg [7:0] r;

begin :block_3
#d r = ‘h35;
#d r = ‘hE2;
#d r = ‘h00;
#d r = ‘hF7;
#d -> end_wave;

end

fork : block_2
50 r = ‘h35;
#100 r = ‘hE2;
#150 r = ‘h00;
#200 r = ‘hF7;
#250 -> end_wave;

join

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-46

Block statements

fork : block_4
#250 -> end_wave;
#200 r = ‘hF7;
#150 r = ‘h00;
#100 r = ‘hE2;
50 r = ‘h35;

join

fork : block_2
50 r = ‘h35;
#100 r = ‘hE2;
#150 r = ‘h00;
#200 r = ‘hF7;
#250 -> end_wave;

join

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-47

Block statements

begin
fork

@Aevent;
@Bevent;

join
areg = breg;

end

fork
@enable_a

begin
#ta wa = 0;
#ta wa = 1;
#ta wa = 0;

end
@enable_b

begin
#tb wb = 0;
#tb wb = 1;
#tb wb = 0;

end
join

begin
begin

@Aevent;
@Bevent;

end
areg = breg;

end

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-48

Disabling of named blocks and tasks
begin : bloak_a

rega=regb;
disable block_a;
regc=rega; // never executed

end

begin : break
for (i=0; i<n; i= i+1) begin : continue

@clk
if (a==0) // “continue” loop

disable continue;
statements;

@clk
if (a==b) //”break” from loop

disable break;
statements;

end
end

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-49

Scheduling and execution of events

 A design : consists of connected threads of execution or processes.

 Processes : are objects that can be evaluated, that may have state, and
that can respond to changes on their inputs to produce outputs.
Processes include primitives, modules, initial and always procedural
blocks, continuous assignments, tasks, procedural assignment statements.

 Every change in value of a net or variable in the circuit being simulated,
as well as the named event, is considered an update event.

 Processes are sensitive to update events.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-50

Scheduling and execution of events

 When an update event is executed, all the processes that are sensitive to
that event are evaluated in an arbitrary order.

 The evaluation of a process is also an event, known as an evaluation
event.

 The term simulation time is used to refer to the time value maintained by
the simulator to the model the actual time it would take for the circuit
being simulated.

 Events can occur at different times. In order to keep track of the events
and to make sure they are processed in the correct order, the events are
kept on an event queue, ordered by the simulation time. Putting an event
on the queue is called scheduling time.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-51

Simulation Terminology

 Simulation time
 Time value used by simulator to model actual time.

 Simulation cycle
 Complete processing of all currently active events

 Can be multiple simulation cycles per simulation time

 Explicit zero delay (#0)
 Forces process to be inactive event instead of active
 Incorrectly used to avoid race conditions
 #0 doesn’t synthesize!
 Don’t use it

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-52

Stratified event queue

 The Verilog event queue is logically segmented into five different regions.
Events are added to any of the five regions, but are only removed from the
active region.
1. Active events occur at the current simulation time and can be processed in

any order.
2. Inactive events occur at the current simulation time, but shall be processed

after all the active events are processed.
3. Nonblocking assignment (NBA) update events have been evaluated during

some previous simulation time, but shall be assigned at this simulation
time after all active and inactive events are processed.

4. Monitor events shall be processed after all active, inactive, and NBA
update events are processed.

5. Future events occurs at some future simulation time. Future events are
divided into future active events and future NBA update events.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-53

Stratified event queue
 Active events region: the events in this region result from

 evaluating the RHS of nonblocking assignments
 evaluating the inputs of a primitive and changing the output
 executing a procedural (blocking) assignment to a register variable
 evaluating the RHS of a continuous assignment and updating the

LHS
 evaluating the RHS of a procedural continuous assignment and

updating the LHS
 evaluating and executing $display and $write system tasks.

 The processing of all active events is called a simulation cycle.
 An explicit zero delay control (#0) requires that the process be

suspended and added as an inactive event for the current time so that the
process is resumed in the next simulation time in the current time.

 The $monitor and $strobe system tasks create monitor events for their
arguments.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-54

Verilog simulation reference model
while (there are events)

if (no active events)
if (there are inactive events) {

activate all inactive events;
} else if (there are nonblobking assign update events) {

activate all nonblocking assign update events;
} else if (there are monitor events) {

activate all monitor events;
} else {

advance T to the next event time;
activate all inactive events for time T;

}
}
E = any active events;
if (E is an update event) {

update the modified object;
add evaluation events for the sensitive processes to event queue;

} else { /* shall be an evaluation event */
evaluate the process;
add all update events to the event queue;

}
}

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-55

Inactive events

 “a = b;” : immediately evaluated and updated:
 “a = #0 b;”: evaluated and an inactive update event is scheduled

 “a <= b;” : evaluated and an NBA update event is scheduled
 “a <= #0 b;”: evaluated and an NBA update event is scheduled

 “#0 a = b;”: an inactive evaluation event is scheduled
 “#0 a <= b;”: an inactive evaluation event is scheduled

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-56

Selection Constructs

if (<expression>) true_statement ;

if (<expression>) true_statement; else false_statement;

if (<expression1>) true_statement1;
else if (<expression2>) true_statement2;
else false_statement;

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-57

Selection Constructs

module mux4_to_1_ifelse (i0, i1, i2, i3, s1, s0, out);
// port declarations
input i0, i1, i2, i3;
input s1, s0;
output reg out;
// using conditional operator if else statement
always @(*) // triggered for all signals used in the

// if else statement
if (s1) begin

if (s0) out = i3; else out = i2; end
else begin

if (s0) out = i1; else out = i0; end
endmodule

 un1_s1_1

 un1_s1_2

 un1_s0_1

 un1_s0_2

 out

e
d
e
d
e
d
e
d

out

s0
s1

i3

i2
i1

i0

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-58

A Simple 4-bit Counter

module counter (clock, clear, qout);
input clock, clear;
output reg [3:0] qout;
// the body of the 4-bit counter.
always @(negedge clock or posedge clear)
begin

if (clear)
qout <= 4'd0;

else
qout <= (qout + 1) ; // qout = (qout + 1) % 16;

end
endmodule

 un3_qout[3:0]
+

 qout[3:0]

R

[3:0]
[3:0]

1
[3:0]Q[3:0][3:0] D[3:0]

clear

clock

qout[3:0][3:0]

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-59

Selection Constructs

 case statement: a multiway selection.
 compares the expression to the alternatives in the order

they are written.
 compares 0, 1, x, and z values in the expression and the

items (alternatives) bit for bit.
 executes the default statement if no matches are made.
 fills zeros to match the unequal bit widths between the

expression and an item (alternative).
 is acted like a multiplexer.

 The default statement is optional and at most one default
statement can be placed inside one case statement.

 A block statement must be grouped by begin and end.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-60

A 4-to-1 MUX Example

// a 4-to-1 multiplexer using case statement
module mux_4x1_case (I0, I1, I2, I3, S, Y);
input I0, I1, I2, I3;
input [1:0] S; // declare S as a two-bit selection signal.
output reg Y;
always @(I0 or I1 or I2 or I3 or S) // It can use always @(*).

case (S)
2'b00: Y = I0;
2'b01: Y = I1;
2'b10: Y = I2;
2'b11: Y = I3;

endcase
endmodule

Y9

 un1_S_2

 un1_S_3

 un1_S_4

 Y

e
d
e
d
e
d
e
d

[0]
[1]

[0]
[1]

[0]
[1]

[1]
[0]

Y

S[1:0] [1:0]

I3

I2
I1

I0

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-61

A 4-to-1 MUX Example

// a 4-to-1 multiplexer using case and default statements.
module mux4_to_1_case_default (i0, i1, i2, i3, s1, s0, out);
input i0, i1, i2, i3, s1, s0;
output reg out; //output declared as register
always @(s1 or s0 or i0 or i1 or i2 or i3)

case ({s1, s0}) // concatenate s1 and s0 as a two-bit selection signals
2'b00: out = i0;
2'b01: out = i1;
2'b10: out = i2;
2'b11: out = i3;
default: out = 1'bx; // using default to include all other possible cases.

endcase
endmodule

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-62

Selection Constructs

 casex and casez statements
 are used to perform a multiway selection like that of case

statement.
 compare only non-x or z positions in the case expression

and the case items (alternatives).
 casez treats all z values as don’t cares.
 casex treats all x and z values as don’t cares.
 In addition to specifying bits as z, they may also be specified

with question marks “?” which also indicates don’t-care

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-63

Selection Constructs

// an example illustrating how to count the trailing zeros in a nibble.
module trailing_zero_4b (data, out);
input [3:0] data;
output reg [2:0] out; //output declared as register
always @(data)

casex (data) // treat both x and z as don’t care conditions.
4'bxxx1: out = 0;
4'bxx10: out = 1;
4'bx100: out = 2;
4'b1000: out = 3;
4'b0000: out = 4;
default: out = 3'b111; //using default to include all other possible cases.

endcase
endmodule

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-64

Selection Constructs

// an example of casex.
module decode;
reg [7:0] r, mask;

always
begin

// other statements
r = 8’b01100110;
mask = 8’bx0x0x0x0;

casex (r ^ mask) // r ^ mask = 8b’x1x0x1x0
// treat both x and z as don’t care conditions.

8'b001100xx: statement1;
8'b1100xx00: statement2; // matches and executed
8'b00xx0011: statement3;
8'bxx001100: statement4; // matches

endcase
endmodule

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-65

Loop Constructs

 Loop constructs control the execution of a statement zero,
one, or more times.

 Loop constructs
 can appear only inside an initial or always block.
 may contain delay expressions.

 Four types
 while loop executes a statement until an expression

becomes false.
 for loop repeatedly executes a statement.
 repeat loop executes a statement a fixed number of times.
 forever loop continuously executes a statement.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-66

While Loop Structure

 A while loop
 executes until the condition is false.
 shall not be executed at all if the condition_expr starts out

false.

while (condition_expr) statement;

while (count < 12) count <= count + 1;
while (count <= 100 && flag) begin
// put statements wanted to be carried out here.
end

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-67

While Loop Structure

// an example illustrating how to count the zeros in a byte.
module zero_count_while (data, out);
input [7:0] data;
output reg [3:0] out; //output declared as register
integer i;
always @(data) begin

out = 0; i = 0;
while (i <= 7) begin // simple condition

if (data[i] == 0) out = out + 1; // may be replaced with out = out + ~data[i].
i = i + 1; end

end
endmodule

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-68

While Loop Structure

// an example illustrating how to count the trailing zeros in a byte.
module trailing_zero_while (data, out);
input [7:0] data;
output reg [3:0] out; // output declared as register
integer i; // loop counter
always @(data) begin

out = 0; i = 0;
while (data[i] == 0 && i <= 7) begin // complex condition

out = out + 1;
i = i + 1;

end
end
endmodule

Note that: Please distinguish the difference between this example and the
previous one.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-69

For Loop Structure

 A for loop is used to perform a counting loop. It
 behaves like the for statement in C programming

language.

 is equivalent to

for (init_expr; condition_expr; update_expr) statement;

init_expr;
while (condition_expr) begin

statement;
update_expr;

end

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-70

For Loop Structure

// an example illustrating how to count the zeros in a byte.
module zero_count_for (data, out);
input [7:0] data;
output reg [3:0] out; // output declared as register
integer i;
always @(data) begin

out = 0;
for (i = 0; i <= 7; i = i + 1) // simple condition

if (data[i] == 0)
out = out + 1; // may be replaced with out = out + ~data[i].

end
endmodule

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-71

For Loop Structure

// an example illustrating how to count the trailing zeros in a byte.
module trailing_zero_for (data, out);
input [7:0] data;
output reg [3:0] out; // output declared as register
integer i; // loop counter
always @(data) begin

out = 0;
for (i = 0; data[i] == 0 && i <= 7; i = i + 1) // complex condition

out = out + 1;
end
endmodule

Note that: Please distinguish the difference between this example and the
previous one.

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-72

Repeat Loop Structure

 A repeat loop performs a loop a fixed number of times.

 counter_expr can be a constant, a variable or a signal
value.

 counter_expr is evaluated only once before starting the
execution of statement (loop).

repeat (counter_expr) statement;

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-73

Repeat Loop Structure

 Examples:
i = 0;
repeat (32) begin

state[i] = 0; // initialize to zeros
i = i + 1; // next item

end
repeat (cycles) begin // cycles must be evaluated to a number
@(posedge clock) buffer[i] <= data; // before entering the loop.

i <= i + 1; // next item
end

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-74

Forever Loop Structure

 A forever loop continuously performs a loop until the $finish
task is encountered. It
 is equivalent to a while loop with an always true

expression such as while (1).

 can be exited by the use of disable statement.
forever statement;

Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-75

Forever Loop Structure

 The forever statement example

 The forever statement is usually used with timing control
statements.

initial begin
clock <= 0;
forever begin

#10 clock <= 1;
#5 clock <= 0;

end
end

reg clock, x, y;

initial
forever @(posedge clock) x <= y;

	Chapter 4: Behavioral Modeling
	Objectives
	Behavioral Modeling Structures
	Procedural Constructs
	Procedural Constructs
	initial Statements (p. 143 in LRM)
	initial Statements
	always Statements (p. 144 in LRM)
	Procedural Assignments
	Procedural Assignments
	Blocking Assignments
	Blocking Assignments
	Nonblocking Assignments (p. 118 in LRM)
	Nonblocking Assignments
	Nonblocking Assignments
	Right-shift register with reset
	Race Conditions
	Blocking vs. Nonblocking Assignments
	Nonblocking Assignments
	Blocking Assignments
	Blocking Assignments
	Blocking Assignments
	Blocking vs. Nonblocking Assignments
	Coding Style for Blocking / Nonblocking Assignments
	Procedural continuous assignments
	Procedural continuous assignments
	Timing Controls
	Delay Control
	Delay Control
	Intra-Assignment Delay Control
	Delay Control
	Delay Control
	Event Timing Control
	Edge-Triggered Event Control
	Detecting posedge and negedge
	Named Event Control
	Event or Control
	Level-Sensitive Event Control
	Intra-assignment timing control
	Intra-assignment timing control
	Intra-assignment timing control
	Intra-assignment timing control
	Block statements
	Start and finish time of Block statements
	Block statements
	Block statements
	Block statements
	Disabling of named blocks and tasks
	Scheduling and execution of events
	Scheduling and execution of events
	Simulation Terminology
	Stratified event queue
	Stratified event queue
	Verilog simulation reference model
	Inactive events
	Selection Constructs
	Selection Constructs
	A Simple 4-bit Counter
	Selection Constructs
	A 4-to-1 MUX Example
	A 4-to-1 MUX Example
	Selection Constructs
	Selection Constructs
	Selection Constructs
	Loop Constructs
	While Loop Structure
	While Loop Structure
	While Loop Structure
	For Loop Structure
	For Loop Structure
	For Loop Structure
	Repeat Loop Structure
	Repeat Loop Structure
	Forever Loop Structure
	Forever Loop Structure

