
Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-1

Chapter 5: Tasks, Functions, and UDPs

Prof. Soo-Ik Chae

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-2

Objectives

After completing this chapter, you will be able to:
 Describe the features of tasks and functions
 Describe how to use tasks and functions
 Describe the features of dynamic tasks and functions
 Describe the features of UDPs (user-defined primitives)
 Describe how to use combinational and sequential UDPs

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-3

Tasks and Functions (p. 145 in LRM)

 Tasks and functions provide the ability to reuse the common
piece of code from several different places in a design.

 Comparison of tasks and functions

Item Tasks Functions

Arguments

Timing control statements

Return value

At least one input, and cannot
have output and inout.

May have zero or more input,
output, and inout.

Only a single value via
function name.

May have multiple values via
output and inout.

NoYes

Execution In 0 simulation time.In non-zero simulation time.

Invoke functions/tasks Functions only.Functions and tasks.

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-4

When to Use Tasks

 Tasks are declared with the keywords task and endtask.
When to use tasks if the procedure
 has delay or timing control constructs.
 has at least one output arguments.
 has no input argument.

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-5

Task Definition and Calls

// port list style
task [automatic] task_identifier;
[declarations] // include arguments
procedural_statement
endtask

// port list declaration style
task [automatic] task_identifier ([argument_declarations]);
[other_declarations] // exclude arguments
procedural_statement
endtask

task [automatic] task_identifier(task_port_list); … endtask

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-6

Types of Tasks

 Types of tasks
 (static) task: declared with task … endtask.
 automatic (reentrant, dynamic) task: declared with task automatic …

endtask.
 Features of static tasks

 All declared items are statically allocated.
 Static tasks items can be shared across all uses of the task executing

concurrently within a module.
 Features of automatic (reentrant, dynamic) tasks

 All declared items are dynamically allocated for each invocation.
 They are deallocated at the end of the task invocation

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-7

A Task Example

// an example illustrating how to count the zeros in a byte.
module zero_count_task (data, out);
input [7:0] data;
output reg [3:0] out; // output declared as register
always @(data)

count_0s_in_byte(data, out);

// task declaration from here.
task count_0s_in_byte(input [7:0] data, output reg [3:0] count);
integer i;
begin // task body

count = 0;
for (i = 0; i <= 7; i = i + 1)

if (data[i] == 0) count= count + 1;
end endtask
endmodule

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-8

A Dynamic Task Example

// task definition starts from here
task automatic check_counter;
reg [3:0] count;
// the body of the task
begin

$display ($realtime,,"At the beginning of task, count = %d", count);
if (reset) begin

count = 0;
$display ($realtime,,"After reset, count = %d", count);

end
endmodule

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-9

When to Use Functions

 Functions are declared with the keywords function and
endfunction.

When to use functions if the procedure
 has no delay or timing control constructs (any statement

introduced with #, @, or wait).
 returns a single value.
 has at least one input argument.
 has no output or inout arguments.
 has no nonblocking assignments.

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-10

Function Definition and Calls

// port list style
function [automatic] [signed] [range_or_type] function_identifier;
input_declaration
other_declarations
procedural_statement
endfunction

// port list declaration style
function [automatic] [signed] [range_or_type] function_identifier (input_declarations);
other_declarations
procedural_statement
endfunction

function [automatic] [signed] [range_of_type] … endfunction

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-11

Types of Functions

 Features of (static) functions
 All declared items are statically allocated.

 Features of automatic (recursive, dynamic) functions
 All function items are allocated dynamically for each recursive call.
 Automatic function items cannot be accessed by hierarchical

references.
 Automatic functions can be invoked through use of their hierarchical

name.

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-12

A Function Example
// an example illustrating how to count the zeros in a byte.
module zero_count_function (data, out);
input [7:0] data;
output reg [3:0] out; // output declared as register
always @(data)

out = count_0s_in_byte(data);
// function declaration from here.

function [3:0] count_0s_in_byte(input [7:0] data);
integer i;
begin

count_0s_in_byte = 0;
for (i = 0; i <= 7; i = i + 1)

// the following statement can be replaced by:
// count_0s_in_byte = count_0s_in_byte + ~data[i]. Why?
if (data[i] == 0) count_0s_in_byte = count_0s_in_byte + 1;

end
endfunction
endmodule

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-13

Automatic (Recursive) Functions

// to illustrate the use of reentrant function
module factorial(input [7:0] n, output [15:0] result);
// instantiate the fact function

assign result = fact(7);
// define fact function

function automatic [15:0] fact;
input [7:0] N;

// the body of function
if (N == 1) fact = 1;
else fact = N * fact(N - 1);

endfunction
endmodule

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-14

Constant Functions

module RAM (addr_bus, data_bus);
parameter RAM_depth = 1024;
localparam M=count_log_b2(RAM_depth);
input [M-1:0] addr_bus;
output reg [7:0] data_bus;
…
// function declaration from here
function integer count_log_b2(input integer depth);

begin // function body
count_log_b2 = 0;
while (depth) begin

count_log_b2 = count_log_b2 + 1;
depth = depth >> 1;

end
end

endfunction
endmodule

Constant function calls are evaluated at elaboration time.

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-15

Elaboration time (p. 197 in LRM)

 Elaboration is the process that occurs between parsing and simulation.

 It binds the modules to module instances, builds the model hierarchy,
computes parameter values, resolves hierarchical names, establishes net
connectivity, and prepares all of this for simulation.

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-16

An Architecture of HDL Simulators

Parsing

Elaboration

Analysis

Optimization

Simulation engineCode generation

Simulation control

User














Front
end

Back
end

RTL code (source)

Results

Compiler

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-17

System tasks and functions (p. 277 in LRM)

 Display system tasks: $display, $write, $monitor, $strobe
 Timescale system tasks: $printtimescale, $timeformat
 Simulation time system tasks: $time, $realtime
 Simulation control system tasks: $stop, $finish
 File I/O system tasks: $fopen, $fclose
 String formatting system tasks: $swrite, $sformat
 Conversion system tasks: $singed, $unsigned, $rtoi, $itor
 Probablistic distribution system functions
 Stochastic analysis system tasks
 Command line input: $test$plusargs, $value$plusargs
 PLA modeling system tasks (chapter 10)

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-18

User Defined Primitives

Two types
 Combinational UDPs
 are defined where the output is solely determined by the

combination of the inputs.
 Sequential UDPs
 are defined where the output is determined by the

combination of the current output and the inputs.

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-19

UDP Basics

// port list style
primitive udp_name(output_port, input_ports);
output output_port;
input input_ports;
reg output_port; // only for sequential UDP
initial output-port = expression; //only for sequential UDP
table // define the behavior of UDP
<table rows>
endtable
endprimitive

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-20

UDP Basics

// port list declaration style
primitive udp_name(output output_port, input input_ports);
reg output_port; // only for sequential UDP
initial output-port = expression; //only for sequential UDP
table // define the behavior of UDP
<table rows>
endtable
endprimitive

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-21

Basic UDP Rules

 Inputs
 can have scalar inputs.
 can have multiple inputs.
 are declared with input.

 Output
 can have only one scalar output.
 must appear in the first terminal list.
 is declared with the keyword output.
 must also be declared as a reg in sequential UDPs.

 UDPs
 do not support inout ports.
 are at the same level as modules.
 are instantiated exactly like gate primitives.

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-22

Definition of Combinational UDPs

// port list style
primitive udp_name(output_port, input_ports);
output output_port;
input input_ports;

// UDP state table
table // the state table starts from here
<table rows>
endtable
endprimitive

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-23

Definition of Combinational UDPs

 State table entries

 The <input#> values appear in a state table entry must be
in the same order as in the input list.

 Inputs and output are separated by a “:”.
 A state entry ends with a “;”.
 All possible combinations of inputs must be specified to

avoid unknown output value.

<input1><input2>……<inputn> : <output>;

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-24

A Primitive UDP --- An AND Gate

// primitive name and terminal list
primitive udp_and(out, a, b);
// declarations
output out; // must not be declared as reg for combinational UDP
input a, b; // declarations for inputs.
table // state table definition; starts with keyword table
// a b : out;

0 0 : 0;
0 1 : 0;
1 0 : 0;
1 1 : 1;

endtable // end state table definition
endprimitive // end of udp_and definition

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-25

Another UDP Example

x
y

z

fa

b

c

g1
g2

g3

g4

// User defined primitive (UDP)
primitive prog253 (output f, input x, y, z);
table // truth table for f(x, y, z,) = ~(~(x | y) | ~x & z);
// x y z : f

0 0 0 : 0;
0 0 1 : 0;
0 1 0 : 1;
0 1 1 : 0;
1 0 0 : 1;
1 0 1 : 1;
1 1 0 : 1;
1 1 1 : 1;

endtable
endprimitive

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-26

Shorthand Notation for Don’t Cares

// an example of combinational UDPs.
primitive udp_and(f, a, b);
output f;
input a, b;
table
// a b : f;

1 1 : 1;
0 ? : 0;
? 0 : 0; // ? expanded to 0, 1, x

endtable
endprimitive

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-27

Instantiation of Combinational UDPs

// an example illustrates the instantiations of UDPs.
module UDP_full_adder(sum, cout, x, y, cin);
output sum, cout;
input x, y, cin;
wire s1, c1, c2;
// instantiate udp primitives
udp_xor (s1, x, y);
udp_and (c1, x, y);
udp_xor (sum, s1, cin);
udp_and (c2, s1, cin);
udp_or (cout, c1, c2);
endmodule

Some synthesizers might not
synthesize UDPs.

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-28

Shorthand Symbols for Using in UDPs

Symbols Meaning Explanation
?
b
-
r
f
p
n
*

0, 1, x
0, 1

No change in state value
(01)
(10)

(01), (0x), or (x1)
(10), (1x), or (x0)

(??)

Cannot be specified in an output field
Cannot be specified in an output field
Can use only in a sequential UDP output field
Rising edge of a signal
Falling edge of a signal
Potential rising edge of a signal
Potential falling edge of a signal
Any value change in signal

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-29

Definition of Sequential UDPs

// port list style
primitive udp_name(output_port, input_ports);
output output_port;
input input_ports;
reg output_port; // unique for sequential UDP
initial output-port = expression; // optional for sequential UDP
// UDP state table
table // keyword to start the state table

<table rows>
endtable
endprimitive

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-30

Definition of Sequential UDPs

 State table entries

 The output is always declared as a reg.
 An initial statement can be used to initialize output.
 Inputs, current state, and next state are separated by a

colon “:”.
 The input specification can be input levels or edge

transitions.
 All possible combinations of inputs must be specified to

avoid unknown output value.

<input1><input2>……<inputn> : <current_state> : <next_state>;

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-31

Level-Sensitive Sequential UDPs

// define a level-sensitive latch using UDP.
primitive d_latch(q, d, gate, clear);
output q;
input d, gate, clear;
reg q;
initial q = 0; // initialize output q

//state table
table
// d gate clear : q : q+;

? ? 1 : ? : 0 ; // clear
1 1 0 : ? : 1 ; // latch q = 1
0 1 0 : ? : 0 ; // latch q = 0
? 0 0 : ? : - ; // no state change

endtable
endprimitive

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-32

Edge-Sensitive Sequential UDPs

// define a positive-edge triggered T-type flip-flop using UDP.
primitive T_FF(q, clk, clear);
output q;
input clk, clear;
reg q;
// define the behavior of edge-triggered T_FF
table
// clk clear : q : q+;

? 1 : ? : 0 ; // asynchronous clear
? (10) : ? : - ; // ignore negative edge of clear

(01) 0 : 1 : 0 ; // toggle at positive edge
(01) 0 : 0 : 1 ; // of clk
(1?) 0 : ? : - ; // ignore negative edge of clk

endtable
endprimitive

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-33

Instantiation of UDPs

// an example of sequential UDP instantiations
module ripple_counter(clock, clear, q);
input clock, clear;
output [3:0] q;

// instantiate the T_FFs.
T_FF tff0(q[0], clock, clear);
T_FF tff1(q[1], q[0], clear);
T_FF tff2(q[2], q[1], clear);
T_FF tff3(q[3], q[2], clear);
endmodule

Chapter 5: Tasks, Functions, and UDPs

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 5-34

Guidelines for UDP Design

 UDPs model functionality only; they do not model timing
or process technology.

 A UDP has exactly one output terminal and is implemented
as a lookup table in memory.

 UDPs are not the appropriate method to design a block
because they are usually not accepted by synthesis tools.

 The UDP state table should be specified as completely as
possible.

 One should use shorthand symbols to combine table entries
wherever possible.

	Chapter 5: Tasks, Functions, and UDPs
	Objectives
	Tasks and Functions (p. 145 in LRM)
	When to Use Tasks
	Task Definition and Calls
	Types of Tasks
	A Task Example
	A Dynamic Task Example
	When to Use Functions
	Function Definition and Calls
	Types of Functions
	A Function Example
	Automatic (Recursive) Functions
	Constant Functions
	Elaboration time (p. 197 in LRM)
	An Architecture of HDL Simulators
	System tasks and functions (p. 277 in LRM)
	User Defined Primitives
	UDP Basics
	UDP Basics
	Basic UDP Rules
	Definition of Combinational UDPs
	Definition of Combinational UDPs
	A Primitive UDP --- An AND Gate
	Another UDP Example
	Shorthand Notation for Don’t Cares
	Instantiation of Combinational UDPs
	Shorthand Symbols for Using in UDPs
	Definition of Sequential UDPs
	Definition of Sequential UDPs
	Level-Sensitive Sequential UDPs
	Edge-Sensitive Sequential UDPs
	Instantiation of UDPs
	Guidelines for UDP Design

