
Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-1

Chapter 7: Advanced Modeling
Techniques

Prof. Soo-Ik Chae

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-2

Objectives

After completing this chapter, you will be able to:
 Describe the features of sequential blocks
 Describe the features of parallel blocks
 Describe the features of nested blocks
 Describe the features of procedural continuous assignments
 Describe how to model a module delay
 Describe the features of specify blocks
 Describe the features of timing checks

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-3

Sequential and Parallel Blocks

 Two block types:
 Sequential blocks use keywords begin and end to group

statements.
 Parallel blocks use keywords fork and join to group

statements.

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-4

Sequential Blocks

 The statements are processed in the order specified.
 Delay control can be applied to schedule the executions of

procedural statements.
initial begin

x = 1’b1; // execute at time 0.
#12 y = 1’b1; // execute at time 12.
#20 z = 1’b0; // execute at time 32.

end

initial begin
x = 1'b0; // execute at time 0.

#20 w = 1'b1; // execute at time 20.
#12 y <= 1'b1; // execute at time 32.
#10 z <= 1'b0; // execute at time 42.
#25 x = 1'b1; w = 1'b0; // execute at time 67.

end

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-5

Parallel Blocks

 The statements are processed in parallel.
 They are executed relative to the time the blocks are entered.

initial fork
x = 1’b0; // execute at time 0.

#12 y = 1’b1; // execute at time 12.
#20 z = 1’b1; // execute at time 20.

join

initial fork
x <= 1’b0; // execute at time 0.

#12 y <= 1’b1; // execute at time 12.
#20 z <= 1’b1; // execute at time 20.

join

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-6

Special Features of Blocks

 Two special blocks:
 Nested blocks
 Named blocks

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-7

Nested Blocks

 Nested blocks
 Blocks can be nested.
 Both sequential and parallel blocks can be mixed.

initial begin
x = 1'b0; // execute at time 0.
fork // parallel block -- enter at time 0 and leave at time 20.

#12 y <= 1'b1; // execute at time 12.
#20 z <= 1'b0; // execute at time 20.

join
#25 x = 1'b1; // execute at time 45.

end

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-8

Named Blocks

 Named blocks
 Blocks can be given names.
 Local variables can be declared for the named blocks.
 Variables in a named block can be accessed by using

hierarchical name referencing scheme.
 Named blocks can be disabled.

initial begin: test // test is the block name.
reg x, y, z; // local variables

x = 1’b0;
#12 y = 1’b1; // execute at time 12.
#10 z = 1’b1; // execute at time 22.

end

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-9

Disabling Named Blocks

 The keyword disable can be used
 to terminate the execution of a named block,
 to get out of a loop,
 to handle error conditions, or
 to control execution of a pieces of code.

initial begin: test // test is the block name.
while (i < 10) begin

if (flag) disable test; // block test is disable if flag is true.
i = i + 1;

end
end

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-10

Procedural Continuous Assignments

 Two kinds of procedural continuous assignments:
 assign and deassign procedural continuous assignments

assign values to variables.
• They are usually not supported by logic synthesizer.
• They are now considered as a bad coding style.

 force and release procedural continuous assignments
assign values to nets or variables.

• They are usually not supported by logic synthesizer.
• They should appear only in stimulus or as debug statements.

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-11

Procedural Continuous Assignments

 assign and deassign constructs
 Their LHS can be only a variable or a concatenation of

variables.
 They override the effect of regular procedural

assignments.
 They are normally used for controlling periods of time.

 force and release constructs
 Their LHS can be a variable or a net.
 They override the effect of regular procedural

assignments.
 They override the effect of assign and deassign construct.
 They are normally used for controlled periods of time.

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-12

Procedural Continuous Assignments

// negative edge triggered D flip flop with asynchronous reset.
module edge_dff(input clk, reset, d, output reg q, qbar);
always @(negedge clk) begin

q <= d; qbar <= ~d;
end
always @(reset) // override the regular assignments to q and qbar.

if (reset) begin
assign q = 1'b0;
assign qbar = 1'b1;

end else begin // remove the overriding values
deassign q;
deassign qbar;

end
endmodule

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-13

Modes of Assignments

Data type

Net

Variable

Primitive
output

Continuous
assignment

Procedural
assignment

assign
deassign

force
release

Yes Yes

Yes Yes

Yes

Yes

NoNo

NoYes (Seq.UDP)

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-14

Type of Delays

 Three types of delay models:
 Distributed delays
 Lumped delays
 Module path (pin-to-pin) delays

 Both distributed and module path (pin-to-pin) delays are
often used to describe the delays for structural modules such
as ASIC cells.

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-15

Distributed Delay Model

 Distributed delay model
 Delays are considered to be associated with individual

element, gate, cell, or interconnect.
 Distributed delays are specified on a per element basis.
 It specifies the time it takes the events to propagate

through gates and nets inside the module.

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-16

Distributed Delay Model

module M (input x, y, z, output f);
wire a, b, c;

and #5 a1 (a, x, y);
not #2 n1 (c, x);
and #5 a2 (b, c, z);
or #3 o1 (f, a, b);
endmodule

x
y

z

f

a

b

#5

#5

#3#2
c

module M (input x, y, z , output f);
wire a, b, c;

assign #5 a = x & y;
assign #2 c = ~x
assign #5 b = c & z
assign #3 f = a | b;
endmodule

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-17

Lumped Delay Model

 Lumped delay model
 Delays are associated with the entire module.
 The cumulative delay of all paths are lumped at the single

output.
 A lumped delay is specified on a per output basis.
 It specifies the time it takes the events to propagate at the

last gate along the path.

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-18

Lumped Delay Model

x
y

z

f

a

b

#10
c

module M (input x, y, z , output f);
wire a, b, c;

and a1 (a, x, y);
not n1 (c, x);
and a2 (b, c, z);
or #10 o1 (f, a, b);
endmodule

module M (input x, y, z , output f);
wire a, b, c;

assign a = x & y;
assign c = ~x
assign b = c & z
assign #10 f = a | b;
endmodule

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-19

Module Path Delay Model

Module path (pin-to-pin) delay model
 Delays are individually assigned to each module path.
 The input may be an input port or an inout (bidirectional)

port.
 The output may be an output port or an inout port.
 A path delay is specified on a pin-to-pin (port-to-port)

basis. This kind of paths is called module path.
 It specifies the time it takes an event at a source (input

port or inout port) to propagate to a destination (output
port or inout port).

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-20

Module Path Delay Model

x
y

z

f

a

b
c

Path x-a-f, delay = 8
Path x-c-b-f, delay = 10
Path y-a-f, delay = 8
Path z-b-f, delay = 8

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-21

Specify Blocks

 A specify block is declared within a module by keywords
specify and endspecify.

 The specify block is used to
 describe various paths across the module
 assign delays to these paths
 perform necessary timing checks

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-22

Path Delay Modeling – The specify Block

module M (input x, y, z , output f);
wire a, b, c;
// specify block with path delay statements
specify

(x => f) = 10;
(y => f) = 8;
(z => f) = 8;

endspecify
// gate instantiations

and a1 (a, x, y);
not n1 (c, x);
and a2 (b, c, z);
or o1 (f, a, b);

endmodule

x
y

z

f

a

b
c

Path x-a-f, delay = 8
Path x-c-b-f, delay = 10
Path y-a-f, delay = 8
Path z-b-f, delay = 8

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-23

Path Declarations

 Path declarations:
 Single-path
 Edge-sensitive path
 State-dependent path

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-24

Single Path

 Single path connection methods:
 Parallel connection (source => destination)
 Full connection (source *> destination)

(a) Parallel connection

(b) Full connection

a

b

c

source

x

y

z

destination
(a => x) = 10;
(b => y) = 8;
(c => z) = 8;

b

c

source y

z

destination
(a, b, c *> x) = 8;
(a, b, c *> y) = 10;
(b, c *> z) = 12;

a x

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-25

Edge-Sensitive Path

 Edge-sensitive path:
 posedge clock => (out +: in) = (8, 6);
 At the positive edge of clock, a module path extends from

clock to out using a rise time of 8 and a fall delay of 6.
The data path is from in to out.

 negedge clock => (out -: in) = (8, 6);
 At the negative edge of clock, a module path extends

from clock to out using a rise time of 8 and a fall delay of
6. The data path is from in to out.

 Level-sensitive path:
 clock => (out : in) = (8, 6);
 At any change in clock, a module path extends from

clock to out.

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-26

State-Dependent Path

 The module path delay is assigned conditionally based on
the value of the signals in the circuit.

if (cond_expr) simple_path_declaration
if (cond_expr) edge_sensitive_path_declaration
ifnone simple_path_declaration

specify
if (x) (x => f) = 10;
if (~x) (y => f) = 8;

endspecify

specify
if (!reset && !clear)
(positive clock => (out +: in) = (8, 6);

endspecify

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-27

The specparam Statement

 specparam statements are
 usually used to define specify parameters.
 used only inside their own specify block.

specify
// define parameters inside the specify block

specparam d_to_q = (10, 12); // two value delay specification
specparam clk_to_q = (15, 18);
(d => q) = d_to_q;
(clk => q) = clk_to_q;

endspecify

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-28

An Example --- An NOR Gate

module my_nor (a, b, out);
input a, b:
output out;

nor nor1 (out, a, b);
specify

specparam trise = 1, tfall = 2
specparam trise_n = 2, tfall_n = 3;
if (a) (b => out) = (trise, tfall);
if (b) (a => out) = (trise, tfall);
if (~a)(b => out) = (trise_n, tfall_n);
if (~b)(a => out) = (trise_n, tfall_n);

endspecify
endmodule

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-29

Timing Checks

 Timing Checks:
 Tasks are provided to do timing checks.
 Although they begin with $, timing checks are not system

tasks
 All timing checks must be inside the specify blocks.
 The following tasks are most commonly used:

• $setup
• $hold
• $setuphold
• $width
• $skew
• $period
• $recovery

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-30

Timing Checks -- $setup Task

$setup (data_event, reference_event, limit);
Violation is reported when treference_event – tdata_event < limit.

specify
$setup (data, posedge clock, 15);

endspecify

clock

data

holdtsetupt

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-31

Timing Checks -- $hold Task

clock

data

holdtsetupt

$hold (reference_event, data_event, limit);
Violation is reported when tdata_event – treference_event < limit.

specify
$hold (posedge clock, data, 8);

endspecify

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-32

Timing Checks -- $setuphold Task

clock

data

holdtsetupt

$setuphold (reference_event, data_event, setup_limit, hold_limit);
Violation is reported when:

treference_event – tdata_event < setup_limit.
tdata_event – treference_event < hold_limit.

specify
$setuphold (posedge clock, data, 10, -3);

endspecify

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-33

Timing Checks -- $width Task

reset
widtht

$width (reference_event, limit);
Violation is reported when tdata_event – treference_event < limit.
Data_event is the next opposite edge of the reference_event signal.

specify
$width (posedge reset, 6);

endspecify

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-34

Timing Checks -- $skew Task

$skew (reference_event, data_event, limit);
Violation is reported when tdata_event – treference_event > limit.

specify
$skew (posedge clkA posedge clkA, 5);

endspecify

clkA

skewt
clkB

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-35

Timing Checks -- $period Task

$period (reference_event, limit);
Violation is reported when tdata_event – treference_event < limit.
Data_event is the next same edge of the reference_event signal.

specify
$period (posedge clk, 15);

endspecify

clk

periodt

limitt

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-36

Timing Checks -- $recovery Task

$recovery (reference_event, data_event, limit);
Violation is reported when treference_event <= tdata_event < treference_event + limit.
It specifies the minimum time that an asynchronous input must be stable
before the active edge of the clock. (compare to $hold task)

specify
$recovery (negedge aysyn_input, posedge clk, 5);

endspecify

clk

eventreferencet _

asyn_input eventdatat _

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-37

Timing Checks -- $removal Task

$removal (reference_event, data_event, limit);
Violation is reported when treference_event – limit <= tdata_event < treference_event

t.
It specifies the minimum time that an asynchronous input must be stable
after the active edge of the clock. (compare to $setup task)
specify

$removal (posedge clear, posedge clk, 5);
endspecify

clk

eventreferencet _

clear
eventdatat _

Chapter 7: Advanced Modeling Techniques

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 7-38

Timing Checks -- $recrem Task

$recrem (reference_event, data_event, t_rec, t_rem);
It specifies the minimum time that an asynchronous input must be stable
before and after the active edge of the clock. (compare to $setuphold task)

specify
$recrem (posedge clear, posedge clk, 5, -2);

endspecify

clk

eventreferencet _

asyn_input eventdatat _

	Chapter 7: Advanced Modeling Techniques
	Objectives
	Sequential and Parallel Blocks
	Sequential Blocks
	Parallel Blocks
	Special Features of Blocks
	Nested Blocks
	Named Blocks
	Disabling Named Blocks
	Procedural Continuous Assignments
	Procedural Continuous Assignments
	Procedural Continuous Assignments
	Modes of Assignments
	Type of Delays
	Distributed Delay Model
	Distributed Delay Model
	Lumped Delay Model
	Lumped Delay Model
	Module Path Delay Model
	Module Path Delay Model
	Specify Blocks
	Path Delay Modeling – The specify Block
	Path Declarations
	Single Path
	Edge-Sensitive Path
	State-Dependent Path
	The specparam Statement
	An Example --- An NOR Gate
	Timing Checks
	Timing Checks -- $setup Task
	Timing Checks -- $hold Task
	Timing Checks -- $setuphold Task
	Timing Checks -- $width Task
	Timing Checks -- $skew Task
	Timing Checks -- $period Task
	Timing Checks -- $recovery Task
	Timing Checks -- $removal Task
	Timing Checks -- $recrem Task

