
5 P d i d l i5. Program design and analysis

aSoftware components.
`State machine, circular buffer, queue

aRepresentations of programs.aRepresentations of programs.
`Data flow graph
`Control/data flow graph`Control/data flow graph

aAssembly, linking, and loading.
aBasic compilation techniques

Computers as Components 1

5 P d i d l i5. Program design and analysis

aProgram optimization
aProgram-level performance analysis
aAnalysis of program sizeaAnalysis of program size
aProgram validation and testing
aSoftware modem

Computers as Components 2

Interactive system

aPermanently communicate with itsaPermanently communicate with its
environment

h d kaAt their own speed, making it wait
aConcurrent processes in OS or DBaConcurrent processes in OS or DB

management

Computers as Components 3

Reactive system

aReact to the environment that cannot wait
aFeatures
`Intended to be deterministic`Intended to be deterministic
`Involve concurrency
⌧Run in parallel with its environment⌧Run in parallel with its environment
⌧Distributed architecture: physical concurrency
⌧A set of concurrent processes: logical concurrency⌧A set of concurrent processes: logical concurrency

aMost critical systems are reactive

Computers as Components 4

Real-time system

aReal-time: receive interrupt or read
th i d t itsensors, then issue commands to it

`Timing constraints
`Safety
`Logical correctness`Logical correctness
`Temporal correctness

Computers as Components 5

Components for embedded programs

aThree structural components
aReactive systems: user interfaces (?)
`State machine`State machine

aDigital signal processing
`Ci l b ff`Circular buffer
`Queue

Computers as Components 6

S ft t t hiSoftware state machine

aState machine keeps internal state as a
i bl h t t b d i tvariable, changes state based on inputs.

aUses:
`control-dominated code;
`reactive systems`reactive systems.

Computers as Components 7

St t hi lState machine example

A simple seat belt controller

idle

!seat/-

! t/b ff seat/timer on

!seat/-

!seat/buzzer off

buzzer seated

belt/
timer/buzzer on

belted

(!belt and !timer)/-
!belt/timer on

belt/-
belt/buzzer off

Computers as Components 8

C i l t tiC implementation
#define IDLE 0#define IDLE 0
#define SEATED 1
#define BELTED 2
#define BUZZER 3#define BUZZER 3
switch (state) {

case IDLE: if (seat) { state = SEATED; timer_on = TRUE; }
/* default is self-loop *// default is self loop /

break;
case SEATED: if (belt) state = BELTED;

else if (timer) state = BUZZER;else if (timer) state BUZZER;
/* default is self-loop */

break;
case BELTED: if (!seat) state = IDLE;() ;

break;
case BUZZER: if (belt) state = BELTED;

else if (!seat) state = IDLE;

Computers as Components 9

break;
}

Ci l b ffCircular buffer

aCommonly used in signal processing:aCommonly used in signal processing:
`new data regularly arrives;
` h d t h li it d lif ti`each datum has a limited lifetime.

time ttime t+1

d1 d2 d3 d4 d5 d6 d7

aUse a circular buffer to hold the data stream.

Computers as Components 10

Ci l b ffCircular buffer

x1 x2 x3 x4 x5 x6

t1 t t3t1 t2
t3

Data stream

x1 x2 x3 x4x5 x6 x7

Circular buffer

Computers as Components 11

Ci l b ffCircular buffers

aIndexes locate currently used data,
t i t d tcurrent input data:

d1input d5used1

d2

input

d2
use

inputNext sample will be placed

d3

d4

d3

d4d4

time t1

use d4

time t1+1
Next sample will be used

Computers as Components 12

time t1

Ci l b ff f FIR filtCircular buffer for FIR filter

int circ_buffer[M]; /* circular buffer for data */
int circ_buffer_head = 0;_ _ ;
int c[N]; /* coefficients */
…
int f; /* loop counter */
int ibuf; /* loop index for buffer buffer */
int ic; /* loop index for the coeff array */int ic; /* loop index for the coeff array */
for (f=0, ibuff=circ_buff_head, ic=0; ic<N;

ibuff=(ibuff==(M-1)?0:ibuff++), ic++)(()),)
f = f + c[ic]*circ_buffer[ibuf];

Computers as Components 13

QQueues

aElastic buffer: holds data that arrives
irregularlyirregularly.
aCan be implemented with a linked list
aAllow it to grow to an arbitrary size
aIn many application we are unwilling toaIn many application we are unwilling to

pay the price of dynamically allocating
memorymemory.
`Use an array

Computers as Components 14

E l Example

aExample 3.5 (p. 99) :A circular buffer to
i t t d i d tmanage interrupt-driven data

aExample 5.3: an array for non-interrupt p y p
version
aErrorsaErrors
`initialize_queue
`enqueue

Computers as Components 15

B ff b d Buffer-based queues

#define Q_SIZE 32
#define Q_MAX (Q_SIZE-1)

int dequeue() {
int returnval;Q_ (Q_)

int q[Q_MAX], head, tail;
void initialize_queue() { head =

t il 0 }

;
if (head == tail) error(DeQ_error);
/* remove from empty Q */

tail = 0; }
void enqueue(int val) {

if (((tail+1)%Q SIZE) ==

returnval = q[head];
if (head == Q_MAX) head = 0;

else head++;if (((tail+1)%Q_SIZE)
head) error(EnQ_error);

/* add to the full Q */

else head++;
return returnval;

}
q[tail]=val;
if (tail == Q_MAX) tail = 0;
else tail++;

}

Computers as Components 16

else tail++;
}

M d l f Models of programs

aSource code is not a good representation
ffor programs:
`clumsy;
`leaves much information implicit.

aCompilers derive intermediateaCompilers derive intermediate
representations (IR) to manipulate and

ti i thoptimize the program.

Computers as Components 17

D t fl h (DFG)Data flow graph (DFG)

aA model for a code segment with no
diti lconditionals

aBasic block: One entry and one exity
aDescribes the minimal ordering

requirements on operationsrequirements on operations.

Computers as Components 18

Si l i t fSingle assignment form

x = a + b;
d

x = a + b;
dy = c - d;

z = x * y;
y = c - d;
z = x * y;

y = b + d; y1 = b + d;

original basic block single assignment form

Computers as Components 19

D t fl hData flow graph

x = a + b;
d

a b c d

y = c - d;
z = x * y;

+ -operator

y1 = b + d; x
y

single assignment form
+*

DFG
z y1

Computers as Components 20

DFG d ti l dDFGs and partial orders

Partial order:
a b d b d *

a b c d
aa+b, c-d; b+d, x*y

+ -

Can do pairs of operations
in any order.

x
y

y
+*

z y1

Computers as Components 21

Control-data flow graph (CDFG)

arepresents both control and data.
aUses data flow graphs as components.
aTwo types of nodes:aTwo types of nodes:
`decision;
`d fl`data flow.

Computers as Components 22

D t fl dData flow node

Encapsulates a data flow graph:

x = a + b;;
y = c + d

Write operations in basic block form for
simplicity.simplicity.

Computers as Components 23

C t lControl

d
T

l
v1 v4

cond

F

value

v2 v3

Equivalent forms

Computers as Components 24

CDFG lCDFG example

if (cond1) bb1();
else bb2();

cond1 bb1()
T

Felse bb2();
bb3();
switch (test1) {

bb2()
F

switch (test1) {
case c1: bb4(); break;
case c2: bb5(); break;

bb3()
case c2: bb5(); break;
case c3: bb6(); break;

}
test1c1 c3

}

bb4() bb5() bb6()
c2

Computers as Components 25

f lfor loop

for (i=0; i<N; i++)
l b d ()

i=0
loop_body();

for loop F

i=0;
i<N

T

F

i 0;
while (i<N) {

l b d () i++ } loop body()

T

loop_body(); i++; }
equivalent

loop_body()

Computers as Components 26

Assembly, linking, and loading

HLL compile assembly assemblerHLLHLL assemblyAssemblyp assemblerHLL y
code

assemblyassemblyObject code

linkerexecutableloader

i
Computers as Components 27

execution

T l tiTranslation

Many compilers produce
object modules directlyj y

St ti li kiStatic linking

Computers as Components 28

M lti l d l Multiple-module programs

aPrograms may be composed from several
filfiles.
aAddresses become more specific during p g

processing:
`relative addresses are measured relative to`relative addresses are measured relative to

the start of a module;
` b l t dd d l ti t`absolute addresses are measured relative to

the start of the CPU address space.

Computers as Components 29

A blAssemblers

aMajor tasks:
`generate binary for symbolic instructions;
`translate labels into addresses;;
`handle pseudo-ops (data, etc.).

aGenerally one to one translationaGenerally one-to-one translation.
aAssembly labels:

ORG 100
label1 ADR r4 c

Computers as Components 30

label1 ADR r4,c

S b l t blSymbol table

ADD r0,r1,r2
ADD 3 4 5

xx 0x8
0 10xx ADD r3,r4,r5

CMP r0,r3
yy 0x10

yy SUB r5,r6,r7

assembly code symbol table

Computers as Components 31

S b l t bl tiSymbol table generation

aUse program location counter (PLC) to
d t i dd f h l tidetermine address of each location.
aScan program, keeping count of PLC.p g , p g
aAddresses are generated at assembly

time not execution timetime, not execution time.

Computers as Components 32

S b l t bl lSymbol table example
PLC 0 7

ADD r0,r1,r2
ADD 3 4 5

xx 0x8
yy 0x10

PLC=0x7

PLC=0x8
xx ADD r3,r4,r5

CMP r0,r3
yy 0x10

PLC=0x9

PLC=0x10
yy SUB r5,r6,r7
PLC=0x10

Computers as Components 33

P d i Obj t M d lProducing an Object Module

aAssembler (or compiler) translates program into
machine instructionsmachine instructions

aProvides information for building a complete
program from the piecesprogram from the pieces
`Header: described contents of object module
`Text segment: translated instructions`Text segment: translated instructions
`Static data segment: data allocated for the life of the

program
`Relocation info: for contents that depend on absolute

location of loaded program
`Symbol table: global definitions and external refs

Computers as Components 34

`Symbol table: global definitions and external refs
`Debug info: for associating with source code

T blTwo-pass assembly

aPass 1:
`generate symbol table

aPass 2:aPass 2:
`generate binary instructions

Computers as Components 35

R l ti dd tiRelative address generation

aSome label values may not be known at
bl tiassembly time.

aLabels within the module may be kept in y p
relative form.
aMust keep track of external labels can’taMust keep track of external labels---can t

generate full binary for instructions that
use external labels.

Computers as Components 36

P d tiPseudo-operations

aPseudo-ops do not generate instructions:
`ORG sets program location.
`EQU generates symbol table entry without Q g y y

advancing PLC.
`Data statements define data blocks.`Data statements define data blocks.

Computers as Components 37

Li ki Obj t M d lLinking Object Modules

aProduces an executable image
1 Merges segments1.Merges segments
2.Resolve labels (determine their addresses)
3 P t h l ti d d t d t l f3.Patch location-dependent and external refs

aCould leave location dependencies for fixing by
l i l da relocating loader

`But with virtual memory, no need to do this
`Program can be loaded into absolute location in

virtual memory space

Computers as Components 38

Li kiLinking

aCombines several object modules into a
i l t bl d lsingle executable module.

aJobs: 2 passesp
`put modules in order; (load map)
`resolve labels across modules after merging`resolve labels across modules after merging

all symbol tables into a larger one.

Computers as Components 39

E t l d t i t
t i t

Externals and entry points
entry point

xxx ADD r1,r2,r3
B

a ADR r4,yyy
ADD 3 4 5external referenceB a

yyy SPACE 1
ADD r3,r4,r5

Entry points: the place in a file where a label is defined
External references: the place in a file where an external label is used

SPACE : alias %

External references: the place in a file where an external label is used.
Refer: Figure 5.10 (p. 226)

Computers as Components 40

SPACE : alias %
EQU: alias *

M d l d iModule ordering

aCode modules must be placed in absolute
iti i thpositions in the memory space.

aLoad map or linker flags control the order p g
of modules.

d l 1module1

module2odu e

module3

Computers as Components 41

module3

Static shared library and DLL

Computers as Components 42

D i Li kiDynamic Linking

aOnly link/load library procedure when it is
ll dcalled
`Shares one copy of library among all

executing programs;
`Requires procedure code to be relocatableequ es p ocedu e code to be e ocatab e
`Automatically picks up new library versions

Computers as Components 43

L di PLoading a Program

a Load from image file on disk into memory
1 Read header to determine segment sizes1. Read header to determine segment sizes

` Validation: permission, memory requirement

2 Create virtual address space2. Create virtual address space
3. Copy text and initialized data into memory

⌧ Or set page table entries so they can be faulted in⌧ Or set page table entries so they can be faulted in

4. Copy command line arguments on stack
5 Initialize registers (including $sp $fp)5. Initialize registers (including $sp, $fp)
6. Jump to startup routine

Computers as Components 44

P d i d l iProgram design and analysis

aCompilation flow.
aBasic statement translation.
aBasic optimizationsaBasic optimizations.
aInterpreters and just-in-time compilers.

Computers as Components 45

C il tiCompilation

aCompilation strategy (Wirth):
`compilation = translation + optimization

aCompiler determines quality of code:aCompiler determines quality of code:
`use of CPU resources;
`memory access scheduling;`memory access scheduling;
`code size.

Computers as Components 46

B i il ti hBasic compilation phases

HLL

parsing, symbol table

machine-independent
optimizations

machine-dependent
optimizationsp

assembly

Computers as Components 47

Statement translation and
ti i tioptimization

aSource code is translated into
i t di t f h CDFGintermediate form such as CDFG.
aCDFG is transformed/optimized./ p
aCDFG is translated into instructions with

optimization decisionsoptimization decisions.
aInstructions are further optimized.p

Computers as Components 48

A ith ti iArithmetic expressions

a*b + 5*(c-d) a b c d

expression * -
5

*

+

DFG

Computers as Components 49

DFG

A ith ti iArithmetic expressions

21

ADR r4,a
MOV r1,[r4]
ADR 4 b*

a b c d

21 ADR r4,b
MOV r2,[r4]
ADD r3,r1,r2

* -
5

3 *
ADR r4,c
MOV r1,[r4]
ADR r4,d

4 +
MOV r5,[r4]
SUB r6,r4,r5
MUL r7,r6,#5

DFG

ADD r8,r7,r3

code

Computers as Components 50

C t l d tiControl code generation

if (a+b > 0)
5x = 5;

else a+b>0 x=5

x = 7;

x=7x=7

Computers as Components 51

C t l d tiControl code generation
ADR 5ADR r5,a
LDR r1,[r5]
ADR r5,b

21
,

LDR r2,b
ADD r3,r1,r2
BLE label3

a+b>0 x=5

3
BLE label3

x=7
LDR r3,#5
ADR r5,x
STR r3,[r5]
B label4

label3 LDR r3 #7label3 LDR r3,#7
ADR r5,x
STR r3,[r5]

Computers as Components 52

label4 ...

P d li kProcedure linkage

aNeed code to:
`call and return;
`pass parameters and results.p p

aParameters and returns are passed on
stackstack.
`Procedures with few parameters may use

i tregisters.

Computers as Components 53

P d t kProcedure stacks

Stack growth
() {proc1

g
proc1(…) {

proc2(…);
}FP }FP

frame pointer

proc2

SP
accessed relative to SP

SP
stack pointer

Computers as Components 54

ARM d li kARM procedure linkage

aAPCS (ARM Procedure Call Standard):
`r0-r3 pass parameters into procedure. Extra

parameters are put on stack frame.
`r0 holds return value.
`r4-r7 hold register values.`r4 r7 hold register values.
`r11 is frame pointer, r13 is stack pointer.
`r10 holds limiting address on stack size to`r10 holds limiting address on stack size to

check for stack overflows.

Computers as Components 55

D t t tData structures

aDifferent types of data structures use
diff t d t l tdifferent data layouts.
aSome offsets into data structure can be

computed at compile time, others must be
computed at run timecomputed at run time.

Computers as Components 56

O di i l One-dimensional arrays

aC array name points to 0th element:

a[0]a

a[1]

a[2] *(+ 2 4)a[2] *(a + 2x4)

Computers as Components 57

T di i l Two-dimensional arrays

aRow-major layout:

a[0,0]
Ma[0,1]

...
M

NArray size: a[M,N]

a[1,0]
[i*M j]

...

Array size: a[M,N]

a[1,1] = a[i*M+j]

Computers as Components 58

T di i l Two-dimensional arrays

aColumn-major layout: FORTRAN

a[0,0]
Ma[1,0]

...
M

NArray size: a[M,N]

a[0,1]
[i j*N]

...

Array size: a[M,N]

a[1,1] = a[i+j*N]

Computers as Components 59

St tStructures

aFields within structures are static offsets:

aptr
struct { field1

fi ld

struct {
int field1;
char field2;

4 bytes

*(aptr+4)field2
;

} mystruct;

* &

*(aptr+4)

struct mystruct a, *aptr = &a;

Computers as Components 60

E i i lifi tiExpression simplification

aMachine independent transformation
aConstant folding:
`8+1 = 9`8+1 9

aAlgebraic:
` *b * *(b)`a*b + a*c = a*(b+c)

aStrength reduction:g
`a*2 = a<<1

Computers as Components 61

D d d li i tiDead code elimination

aDead code: difficult to identify in
generalgeneral

aCan be eliminated by analysis of
t l flcontrol flow.

aa special case 0
0

#define DEBUG 0
if (DEBUG) dbg(p1);

0

1

dbg(p1);

Computers as Components 62

P d i li iProcedure inlining

aEliminates procedure linkage overhead:
aIncrease code size

int foo(a,b,c) { return a + b - c;}
z = foo(w x y);z foo(w,x,y);

Ö
z = w + x + y;z = w + x + y;

Computers as Components 63

Loop transformations

aGoals:
d l h d`reduce loop overhead;

`increase opportunities for pipelining;
⌧Reduce pipeline stalls

`improve memory system performance.

Computers as Components 64

Loop unrollingLoop unrolling

aR d l h d blaReduces loop overhead, enables some
other optimizations.
aExpose parallelism

for (i 0; i<4; i++)for (i=0; i<4; i++)
a[i] = b[i] * c[i];

ÖÖ
for (i=0; i<2; i++) {

a[i*2] = b[i*2] * c[i*2];
a[i*2+1] = b[i*2+1] * c[i*2+1];

Computers as Components 65

}

Loop fusion and distribution

aFusion combines two loops into 1:

for (i=0; i<N; i++) a[i] = b[i] * 5;
for (j=0; j<N; j++) w[j] = c[j] * d[j];
Ö for (i=0; i<N; i++) {

a[i] = b[i] * 5;
w[i] = c[i] * d[i];[] [] [];

}

d b b k laLoop distribution breaks one loop into two.
aBoth changes optimizations within loop body.

Computers as Components 66

Loop tiling

aBreaks one loop into a nest of loops.
aCh d f ithiaChanges order of accesses within array.
`Changes cache behavior: why?

Computers as Components 67

L tili lLoop tiling example
for (i=0; i<N; i++)

for (j=0; j<N; j++)
for (i=0; i<N; i+=k)

for (j=0; j<N; j+=k)
c[i] = a[i,j]*b[i]; for (ii=0; ii<min(i+k,n); ii++)

for (jj=0; jj<min(j+k,N); jj++)
c[ii] = a[ii jj]*b[ii];c[ii] = a[ii,jj]*b[ii];

Computers as Components 68

Array padding

aAdd array elements to change mapping into
cache which reduces cache conflict:cache, which reduces cache conflict:

Computers as Components 69

Code generation

aCode selection
`Tree parsing`Tree parsing

aInstruction scheduling
`List scheduling

aRegister allocation
` graph coloring

Computers as Components 70

Register allocation

aGoals:
`choose register to hold each variable;`choose register to hold each variable;
`determine lifespan of variable in the register.

aB i ithi b i bl kaBasic case: within basic block.
aSpilling registers: problematic

Computers as Components 71

Register lifetime graph

w = a + b; at=1

x = c + w;
y = c + d;

b
c
d

t=2

t=3
d
w
x

time

y

1 2 3

Register assignment
0 b 1 2 d 0 3 0 3

Computers as Components 72

a r0; b r1; c r2; d r0; w r3; x r0; y r3

Conflict graph

a
a b

a
b
c
d

w
Conflict graph

d
w
x
y

x y

c

time

y

1 2 3

c

d
Register assignment
a r0; b r1; c r2; d r0; w r3; x r0; y r3

d

Minimum coring problem

Computers as Components 73

Instruction scheduling

aNon-pipelined machines do not need instruction
scheduling: any order of instructions thatscheduling: any order of instructions that
satisfies data dependencies runs equally fast.

aIn pipelined machines execution time of oneaIn pipelined machines, execution time of one
instruction depends on the nearby instructions:
opcode operandsopcode, operands.

Computers as Components 74

Reservation table

aA reservation table is
used to relates

Time/instr A B
used to relates
instructions/time to
CPU resources

instr1 X
instr2 X XCPU resources. instr2 X X
instr3 X
i t 4 Xinstr4 X

Computers as Components 75

List scheduling for
i t ti h d liinstruction scheduling

a Greedy heuristic algorithm: most common in practice
a Data-ready instructions stored in a priority list
a Priorities assigned according to heuristics

`pick an instruction with the largest number of successorss
`Pick instruction on the critical path or minimal slack`Pick instruction on the critical path or minimal slack
`Pick long latencies instructions

if ready list is not empty
schedule top priority instruction

elseelse
schedule a stall;

advance to next issue slot

Computers as Components 76

Compiler Code Generation

aSchedule both before
and after register

code selection, literal handling
a d a te eg ste
allocation
`Initial scheduling is

prepass operation binding
g

free of real processor
register constraints

`2nd phase required

scheduling

register allocation and spill code insertion`2nd phase required
due to spill code

register allocation and spill code insertion

postpass schedulingp p g

code emission

Computers as Components 77

A M ti ti E lA Motivating Example
a M hi d l (1 l)a Machine model: one memory access (1-cycle), one

arithmetic operation (2-cycle) in parallel
a Source code: Do All style loopa Source code: Do-All style loop

for (i=0; i < n; i++)
A[i] = A[i] * b + cA[i] A[i] b + c

a Code for one iteration: 6 cycles/iteration
cycle 1: Ready
cycle 2: Multiply

cycle 3:
cycle 4: Add

cycle 5:
cycle 6: Write

Computers as Components 78

cycle 6: Write

L lliLoop unrolling
a Unrolling replaces the body of the loop by several copies

of the body and adjusts loop-control code
`D f lli b f l b di`Degree of unrolling = number of loop bodies

a Unrolling once and schedule: 7 cycles/2 iterations
1: Read

2: Mul Read

3: Mul3: Mul

4: Add

5: Add

6 i6: Write

7: Write

a Unrolling twice and schedule: 10 cycles/3 iterations

Computers as Components 79

a Unrolling twice and schedule: 10 cycles/3 iterations

Impact of Unrolling
aWhat would be the optimal performance of this loop?

`2 cycles/iteration (why? Consider resource constraints only)

a Impact of unrolling: Let u be the degree of unrolling
`Execution Time of unrolled loop = 6 + 2(u – 1) = 4 + 2u`Execution Time of unrolled loop = 6 + 2(u 1) = 4 + 2u
`Optimal execution time = 2u
`Efficiency = u

u
24

2
+

`Efficiency = 90 % ⇒ u = 18
u24 +

a More you unroll, it become better, but the code size
increases substantially

Computers as Components 80

Software Pipelining (SP)
aA ti i ti t h i th t h d laAn optimization technique that can schedule

instructions beyond loop iteration boundaries
`By overlapping iterations in a pipelined fashion
`Multiple iterations can be executed in parallel
`Future iterations can initiate before current ones finish

aGenerating a pipelined schedule in overlapped
iterations
`Must find a pattern of code composed of multiple

iterations that can be executed repeatedly, which is

Computers as Components 81

called a kernel

Finding a Kernel
in Overlapped Code

1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration
-------------- --------------- -------------- -------------- ---------------

1: Read
2: Mul
3: Read
4: Mul
5: Add Read

l6: Mul
7: Add Read : repeated
8: Write Mul : pattern
9: Add Read | repeated9: Add Read | repeated
10: Write Mul | pattern
11: Add
12: Write
13: Add
14: Write
15:
16 W it

Computers as Components 82

16: Write

Generating a Pipelined Schedule
Read

Mul

Read

Mul Prolog

Add Read Code

M lMul

Add Read Kernel

Write Mul Code

Add

Write EpilogWrite Epilog

Add Code

Write

Computers as Components 83

Write

Software Pipelined Loop
aA ft i li d l i d faA software pipelined loop is composed of:
`Prolog: pipeline startup code
`Kernel: repeated pattern that is executed repetitively
`Epilog: pipeline drain code

aInitiation interval (II)aInitiation interval (II)
`Interval with which the next iteration initiates start

after the current iteration initiates
`Equals to the cycle length of the kernel
`In our example schedule, II = 2 cycles

Computers as Components 84

p , y

Benefit of Software Pipelining
a Unlike unrolling, software pipelining can give you an

optimal result
a C d i i h ll th llia Code size is much smaller than unrolling

a S h d l f h it tia Schedule of each iteration
`Schedule of each iteration is identical

⌧For finding a pattern easily and quickly⌧For finding a pattern easily and quickly

`Locally compacted code might not be globally optimal

Computers as Components 85

SP Across Loops

a Source Code
for (i=0; i < n; i++) 1: read

Sum = Sum + A[i] 2: Mult
A[i] = A[i] * b 3: Add

4: Write

a Software pipelined Code
1: Read
2: Mul2: Mul
3: Add Read | kernel
4: Write Mul |
5: Add5: Add
6: Write

Computers as Components 86

Instruction selection

a May be several ways to implement an operation or
sequence of operations.sequence of operations.

a Represent operations as graphs, match possible
instruction sequences onto graph.q g p

+ * +
+

*
expression templates

*MUL ADD

MADD

Computers as Components 87

Using your compiler?

a Understand various optimization levels (-O1, -O2, etc.)
a Look at mixed compiler/assembler outputa Look at mixed compiler/assembler output.
a Modifying compiler output requires care:

`correctness;`correctness;
`loss of hand-tweaked code.

Computers as Components 88

Interpreters and JIT compilers

a Interpreter: translates and executes program
statements on-the-fly.statements on the fly.

a JIT compiler: compiles small sections of code into
instructions during program execution.g p g
`Eliminates some translation overhead.
`Often requires more memory.

Computers as Components 89

Program design and analysis

aProgram-level performance analysis.
aO ti i i faOptimizing for:
`Execution time.
`Energy/power.
`Program size.

aProgram validation and testing.

Computers as Components 90

Program performance analysis

a Need to understand
performance in detail:performance in detail:
`Real-time behavior, not

just typical.
`On complex platforms.

a Program performance ≠
CPU performance:CPU performance:
`Pipeline, cache are

windows into program.p g
`We must analyze the entire

program.

Computers as Components 91

Complexities of program
performance

a Varies with input data:
`Different-length paths`Different-length paths.

a Cache effects.
a Instruction level performance variations:a Instruction-level performance variations:
`Pipeline interlocks.
`Fetch times`Fetch times.

Computers as Components 92

How to measure program
performance

a Simulate execution of the CPU.
`Makes CPU state visible`Makes CPU state visible.

a Measure on real CPU using timer.
`Requires modifying the program to control the timer`Requires modifying the program to control the timer.

a Measure on real CPU using logic analyzer.
`Requires events visible on the pins`Requires events visible on the pins.

Computers as Components 93

Program performance metrics

a Average-case execution time.
`Typically used in application programming`Typically used in application programming.

aWorst-case execution time.
`A component in deadline satisfaction`A component in deadline satisfaction.

a Best-case execution time.
`Task level interactions can cause best case program`Task-level interactions can cause best-case program

behavior to result in worst-case system behavior.

Computers as Components 94

Elements of program performance

aBasic program execution time formula:
`execution time program path + instruction timing`execution time = program path + instruction timing

aSolving these problems independently helps
i lif l isimplify analysis.
`Easier to separate on simpler CPUs.

aAccurate performance analysis requires:
`Assembly/binary code.
`Execution platform.

Computers as Components 95

Data-dependent paths in an if
statement

if (a || b) { /* T1 */
if (c) /* T2 */

a b c path

0 0 0 T1=F, T3=F: no assignments() / /
x = r*s+t; /* A1 */

else y=r+s; /* A2 */
0 0 1 T1=F, T3=T: A4

0 1 0 T1=T, T2=F: A2, A3

z = r+s+u; /* A3 */
}

else {

0 1 1 T1=T, T2=T: A1, A3

1 0 0 T1=T, T2=F: A2, A3

1 0 1 T1=T T2=T: A1 A3else {
if (c) /* T3 */

y = r-t; /* A4 */

1 0 1 T1=T, T2=T: A1, A3

1 1 0 T1=T, T2=F: A2, A3

1 1 1 T1=T, T2=T: A1, A3y ; / /
}

Computers as Components 96

Paths in a loop

for (i=0, f=0; i<N; i++)
f = f + c[i] * x[i];

i=0
f=0f = f + c[i] * x[i]; f 0

i N
Yes

i=N

No
f = f + c[i] * x[i]

i = i + 1

Computers as Components 97

Performance estimation

aOnce we know the execution path the
i l t ti t isimplest estimate is
`Assume that every instruction takes the

same number of clock cycles
`Multiply the count of instructions with the u t p y t e cou t o st uct o s t t e

per-instruction execution time

Computers as Components 98

Instruction timing

a Not all instructions take the same amount of time.
`Multi-cycle instructions`Multi cycle instructions

⌧Multiple load or store instructions
⌧Floating point instructions

a Execution times of instructions are not independent.
`Register bypassing

a E ti ti ith d la Execution times may vary with operand value.
`Floating-point operations.
`Some multi cycle integer operations`Some multi-cycle integer operations.

Computers as Components 99

Measurement-driven
performance analysis

aMore direct way
aN t it daNot so easy as it sounds:
`Must actually have access to the CPU.
`Must know data inputs that give worst/best case

performance.
`M t k t t i ibl`Must make state visible.

aStill an important method for performance
analysis.

Computers as Components 100

Trace-driven measurement

aTrace-driven:
`Instrument the program`Instrument the program.
`Save information about the path.

aR i dif i thaRequires modifying the program.
aTrace files are large.
aWidely used for cache analysis.

Computers as Components 101

Feeding the program

aThe biggest problem in measuring program
performance is figuring out a useful set ofperformance is figuring out a useful set of
inputs to provide to the program
`Need to know the desired input values`Need to know the desired input values.
`May need to write software scaffolding to feed data

into the program and get data outinto the program and get data out.

aSoftware scaffolding may also need to examine
outputs to generate feedback driven inputsoutputs to generate feedback-driven inputs.

Computers as Components 102

Performance measurement

aDirectly on hardware
aBy using a simulator

Computers as Components 103

Physical measurement

aIn-circuit emulator allows tracing.
`Affects execution timing`Affects execution timing.

aLogic analyzer can measure behavior at pins.
`Address bus can be analyzed to look for events.
`Code can be modified to make events visible.

aParticularly important for real-world input
streams.

Computers as Components 104

CPU simulation

aSome simulators are less accurate.
aC l t i l t id taCycle-accurate simulator provides accurate

clock-cycle timing.
`Simulator models CPU internals.
`Simulator writer must know how CPU works.

aSimplescalar (http://www.simplescalar.com): a
framework for building cycle-accurate CPU
models.

Computers as Components 105

SimpleScalar FIR filter simulation

int x[N] = {8, 17, … };
int c[N] = {1, 2, … };

N total sim
cycles

sim cycles
per filter

ti
[] { , , };

main() {
int i, k, f;

execution
100 25854 259

1,000 155759 156
for (k=0; k<COUNT; k++)

for (i=0; i<N; i++)
f += c[i]*x[i];

,

1,0000 1451840 145

f += c[i]*x[i];
}

Computers as Components 106

Performance optimization
motivation

a Embedded systems must often meet deadlines.
`Faster may not be fast enough`Faster may not be fast enough.

a Need to be able to analyze execution time.
`Worst case not typical`Worst-case, not typical.

a Need techniques for reliably improving execution time.

Computers as Components 107

Programs and performance
analysis

a Best results come from analyzing optimized instructions,
not high-level language code:not high level language code:
`non-obvious translations of HLL statements into

instructions;;
`code may move;
`cache effects are hard to predict.cac e e ects a e a d to p ed ct

Computers as Components 108

Loop optimizations

a Loops are good targets for optimization.
a Basic loop optimizations:a Basic loop optimizations:
`loop invariant code motion
`induction variable elimination;`induction-variable elimination;
`strength reduction (x*2 -> x<<1).

Computers as Components 109

Code motion

i=0;i=0; X = N*M

for (i=0; i<N*M; i++) i<N*M Ni<Xfor (i=0; i<N M; i++)
z[i] = a[i] + b[i];

z[i] = a[i] + b[i];

Y

[] [] [];

i = i+1;i = i+1;

Computers as Components 110

Induction variable

a a variable that gets increased or decreased by a fixed
amount on every iteration of a loop,

a or is a linear function of another induction variable.
a The compiler can eliminate some induction variables

d l t th d ti t thand apply strength reduction to others

Computers as Components 111

Induction variable elimination

a Consider loop:
for (i=0; i<N; i++)

f (j 0 j M j)for (j=0; j<M; j++)
z[i,j] = b[i,j];

a Introduce an induction variable
for (i=0; i<N; i++)for (i=0; i<N; i++)

for (j=0; j<M; j++) {
k = i*M + j; // induction variables
z[k] = b[k];

}

Computers as Components 112

Induction variable elimination

a Rather than recompute i*M+j for each array in each
iteration, share induction variable between arrays,
increment at end of loop bodyincrement at end of loop body.

k 0;k=0;
for (i=0; i<N; i++) {

for (j=0; j<M; j++) {o (j 0; j ; j) {
z[k] = b[k];
k++; // a strength reduction
}

}

Computers as Components 113

Cache analysis

aLoop nest: set of loops, one inside other.
aP f t l t diti l i taPerfect loop nest: no conditionals in nest.
aBecause loops use large quantities of data,

cache conflicts are common.

Computers as Components 114

Array conflicts in cache

for (i=0; i<N; i++) { // N=256for (i=0; i<N; i++) { // N=256
for (j=0; j<M; j++) { // M = 4

a[i][j] = b[i][j] * c;[][j] [][j] ;
}

}

Four-way set-associative cacheou w y se ssoc ve c c e
Line size = 4 words, 256 lines

Computers as Components 115

Array conflicts in cache

Direct-mapped cache
Line size = 4 words, 256 lines

a[0,0]
b[0 0]

a[0,0]
1024

a[0 0] b[0,0]a[0,0]

4099 ...b[0,0]

cache
Computers as Components 116

main memory
cache

Array conflicts in cache

Four-way set-associative cache
Line size = 4 words, 256 lines

a[0,0]a[0,0]
1024

a[0,0] b[0,0]
[,]

... ...

4099 b[0,0]

main memory

... ...

Computers as Components 117
cache

Array conflicts

aArray elements conflict because they are
mapped into the same line even if not mappedmapped into the same line, even if not mapped
to the same location.

aS l tiaSolutions:
`move one array;
`pad array.

Computers as Components 118

Performance optimization hints

aProfiling the program to find hot spots
aA fil d t ti tiaA profiler does not measure execution time
aTwo major ways to profile a program
` add an counting instruction at a location, which

increments every time the program passes that point
` or sample the pc during execution and keep track of

the distribution of the pc values.

aProfiling add relatively little overhead to the
program

Computers as Components 119

Performance optimization hints

aUse registers efficiently.
` group accesses to a value together` group accesses to a value together

aUse page mode memory accesses.
` to reduce the latency of the memory accesses
` rearrange variables so that they can be referenced

ti lcontiguously

Computers as Components 120

Performance optimization hints

aAnalyze cache behavior:
`i t ti fli t b h dl d b`instruction conflicts can be handled by

rewriting a small code to make it smaller,
`move the instructions or pad with NOP

instructions
`conflicting scalar data can easily be moved;
`conflicting array data can be moved, padded.`conflicting array data can be moved, padded.

Computers as Components 121

Cache behavior is important

aEnergy consumption has a sweet spot as cache
size changes:size changes:
`cache too small: program thrashes, burning

t lenergy on external memory accesses;
`cache too large: cache itself burns too much

power.

Computers as Components 122

Optimizing for energy

aFirst-order optimization:
`high performance = low energy.

aMaking the program run faster alsoaMaking the program run faster also
reduces energy consumption
aMemory access patterns: can beaMemory access patterns: can be

controlled by the programmers

Computers as Components 123

Optimizing for energy

aUse registers efficiently.
aIdentify and eliminate cache conflicts.
aModerate loop unrolling eliminates someaModerate loop unrolling eliminates some

loop overhead instructions.
aEli i i li llaEliminate pipeline stalls.
aInlining procedures may help: reducesaInlining procedures may help: reduces

linkage, but may increase cache
thrashing

Computers as Components 124

thrashing.

Optimizing for program size

aGoal:
` d h d t f`reduce hardware cost of memory;
`reduce power consumption of memory units.

aTwo opportunities:
`data;`data;
`instructions.

Computers as Components 125

Data size minimization

aReuse constants, variables, data buffers in
different parts of codedifferent parts of code.
`Requires careful verification of correctness.

aGenerate data using instructions.

Computers as Components 126

Reducing code size

aAvoid function inlining.
aCh CPU ith t i t tiaChoose CPU with compact instructions.
aUse specialized instructions where possible.

Computers as Components 127

P lid tiProgram validation

aThe goal of validating the requirement and
specification is to ensure that they satisfy thespecification is to ensure that they satisfy the
following criteria (ref. 446 page)
` correctness
` unambiguousness
` completenessp
` verifiability
` consistency
` modifiability
` traceability

Computers as Components 128

P t tiProgram testing

adoes it work?
aC t t h f ti l ifi tiaConcentrate here on functional verification.
aCreate a good set of tests for a given program
aHow much testing is enough?
aMajor testing strategies:aMajor testing strategies:
`Black box doesn’t look at the source code.
`Clear box (white box) does look at the source code`Clear box (white box) does look at the source code.

Computers as Components 129

Whit b t tiWhite-box testing

aCDFG is an important tool
aE i th d t d t i h thaExamine the source code to determine whether

it works:
`Can you actually exercise a path?
`Do you get the value you expect along a path?

aTesting procedure:
`Controllability: provide program with inputs.
`Execute.
`Observability: examine outputs.

Computers as Components 130

y p

E l Example

firout = 0.0;
for (j=curr, k=0; j<N; j++, k++)

aControllability:
`Must fill circular bufferfirout += buff[j] * c[k];

for (j=0; j<curr; j++, k++)
firout += buff[j] * c[k];

`Must fill circular buffer
with proper N values.

aObservability:firout += buff[j] c[k];
if (firout > 100.0) firout = 100.0;
if (firout < -100.0) firout = -100.0;

aObservability:
`Want to examine

firout before limitfirout before limit
testing.

Computers as Components 131

H t d t i t t tHow to determine test sets

aCan we test every path in an arbitrary
? Nprogram? No

aDoes it make sense to exercise ever path? p
No
aThe choice of an appropriate subset ofaThe choice of an appropriate subset of

paths to be tested requires some thought.

Computers as Components 132

E ti th d t tiExecution paths and testing

aPaths are important in functional testing
ll f l ias well as performance analysis.

aIn general, an exponential number of g , p
paths through the program.
`Show that some paths dominate others`Show that some paths dominate others.
`Heuristically limit paths.

Computers as Components 133

Ch i th th t t tChoosing the paths to test

aTwo reasonable
choices:choices:
`Execute every

statement at least
not covered

statement at least
once.

`Execute every branch`Execute every branch
direction at least once.

Computers as Components 134

How to choose a set of paths

aIntuition tells us that a relatively small
b f th h ld b bl tnumber of paths should be able to cover

most practical programs
aGraph theory helps us get a quantitative

handlehandle
`Cyclomatic complexity

Computers as Components 135

B i thBasis paths

aApproximate CDFG with undirected graph.
aUndirected graphs have basis paths:aUndirected graphs have basis paths:
`All paths are linear combinations of basis paths.

Computers as Components 136

C l ti l itCyclomatic complexity

aCyclomatic complexity
is a bound on the sizeis a bound on the size
of basis sets:
` # d`e = # edges
`n = # nodes
` b f h`p = number of graph

components
`M e n + 2p`M = e – n + 2p.

Computers as Components 137

Picking Basis Paths
a Pick path through the code that

covers the most edges (1)
a Pick a new path that covers ata Pick a new path that covers at

least one new edge
a Continue until the number of

h l h lpaths equals the cyclomatic
complexity (i.e., number of basis
tests)

a Note: The basis paths through
the code are not unique

a Because there are actually threea Because there are actually three
distinct paths in the graph,
cyclomatic complexity in this

i l i

Computers as Components 138

case is an overly conservative
bound

B h t tiBranch testing

a Heuristic for testing branches.
`Exercise both true and false branches of the

conditional.
`Exercise every simple condition in the conditional’s

expression at least once.
a One of the reasons to use many different types of test is

h h h dl l dto maximize the chance that supposedly unrelated
elements will cooperate to reveal the error in a
particular situationparticular situation

Computers as Components 139

B h t ti lBranch testing example

aCorrect:
`if (a || (b > c)) {

aBranch Test input:
`a F`if (a || (b >= c)) {

printf(“OK₩n”); }

aIncorrect:

`a = F
`(b >=c) = T

aE laIncorrect:
`if (a && (b >= c)) {

printf(“OK₩n”); }

aExample:
`Correct: [0 || (3 >=

2)] Tprintf(OK₩n); } 2)] = T
`Incorrect: [0 && (3

> 2)] F>= 2)] = F
so this test pick up the
error

Computers as Components 140

error

A th lAnother example

aCorrect:
`if ((x == good pointer) &&

aIncorrect code
changes pointer.`if ((x == good_pointer) &&

x->field1 == 3)) {
printf(“got the value₩n”);
}

changes pointer.
`Assignment returns

new LHS in C.
}

aIncorrect:
a if ((d i) &&

aA test we want to use
`(x != good pointer)a if ((x = good_pointer) &&

x->field1 == 3)) {
printf(“got the value₩n”);

`(x != good_pointer)
&& x->field1 = 3)

`Not guaranteed to
}

`Not guaranteed to
uncover the error

`But reasonable chance

Computers as Components 141
of success

D i t tiDomain testing

aAnother sophisticated
strategy for testingstrategy for testing
conditionals

aH i ti t t faHeuristic test for
linear inequalities.

aTest on each side +
boundary of
inequality.

Computers as Components 142

A potential problem with path
coverage

aThe paths chosen to cover the CDFG may not
have any important relationship with thehave any important relationship with the
program’s function.

aD t fl t ti i d f l i l taData flow testing using def-use analysis selects
paths with some relationship to the program’s
f tifunction

Computers as Components 143

D f iDef-use pairs

aVariable def-use:
`Def when value is`Def when value is

assigned (defined).
`Use when used on c-use

p-use
`Use when used on

right-hand side.

aExercise each def-use
p-use c-use

c use

aExercise each def-use
pair.
`Requires testing`Requires testing

correct path. four def-use pairs

Computers as Components 144

L t tiLoop testing

aLoops need specialized tests to be tested
ffi i tlefficiently.

aHeuristic testing strategy:g gy
`Skip loop entirely if possible.
`One loop iteration`One loop iteration.
`Two loop iterations.
`# iterations much below max.
`n-1, n, n+1 iterations where n is max.

Computers as Components 145

, ,

Bl k b t tiBlack-box testing

aComplements clear-box testing.
`May require a large number of tests.

aTests software in different ways.aTests software in different ways.

Computers as Components 146

Bl k b t t tBlack-box test vectors

aRandom tests.
`May weight distribution based on software

specification.

aRegression tests.
`Tests of previous versions bugs etc`Tests of previous versions, bugs, etc.
`May be clear-box tests of previous versions.

Computers as Components 147

How much testing is
h?enough?

aExhaustive testing is impractical.
aO i t t f t t lit baOne important measure of test quality---bugs

escaping into field.
aGood organizations can test software to give

very low field bug report rates.
aError injection measures test quality:
`Add known bugs.g
`Run your tests.
`Determine % injected bugs that are caught.

Computers as Components 148

`Determine % injected bugs that are caught.

