5. Program design and analysis

Software components.
State machine, circular buffer, queue

Representations of programs.
Data flow graph
Control/data flow graph
Assembly, linking, and loading.
Basic compilation techniques

Computers as Components 1

5. Program design and analysis

Program optimization

Program-level performance analysis
Analysis of program size

Program validation and testing
Software modem

Computers as Components 2

Interactive system

Permanently communicate with Its
environment

At their own speed, making it wait
Concurrent processes in OS or DB
management

Computers as Components

Reactive system

React to the environment that cannot wait

Features
Intended to be deterministic

Involve concurrency
Run in parallel with its environment
Distributed architecture: physical concurrency
A set of concurrent processes: logical concurrency

Most critical systems are reactive

Computers as Components 4

Real-time system

Real-time: receive interrupt or read
sensors, then issue commands to it
Timing constraints
Safety
Logical correctness
Temporal correctness

Computers as Components

Components for embedded programs

Three structural components

Reactive systems: user interfaces (?)
State machine

Digital signal processing
Circular buffer
Queue

Computers as Components 6

Software state machine

State machine keeps internal state as a
variable, changes state based on inputs.

Uses:
control-dominated code;
reactive systems.

Computers as Components

State machine example

A simple seat belt controller

Iseat/-
idle
Iseat/buzzer off seat/timer on
1 Iseat/-
[O J:timer/buzzer on . seated }
belt/buzzer off ('belt and !timer)/-

belted Ibelt/timer on

Computers as Components 8

C implementation

#define IDLE O
#define SEATED 1
#define BELTED 2
#define BUZZER 3
switch (state) {
case IDLE: if (seat) { state = SEATED; timer_on = TRUE; }
/* default is self-loop */
break;
case SEATED: if (belt) state = BELTED,;
else if (timer) state = BUZZER;
/* default is self-loop */
break;
case BELTED: if (Iseat) state = IDLE;
break;
case BUZZER: if (belt) state = BELTED,;
else if (!seat) state = IDLE;
break;

Computers as Components

Circular buffer

Commonly used In signal processing:
new data reqularly arrives;
each datum has a limited lifetime.

‘time time t+1‘

dl| d2| d3 | d4 |d5 | d6 | d7

Use a circular buffer to hold the data stream.

Computers as Components 10

Circular buffer

X1 | X2 | X3 | X4 | x5 | x6
N N _/)
Y v Y
4 i, &
Data stream

Circular buffer

Computers as Components

Circular buffers

Indexes locate currently used data,
current input data:

Input L dl use — ds5
Next sample will be placed 42 input d2
d3 d3
use —| d4 as
Next sample will be used
tlme t1 tlme t1+1

Computers as Components

Circular buffer for FIR filter

Int circ_buffer[M]; /* circular buffer for data */

Int circ_buffer _head = 0;

Int c[N]; /* coefficients */

Int f; /* loop counter */

Int ibuf; /* loop index for buffer buffer */
Int ic; /* loop index for the coeff array */

for (f=0, ibuff=circ_buff head, ic=0; IC<N;
ibuff=(ibuff==(M-1)?0:ibuff++), ic++)
f = f + c[ic]*circ_buffer[ibuf];

Computers as Components

13

Queues

Elastic buffer: holds data that arrives
iIrregularly.

Can be implemented with a linked list

Allow It to grow to an arbitrary size

In many application we are unwilling to
pay the price of dynamically allocating
memory.

Use an array

Computers as Components

14

Example

Example 3.5 (p. 99) :A circular buffer to
manage interrupt-driven data

Example 5.3: an array for non-interrupt
version

Errors
Initialize _queue
engueue

Computers as Components

15

Buffer-based queues

#define Q_SIZE 32 Int dequeue() {
#define Q_MAX (Q_SIZE-1) Int returnval;
Int q[Q_MAX], head, tail; If (head == tail) error(DeQ error);
void initialize_queue() { head = /* remove from empty Q */
tail = 0; } returnval = q[head];
void enqueue(int val) { if (head == Q_MAX) head = 0;

if (((tail+1)%Q_ SIZE) ==
\\\ 7 . 7
head) error(EnQ _error);

else head++;
return returnval;

/* add to the full Q */ 1
g[tail]=val;
if (tail == Q_MAX) tail = 0;
else tail++;

¥

Computers as Components 16

Models of programs

Source code is not a good representation
for programs:

clumsy;
leaves much information implicit.

I\IMV\I e A +Avrrmm A

CUITIJIHCET S UCIIVC IIILCIIIIUUIaLC
representations (IR) to manipulate and

optimize the program.

Computers as Components 17

Data flow graph (DFG)

A model for a code segment with no
conditionals

Basic block: One entry and one exit

Describes the minimal ordering
requirements on operations.

Computers as Components 18

Single assignment form

X=a+Db; X=a+Db;
y=c-d; y=c-d;
Z=X7*Y,; Z=X™*Y;
y=Db+d; yl =Db + d;

original basic block —— single assignment form

Computers as Components

19

Data flow graph

X =a+ b; a
y =c-d;

7= Xx*y: operator
yl=Db +d;

single assignment form

Computers as Components

?

4
DFG

c d
N/
yl

20

DFGs and partial orders

b c d Partial order:
\® N\ / a+b, c-d:; b+d, x*y
X\ Can do pairs of operations
In any order.

Computers as Components 21

Control-data flow graph (CDFG)

represents both control and data.
Uses data flow graphs as components.

Two types of nodes:
decision;
data flow.

Computers as Components

22

Data flow node

Encapsulates a data flow graph:

X=a+b;
y=c+d

Write operations in basic block form for
simplicity.

Computers as Components

Control

T

vl v4
— value SRR

V2 / V3

Equivalent forms

Computers as Components

24

CDFG example

If (condl) bb1();

else bb2();

bb3();

switch (testl) {
case cl1: bb4(); break;
case c2: bb5(); break;
case c3: bb6(); break;

}

Computers as Components

bb4()

L bb1()

>\CB
Cc2

bb6()

/

25

for loop

for (i=0; i<N; i++)

loop_body();
for loop
1=0; T
while (i<N) {

loop_body(); i++; } loop_body()
equivalent

Computers as Components

Assembly, linking, and loading

compile assembler

(ot

executable linker

Computers as Components

loader

execution

27

Translation

C program

Assembly language program

Assembler

Many compilers produce
object modules directly

Object: Machine language module

Object: Library routine (machine language)

Executable: Machine language program

Memory

Computers as Components

> Static linking

28

Multiple-module programs

Programs may be composed from several
files.

Addresses become more specific during
processing:

Iff\ﬁﬁf\f\ ~ "\ 2 2 VaYaYal B ofa

IUIdLIVU dUUIUbbCD alic 1Hicaouicu
the start of a module;

absolute addresses are measured relative to
the start of the CPU address space.

L
-5

Alat+innriAn A~
ciallvce WV

Computers as Components 29

Assemblers

Major tasks:
generate binary for symbolic instructions;
translate labels into addresses;
handle pseudo-ops (data, etc.).

Generally one-to-one translation.
Assembly labels:

ORG 100
labell ADRTr4,c

Computers as Components 30

Symbol table

ADD rO,rl1,r2 XX Ox8
xx ADD r3,r4,r5 yy 0x10
CMP r0O,r3

yy SUB r5,ro,r7

assembly code symbol table

Computers as Components 31

Symbol table generation

Use program location counter (PLC) to
determine address of each location.

Scan program, keeping count of PLC.

Addresses are generated at assembly
time, not execution time.

Computers as Components 32

Symbol table example

PLC=0x7

ol c=oxg 1D 10,rl,r2

51 C=0x9 D r3,r4,r5

D
PLCZOXlC,I 0,r3

w——sUB I5,r6,r7

XX
Yy

Computers as Components

Ox8
0x10

33

Producing an Object Module

Assembler (or compiler) translates program into
machine instructions

Provides information for building a complete
program from the pieces

Header: described contents of object module
Text segment: translated instructions

Static data segment: data allocated for the life of the
program

Relocation info: for contents that depend on absolute
location of loaded program

Symbol table: global definitions and external refs
Debug info: for assQgciating.with source code 34

Two-pass assembly

Pass 1:
generate symbol table

Pass 2:
generate binary instructions

Computers as Components

35

Relative address generation

Some label values may not be known at
assembly time.

Labels within the module may be kept Iin
relative form.

Must keep track of external labels---can’t
generate full binary for instructions that

use external labels.

Computers as Components

36

Pseudo-operations

Pseudo-ops do not generate instructions:
ORG sets program l|ocation.

EQU generates symbol table entry without
advancing PLC.

Data statements define data blocks.

Computers as Components

37

Linking Object Modules

Produces an executable image

1.Merges segments

2.Resolve labels (determine their addresses)
3.Patch location-dependent and external refs

Could leave location dependencies for fixing by
a relocating loader

But with virtual memory, no need to do this

Program can be loaded into absolute location in
virtual memory space

Computers as Components 38

Linking

Combines several object modules into a
single executable module.
Jobs: 2 passes

put modules in order; (load map)

resolve labels across modules after merging
all symbol tables into a larger one.

Computers as Components

39

Externals and entry points

entry point
xxx ADD r1,r2,r3 . |a ADR r4.yyy
BJ ‘external referenee— ADD r3,r4,rd

yyy«<—SPACE 1

Entry points: the place in a file where a label is defined
External references: the place in a file where an external label is used.
Refer: Figure 5.10 (p. 226)

SPACE : alias %
EQU: alias *

Computers as Components 40

Module ordering

Code modules must be placed in absolute
positions in the memory space.

Load map or linker flags control the order
of modules.

modulel

module2

module3

Computers as Components 41

Static shared library and DLL

When different programs are running on a
computer, those different programs usually turn out

to share a lot of common code.

MNearly every C program uses routines such as fopen, and printf.

Frograms running under a GUI such as X Windows, or MS Windows all
use pleces of the GUI library.

Most systems now provide shared libraries for programs to use, so all
the programs that use a library can share a single copy of it.

Static shared library

* The linker binds program refersnces to library routines to those specific
addresses at link time.

Dynamic linked library

* Library sections and symbols are not bound to actual addresses until
the program that uses the library starts running.

Computers as Components

42

Dynamic Linking

Only link/load library procedure when it is
called

Shares one copy of library among all
executing programs;

Requires procedure code to be relocatable
Automatically picks up new library versions

Computers as Components 43

Loading a Program

Load from image file on disk into memory
Read header to determine segment sizes
Validation: permission, memory requirement

2. Create virtual address space
3. Copy text and initialized data into memory

Nr cat nana tahla antrinoec cn t!f\e\

c Nn h
Ui OCL payc wdui ciilnics SU J

N
1 VAl 1

4. Copy command line arguments on stack
5. Initialize registers (including $sp, $fp)
6. Jump to startup routine

Computers as Components

Program design and analysis

Compilation flow.

Basic statement translation.
Basic optimizations.

Interpreters and just-in-time compilers.

Computers as Components 45

Compilation

Compi
com
Compl

ation strategy (Wirth):
pilation = translation + optimization

er determines quality of code:

use of CPU resources;
memory access scheduling;
code size.

Computers as Components

46

Basic compilation phases

parsing, symbol table

machine-independent
optimizations

machine-dependent
optimizations

Computers as Components

a7

Statement translation and
optimization

Source code iIs translated into
Intermediate form such as CDFG.

CDFG is transformed/optimized.

CDFG is translated into instructions with
optimization decisions.

Instructions are further optimized.

Computers as Components

48

Arithmetic expressions

a*h + 5*(c-d) a b

expression

14

DFG

Computers as Components

49

Arithmetic expressions

d

b

DFG

C

d

ADD r8,r7,r3

code

Computers as Components

50

Control code generation

If (a+b > 0)
X =5;
else
X =1;

< a+b>0 >—

X=5

X=7

Computers as Components

51

Control code generation

B 00 g

label3 LDR r3,#7
ADR r5,X
STR r3,[r5]
label4

Computers as Components

52

Procedure linkage

Need code to:
call and return;
pass parameters and results.

Parameters and returns are passed on

~tAanl,

SLAUA.

Procedures with few parameters may use
registers.

Computers as Components

53

Procedure stacks

Stack growthl
procl procl(...) {
proc2(...);

FP — ¥
frame pointer

proc2

-} accessed relative to SP

SP —

stack pointer

Computers as Components 54

ARM procedure linkage

APCS (ARM Procedure Call Standard):

r0-r3 pass parameters into procedure. Extra
parameters are put on stack frame.

r0 holds return value.
r4-r7 hold register values.
rll is frame pointer, rl3 is stack pointer.

r10 holds limiting address on stack size to
check for stack overflows.

Computers as Components 55

Data structures

Different types of data structures use
different data layouts.

Some offsets into data structure can be
computed at compile time, others must be

~roomniitad at r
UUlllPULL’u CAL 1

iNn fiMmao
11 LIl

C

Computers as Components 56

One-dimensional arrays

C array name points to Oth element:

a[2] *(a + 2x4)

Computers as Components

57

Two-dimensional arrays

Row-major layout:

a0,0] |

a[0,1] - M
Array size: a|M,N] N 7

a[1,0]

a[1,1] = a[I*M+]]

Computers as Components 58

Two-dimensional arrays

Column-major layout: FORTRAN

a[0,0]
a[1,0] e

Array size: a|M,N] N g
a[0,1]
a[1,1] = a[I+]*N]

Computers as Components 59

Structures

Fields within structures are static offsets:

aptr —
struct { ,
int field1: fieldd
char field2; _
} mystruct; field2

struct mystruct a, *aptr = &a;

Computers as Components

4 bytes

— *(aptr+4)

60

Expression simplification

Machine independent transformation
Constant folding:
8+1 =09
Algebraic:
a*b + a*c = a*(b+c)
Strength reduction:
a*2 = a<<l

Computers as Components

61

Dead code elimination

Dead code: difficult to identify In
general

Can be eliminated by analysis of
control flow.

a special case
#define DEBUG 0O

if (DEBUG) dbg(p1):
/

dbgiRL);

/l\

Computers as Components

Procedure Inlining

Eliminates procedure linkage overhead:
Increase code size

int foo(a,b,c) { returna + b - c;}

7 = foolw ¥ v)-
[=5 lvv\v',l\,]l,

=

Z:W+X+y;

Computers as Components

63

Loop transformations

Goals:
reduce loop overhead,
Increase opportunities for pipelining;
Reduce pipeline stalls

improve memory system performance.

Computers as Components

64

Loop unrolling

Reduces loop overhead, enables some
other optimizations.

Expose parallelism
for (i=0; i<4; i++)
a[i] = b[i] * c[il;
=
for (1I=0; I1<2; i1++) {
a[i*2] = b[i*2] * c[i*2];
a[i*2+1] = b[i*2+1] * c[i*2+1];
}

Computers as Components

65

Loop fusion and distribution

Fusion combines two loops into 1:

for (i=0; I<N; i++) a[i] = b[i] * 5;
for §=0; J<N; j++) wlj] = cj] * dlj];
= for (i=0; i<N; i++) {
afi] = b[i] * 5;
wli] = c[il * d[i];
¥

Loop distribution breaks one loop into two.
Both changes optimizations within loop body.

Computers as Components

66

Loop tiling

Breaks one loop into a nest of loops.

Changes order of accesses within array.
Changes cache behavior:

Computers as Components

67

Loop tiling example

for (i=0; I<N; I1++)
for (j=0; J<N; j++)
c[i] = a[i,jI*bli];

for (i=0; i<N; i+=k)
for (j=0; j<N; j+=Kk)
for (ii=0; ii<min(i+k,n); ii++)
for (jj=0; jj<min(j+k,N); jj++)
clii] = a[ii,jj]1*blii];

Computers as Components 68

Array padding

Add array elements to change mapping into
cache, which reduces cache conflict:

L B

Cache
Memory
/ I / -
! array #2 . v array #3
gap &ap

Computers as Components

69

Code generation

Code selection
Tree parsing

Instruction scheduling
List scheduling

Register allocation
graph coloring

Computers as Components

70

Register allocation

Goals:
choose register to hold each variable;

determine lifespan of variable in the register.

Basic case: within basic block.
Spilling registers: problematic

Computers as Components

71

Register lifetime graph

w=a+ b; t=1
X=C+w,; t=2
y=c+d; t=3

a []
b []
c]
d []
w]
X
[]

y []

I I I

1 2 3 time

Register assignment
arO;brl;cr2;drO;,wr3; xr0;yr3

Computers as Components 12

\<:><§Q_O o 9

Conflict graph

1 2 3 time

Register assignment
arO;brl;cr2;drO;wr3; xr0;yr3

= Conflict graph
]
[]
1
- []

Minimum coring problem

Computers as Components 73

Instruction scheduling

Non-pipelined machines do not need instruction
scheduling: any order of instructions that
satisfies data dependencies runs equally fast.

In pipelined machines, execution time of one
Instruction depends on the nearby instructions:
opcode, operands.

Computers as Components

74

Reservation table

A reservation table Is

used to relates

Instructions/time to

CPU resources.

Time/instr

Instrl
INStr2
INstr3
Instr4

Computers as Components

X X X [

75

List scheduling for
Instruction scheduling

Greedy heuristic algorithm: most common in practice
Data-ready instructions stored in a priority list

Priorities assigned according to heuristics
pick an instruction with the largest number of successorss
Pick iInstruction on the critical path or minimal slack
Pick long latencies instructions

If ready list is not empty

schedule top priority instruction
else

schedule a stall;
advance to next issue slot

Computers as Components 76

Compiler Code Generation

Schedule both before

code selection, literal handling

and after register 1
allocation prepass operation binding
Initial scheduling is }
free of real processor scheduling
register constraints |
2"d phase required register allocation and spill code insertion
due to spill code

postpass scheduling

|

code emission

Computers as Components 77

A Motivating Example

Machine model: one memory access (1-cycle), one
arithmetic operation (2-cycle) in parallel

Source code: Do-All style loop
for (I=0; i < n; i++)
Afli] =A[i] *b +c
Code for one iteration: 6 cycles/iteration
cycle 1. Read
cycle 2: Multiply
cycle 3:
cycle 4. Add
cycle 5:
cycle 6: Write

Computers as Components

78

Loop unrolling

Unrolling replaces the body of the loop by several copies
of the body and adjusts loop-control code

Degree of unrolling = number of loop bodies
Unrolling once and schedule: 7 cycles/2 iterations

1: Read

2: Mul Read
3: Mul
4: Add

5: Add
6: Write

7 Write

Unrolling twice and schedule: 10 cycles/3 iterations

Computers as Components 79

Impact of Unrolling

What would be the optimal performance of this loop?
2 cycles/iteration (why? Consider resource constraints only)

Impact of unrolling: Let ¢ be the degree of unrolling
Execution Time of unrolled loop =6 + 2(v—1) =4 + 2u
Optimal execution time = 2u

.. 2U
Efficiency =
Efficiency =90 % = v =18

More you unroll, it become better, but the code size
Increases substantially

Computers as Components 80

Software Pipelining (SP)

An optimization technique that can schedule
Instructions beyond loop iteration boundaries
By overlapping iterations in a pipelined fashion
Multiple iterations can be executed in parallel
Future iterations can initiate before current ones finish

Generating a pipelined schedule in overlapped
Iterations

Must find a pattern of code composed of multiple
Iterations that can be executed repeatedly, which is
called a kernel

Computers as Components 81

Finding a Kernel
In Overlapped Code

N QT RN

N
= O

el el el o
QRN

1st iteration

Add

Write

2nd jteration 3 iteration 4t iteration 5 iteration

Read
Mul
Read
Mul
Add Read
Mul
Add Read
Write Mul
Add
Write
Add
Write
Write

Computers as Components

. repeated
. pattern

I vAmrnAntAa ~
| Fepeated

| pattern

82

Generating a Pipelined Schedule

Read
v
Mul
v
Read
v
Mul
v
Add Read
v
Mul
v
Add Read
Wirite Mudl
v
Add
v
Write
Add
v
Write
v
Write

Computers as Components

Prolog

Code

Kernel

Code

Epilog

Code

83

Software Pipelined Loop

A software pipelined loop Is composed of:
Prolog: pipeline startup code
Kernel: repeated pattern that is executed repetitively
Epilog: pipeline drain code

Initiation interval (11)

Interval with which the next iteration initiates start
after the current iteration initiates

Equals to the cycle length of the kernel
In our example schedule, Il = 2 cycles

Computers as Components 84

Benefit of Software Pipelining

Unlike unrolling, software pipelining can give you an
optimal result

Code size is much smaller than unrolling

Schedule of each iteration
Schedule of each iteration is identical

Enr findinn 2 nattarn aacilvy and Aarnelely
I Vi IIIIUIIIH A 'JULLLL,III \lu\)ll-y CAL I U|UIIUI\I_y

Locally compacted code might not be globally optimal

Computers as Components

85

SP Across Loops

Source Code

for (i=0; i < n; i++) 1: read
Sum = Sum + A[i] 2: Mult
Alil =A[i] *b 3: Add

4: Write

Software pipelined Code

1: Read

2: Mul

3: Add Read | kernel

4: Write Mul |

5: Add

6: Write

Computers as Components

86

Instruction selection

May be several ways to implement an operation or
sequence of operations.

Represent operations as graphs, match possible
Instruction sequences onto graph.

N VNG e
L © ® ® 9
@ MUL ADD @
expression templates mMADD

Computers as Components 87

Using your compiler?

Understand various optimization levels (-O1, -02, etc.)
Look at mixed compiler/assembler output.

Modifying compiler output requires care:
correctness;
loss of hand-tweaked code.

Computers as Components

88

Interpreters and JIT compilers

Interpreter: translates and executes program
statements on-the-fly.

JIT compiler: compiles small sections of code into
Instructions during program execution.

Eliminates some translation overhead.

Often requires more memory.

Computers as Components

89

Program design and analysis

Program-level performance analysis.
Optimizing for:
Execution time.

Energy/power.
Program size.

Program validation and testing.

Computers as Components

90

Program performance analysis

Need to understand
performance in detail:

Real-time behavior, not
just typical.

On complex platforms.

Nz
Program performance = "

C P U pe I’fO §Mmance.: total execution time -

Pipeline, cache are
windows into program.

We must analyze the entire
program.

pipeline g

Computers as Components 91

Complexities of program
performance

Varies with input data:
Different-length paths.

Cache effects.

Instruction-level performance variations:
Pipeline interlocks.
Fetch times.

Computers as Components

92

How toO measure program
performance

Simulate execution of the CPU.

Makes CPU state visible.
Measure on real CPU using timer.

Requires modifying the program to control the timer.
Measure on real CPU using logic analyzer.

Requires events visible on the pins.

Computers as Components 93

Program performance metrics

Average-case execution time.

Typically used in application programming.
Worst-case execution time.

A component in deadline satisfaction.
Best-case execution time.

Task-level interactions can cause best-case program
behavior to result in worst-case system behavior.

Computers as Components 94

Elements of program performance

Basic program execution time formula:
execution time = program path + instruction timing

Solving these problems independently helps
simplify analysis.

Easier to separate on simpler CPUs.
Accurate performance analysis requires:

Assembly/binary code.
Execution platform.

Computers as Components 95

Data-dependent paths in an if
statement

if (a || b) { /* T1*/ Eﬂl

if (C) [* T2 */ 0 T1=F T3=F: no assignments
X = r*s+t; /* Al */ O 0 1 TI1=F T3=T: Ad
else y=r+s; /* A2 */ O 1 0 TI=T, T2=F: A2, A3
Z = r+s+u; /* A3 */ O 1 1 TI1=T, T2=T: A1, A3
} 1 0 0 TI=T, T2=F: A2, A3
else { 1 0 1 TI1=T, T2=T: AL, A3
if(c)/*T3*/ 1 1 0 TI1=T, T2=F: A2, A3
y =r-t; /* A4 */ 1 1 1 TIi=T, T2=T:A1, A3

Computers as Components 96

Paths in a loop

for (i=0, f=0; i<N; i++)
f=f+ cfi] * X[il:

Computers as Components 97

Performance estimation

Once we know the execution path the
simplest estimate Is

Assume that every instruction takes the
same number of clock cycles

Multiply the count of instructions with the
per-instruction execution time

Computers as Components

98

Instruction timing

Not all instructions take the same amount of time.

Multi-cycle instructions
Multiple load or store instructions
Floating point instructions

Execution times of instructions are not independent.

Register bypassing

Execution times may vary with operand value.
Floating-point operations.
Some multi-cycle integer operations.

Computers as Components

99

Measurement-driven
performance analysis

More direct way

Not so easy as It sounds:
Must actually have access to the CPU.

Must know data inputs that give worst/best case
performance.

Must make state visible.

Still an important method for performance
analysis.

Computers as Components 100

Trace-driven measurement

Trace-driven:
Instrument the program.
Save information about the path.

Requires modifying the program.
Trace files are large.
Widely used for cache analysis.

Computers as Components

101

Feeding the program

The biggest problem in measuring program
performance is figuring out a useful set of
Inputs to provide to the program
Need to know the desired input values.
May need to write to feed data
Into the program and get data out.
Software scaffolding may also need to examine
outputs to generate feedback-driven inputs.

Computers as Components 102

Performance measurement

Directly on hardware
By using a simulator

Computers as Components 103

Physical measurement

In-circuit emulator allows tracing.
Affects execution timing.

Logic analyzer can measure behavior at pins.
Address bus can be analyzed to look for events.
Code can be modified to make events visible.

Particularly important for real-world input
streams.

Computers as Components 104

CPU simulation

Some simulators are less accurate.

Cycle-accurate simulator provides accurate
clock-cycle timing.

Simulator models CPU internals.

Simulator writer must know how CPU works.

Simplescalar (http://www.simplescalar.com): a
framework for building cycle-accurate CPU
models.

Computers as Components 105

SimpleScalar FIR filter simulation

int X[N] = {8, 17, ... }; N total sim sim cycles
int c[N] = {1, 2, ... }: cycles per filt_er
execution

main() { 100 25854 259

:cnt , k, T 1,000 155759 156
or (k=0; K<COUNT; k++) 1,0000 1451840 145

for (i=0; i<N; i++)
f += c[i*x[il;

Computers as Components 106

Performance optimization
motivation

Embedded systems must often meet deadlines.
Faster may not be fast enough.

Need to be able to analyze execution time.
Worst-case, not typical.

Need techniques for reliably improving execution time.

Computers as Components 107

Programs and performance
analysis

Best results come from analyzing optimized instructions,
not high-level language code:

non-obvious translations of HLL statements into
Instructions;

code may move,
cache effects are hard to predict.

Computers as Components 108

Loop optimizations

Loops are good targets for optimization.

Basic loop optimizations:
loop invariant code motion
Induction-variable elimination;

strength reduction (x*2 x<<1).

Computers as Components

109

Code motion

for (i=0; i<N*M; i++)
Z[i] = a[i] + b[i];

z[1] = a[1] + b[i];

Computers as Components

| = 1+1;

110

Induction variable

a variable that gets increased or decreased by a fixed
amount on every iteration of a loop,

or is a linear function of another induction variable.

The compiler can eliminate some induction variables
and apply strength reduction to others

Computers as Components 111

Induction variable elimination

Consider loop:
for (i=0; i<N; i++)
for J=0; j<M; j++)
z[1.)] = bLL]I;

Introduce an induction variable
for (i=0; i<N; i++)
for (J=0; J<M; j++) {
K =1*M + j; // induction variables
z[k] = b[K];
}

Computers as Components 112

Induction variable elimination

Rather than recompute i*M+j for each array in each
iteration, share induction variable between arrays,
Increment at end of loop body.

k=0;
for (i=0; i<N; i++) {
for (j=0; j<M; j++) {

z[k] = b[k];
k++; // a strength reduction
¥

}

Computers as Components 113

Cache analysis

Loop nest: set of loops, one inside other.
Perfect loop nest: no conditionals in nest.

Because loops use large quantities of data,
cache conflicts are common.

Computers as Components 114

Array conflicts in cache

for (i=0; i<N; i++) { /] N=256
for (j=0; j<M; j++) { // M =4
ali]i] = bLilb] * c;
by
by

Four-way set-associative cache
Line size = 4 words, 256 lines

Computers as Components

115

Array conflicts in cache

Direct-mapped cache
Line size = 4 words, 256 lines

1024

a[0,0] T——0

7a[0,0] b[0,0]

cache
main memory

Computers as Components 116

Array conflicts in cache

Four-way set-associative cache
Line size = 4 words, 256 lines

[0,0] »b[0,0]
1024 — /'a //
a[0,0]
main memory

cache
Computers as Components 117

Array conflicts

Array elements conflict because they are

mapped into the same line, even if not mapped
to the same location.

Solutions:
move one array,
pad array.

Computers as Components 118

Performance optimization hints

Profiling the program to find hot spots
A profiler does not measure execution time

Two major ways to profile a program

add an counting instruction at a location, which
Increments every time the program passes that point

or sample the pc during execution and keep track of
the distribution of the pc values.

Profiling add relatively little overhead to the
program

Computers as Components 119

Performance optimization hints

Use registers efficiently.
group accesses to a value together

Use page mode memory accesses.
to reduce the latency of the memory accesses

rearrange variables so that they can be referenced
contiguously

Computers as Components 120

Performance optimization hints

Analyze cache behavior:

Instruction conflicts can be handled by
rewriting a small code to make it smaller,

move the instructions or pad with NOP
Instructions

conflicting scalar data can easily be moved,;
conflicting array data can be moved, padded.

Computers as Components 121

Cache behavior is important

Energy consumption has a sweet spot as cache
size changes:

cache too small: program thrashes, burning
energy on external memory accesses;

cache too large: cache itself burns too much
power.

Computers as Components 122

Optimizing for energy

First-order optimization:
high performance = low energy.

Making the program run faster also
reduces energy consumption

Memory access patterns: can be
controlled by the programmers

Computers as Components 123

Optimizing for energy

Use registers efficiently.
Identify and eliminate cache conflicts.

Moderate loop unrolling eliminates some
loop overhead instructions.

Eliminate pipeline stalls.

Inlining procedures may help: reduces
linkage, but may increase cache
thrashing.

Computers as Components 124

Optimizing for program size

Goal:
reduce hardware cost of memory;
reduce power consumption of memory units.

Two opportunities:
data:

\JIU\-‘-V\-,

Instructions.

Computers as Components 125

Data size minimization

Reuse constants, variables, data buffers In
different parts of code.

Requires careful verification of correctness.
Generate data using instructions.

Computers as Components 126

Reducing code size

Avoid function inlining.
Choose CPU with compact instructions.
Use specialized instructions where possible.

Computers as Components 127

Program validation

The goal of validating the requirement and
specification is to ensure that they satisfy the
following criteria (ref. 446 page)

correctness

unambiguousness

completeness

verifiability

consistency

modifiability

traceability

Computers as Components 128

Program testing

does It work?
Concentrate here on functional verification.
Create a good set of tests for a given program
How much testing Is enough?
Maior testing strateqies:
SR ROy ot yibe
Black box doesn’t look at the source code.
Clear box (white box) does look at the source code.

Computers as Components 129

White-box testing

CDFG is an important tool
Examine the source code to determine whether
It works:

Can you actually exercise a path?

Do you get the value you expect along a path?
Testing procedure:

Controllability: provide program with inputs.

Execute.
Observability: examine outputs.

Computers as Components 130

Example

frout=0.0; = Controllability:
for (j=curr, k=0; j<N; j++, k++) .

firout += buff[j] * c[K]: M_ust fill circular buffer
for (j=0; j<curr; j++, k++) with N values.

firout += buff[j] * c[K];
if (firout > 100.0) firout = 100.0;

Observability:

if (firout <) firout = -100.0; Want to examine
firout before limit
testing.

Computers as Components 131

How to determine test sets

Can we test every path in an arbitrary
program? No

Does it make sense to exercise ever path?
No

The choice of an appropriate subset of
paths to be tested requires some thought.

Computers as Components 132

Execution paths and testing

Paths are important in functional testing
as well as performance analysis.

In general, an exponential number of
paths through the program.

N M

Cha lhe AdAam
OINOW Lllal. |J l.I 1S QOIMi

Heurlstlcally I|m|t paths.

iAata AtlhAr
Al UL ICI

S.

Computers as Components 133

Choosing the paths to test

Two reasonable
choices:
Execute every

not covered

statement at least

once.

Execute every branch

W w V i

direction at least once.

Computers as Components

134

How to choose a set of paths

Intuition tells us that a relatively small
number of paths should be able to cover
most practical programs

Graph theory helps us get a quantitative
handla

1ICAT TGO

Cyclomatic complexity

Computers as Components 135

Basis paths

Approximate CDFG with undirected graph.

Undirected graphs have basis paths:

All paths are linear combinations of basis paths.

Computers as Components

® O T 98

® /O T 9Q

abcde
00100
00101
11010

Incidence matrix

10000
01000
00100
00010

00001

Basis set

136

Cyclomatic complexity

Cyclomatic complexity

is a bound on the size :j : : :
of basis sets: | ¢ ____[===
e = # edges i | i
n = # nodes | S i
I [

p = number of graph B . |
components S e
M=e—n+2p. | |

VG)=8—-6+2=4

Computers as Components 137

Picking Basis Paths

Pick path through the code that
covers the most edges (1)

Pick a new path that covers at
least one new edge

Continue until the number of

paths equals the cyclomatic
complexity (i.e., number of basis
tests)

Note: The basis paths through
the code are not unigque

Because there are actually three
distinct paths in the graph,
cyclomatic complexity in this
case is an overly conservative
bound

VG)=8—-6+2=4

Computers as Components 138

Branch testing

Heuristic for testing branches.

Exercise both true and false branches of the
conditional.

Exercise every simple condition in the conditional’s
expression at least once.

One of the reasons to use many different types of test is
to maximize the chance that supposedly unrelated
elements will cooperate to reveal the error in a
particular situation

Computers as Components 139

Branch testing example

Correct:
if (a]|] (b >=¢)){ a=F
printf(*OKWn”); } (b >=c) =
Incorrect: Example:
It (a && (b >= C)) { Correct: [0 |] (3 >=
printf(“*OKWn”); } 2)] =
Incorrect: [0 && (3
>=2)] =F
so this test pick up the
error

Computers as Components 140

Another example

Incorrect code

Correct: _
If ((x == good_pointer) && Changes pointer.
x->fieldl == 3)) { Assignment returns
grintf(“got the valueW#1”); new LHS in C.
Incorreat- A test we want-to use
If ((x = good_pointer) && (X 1= qud—pomter)
x->fieldl == 3)) { && x->fieldl = 3)
printf(“got the valueWn"); Not guaranteed to
} uncover the error
But reasonable chance
of success

Computers as Components 141

Domain testing

i=3,j=5
Another sophisticated A
. j ® ® i=4j=5
strategy for testing o
. t=LJ=
conditionals S
- [=3,j=5 >
Heuristic test _fpr A S ,.
linear inequalities. V-
® i=1,j=2
Test on each side + | <=+t i=3,j=5
> A oy
boundary of : j ® @ i-4j-s
iInequality. Correct test o i-Lj-2
j>=i—1
|

i

Computers as Components Incorrect tests 142

A potential problem with path
coverage

The paths chosen to cover the CDFG may not
nave any important relationship with the
program’s function.

Data flow testing using def-use analysis selects
paths with some relationship to the program’s
function

Computers as Components 143

Def-use pairs

Variable def-use:
Def when value is a3 mypointer;

_ . if (c > 5){
Ign fined). | N
assigned (defined) * while (a->field1 = vall)
Use when u§ed on a = a>next:
right-hand side. }
Exercise each def-use if (a->field2 <= val2)
pair someproc(a,b);

Requires testing
correct path.

Computers as Components 144

Loop testing

Loops need specialized tests to be tested
efficiently.

Heuristic testing strategy:
Skip loop entirely if possible.
One loop iteration.
Two loop Iiterations.
Iterations much below max.
n-1, n, n+1 iterations where n iIs max.

Computers as Components 145

Black-box testing

Complements clear-box testing.
May require a large number of tests.

Tests software In different ways.

Computers as Components 146

Black-box test vectors

Random tests.

May weight distribution based on software
specification.

Regression tests.

Computers as Components 147

How much testing Is
enough?

Exhaustive testing Is impractical.

One important measure of test quality---bugs
escaping into field.

Good organizations can test software to give
very low field bug report rates.

Error injection measures test quality:
Add known bugs.
Run your tests.
Determine % injected bugs that are caught.

Computers as Components 148

