5. Program design and analysis

Software components.
State machine, circular buffer, queue

Representations of programs.
Data flow graph
Control/data flow graph
Assembly, linking, and loading.
Basic compilation techniques
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5. Program design and analysis

Program optimization

Program-level performance analysis
Analysis of program size

Program validation and testing
Software modem
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Interactive system

Permanently communicate with Its
environment

At their own speed, making it wait
Concurrent processes in OS or DB
management

Computers as Components



Reactive system

React to the environment that cannot wait

Features
Intended to be deterministic

Involve concurrency
Run in parallel with its environment
Distributed architecture: physical concurrency
A set of concurrent processes: logical concurrency

Most critical systems are reactive
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Real-time system

Real-time: receive interrupt or read
sensors, then issue commands to it
Timing constraints
Safety
Logical correctness
Temporal correctness
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Components for embedded programs

Three structural components

Reactive systems: user interfaces (?)
State machine

Digital signal processing
Circular buffer
Queue

Computers as Components 6



Software state machine

State machine keeps internal state as a
variable, changes state based on inputs.

Uses:
control-dominated code;
reactive systems.
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State machine example

A simple seat belt controller

Iseat/-
idle
Iseat/buzzer off seat/timer on
1 Iseat/-
[ O J:timer/buzzer on . seated }
belt/buzzer off ('belt and !timer)/-

belted Ibelt/timer on
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C implementation

#define IDLE O
#define SEATED 1
#define BELTED 2
#define BUZZER 3
switch (state) {
case IDLE: if (seat) { state = SEATED; timer_on = TRUE; }
/* default is self-loop */
break;
case SEATED: if (belt) state = BELTED,;
else if (timer) state = BUZZER;
/* default is self-loop */
break;
case BELTED: if (Iseat) state = IDLE;
break;
case BUZZER: if (belt) state = BELTED,;
else if (!seat) state = IDLE;
break;
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Circular buffer

Commonly used In signal processing:
new data reqularly arrives;
each datum has a limited lifetime.

‘time time t+1‘

dl| d2| d3 | d4 |d5 | d6 | d7

Use a circular buffer to hold the data stream.
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Circular buffer

X1 | X2 | X3 | X4 | x5 | x6
N N _/ )
Y v Y
4 i, &
Data stream

Circular buffer
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Circular buffers

Indexes locate currently used data,
current input data:

Input L dl use — ds5
Next sample will be placed 42 input d2
d3 d3
use —| d4 as
Next sample will be used
tlme t1 tlme t1+1
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Circular buffer for FIR filter

Int circ_buffer[M]; /* circular buffer for data */

Int circ_buffer _head = 0;

Int c[N]; /* coefficients */

Int f; /* loop counter */

Int ibuf; /* loop index for buffer buffer */
Int ic; /* loop index for the coeff array */

for (f=0, ibuff=circ_buff head, ic=0; IC<N;
ibuff=(ibuff==(M-1)?0:ibuff++), ic++)
f = f + c[ic]*circ_buffer[ibuf];

Computers as Components
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Queues

Elastic buffer: holds data that arrives
iIrregularly.

Can be implemented with a linked list

Allow It to grow to an arbitrary size

In many application we are unwilling to
pay the price of dynamically allocating
memory.

Use an array

Computers as Components
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Example

Example 3.5 (p. 99) :A circular buffer to
manage interrupt-driven data

Example 5.3: an array for non-interrupt
version

Errors
Initialize _queue
engueue

Computers as Components
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Buffer-based queues

#define Q_SIZE 32 Int dequeue() {
#define Q_MAX (Q_SIZE-1) Int returnval;
Int q[Q_MAX], head, tail; If (head == tail) error(DeQ error);
void initialize_queue() { head = /* remove from empty Q */
tail = 0; } returnval = q[head];
void enqueue(int val) { if (head == Q_MAX) head = 0;

if (((tail+1)%Q_ SIZE) ==
\\\ 7 . 7
head) error(EnQ _error);

else head++;
return returnval;

/* add to the full Q */ 1
g[tail]=val;
if (tail == Q_MAX) tail = 0;
else tail++;

¥
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Models of programs

Source code is not a good representation
for programs:

clumsy;
leaves much information implicit.

I\IMV\I e A +Avrrmm A
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representations (IR) to manipulate and

optimize the program.
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Data flow graph (DFG)

A model for a code segment with no
conditionals

Basic block: One entry and one exit

Describes the minimal ordering
requirements on operations.
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Single assignment form

X=a+Db; X=a+Db;
y=c-d; y=c-d;
Z=X7*Y,; Z=X™*Y;
y=Db+d; yl =Db + d;

original basic block —— single assignment form

Computers as Components
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Data flow graph

X =a+ b; a
y =c-d;

7= Xx*y: operator
yl=Db +d;

single assignment form

Computers as Components
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DFGs and partial orders

b c d Partial order:
\® N\ / a+b, c-d:; b+d, x*y
X\ Can do pairs of operations
In any order.
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Control-data flow graph (CDFG)

represents both control and data.
Uses data flow graphs as components.

Two types of nodes:
decision;
data flow.

Computers as Components
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Data flow node

Encapsulates a data flow graph:

X=a+b;
y=c+d

Write operations in basic block form for
simplicity.
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Control

T

vl v4
— value SRR

V2 / V3

Equivalent forms

Computers as Components
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CDFG example

If (condl) bb1();

else bb2();

bb3();

switch (testl) {
case cl1: bb4(); break;
case c2: bb5(); break;
case c3: bb6(); break;

}

Computers as Components

bb4()

L bb1()

>\CB
Cc2

bb6()
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for loop

for (i=0; i<N; i++)

loop_body();
for loop
1=0; T
while (i<N) {

loop_body(); i++; } loop_body()
equivalent

Computers as Components



Assembly, linking, and loading

compile assembler

(ot

executable linker

Computers as Components

loader

execution
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Translation

C program

Assembly language program

Assembler

Many compilers produce
object modules directly

Object: Machine language module

Object: Library routine (machine language)

Executable: Machine language program

Memory

Computers as Components
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Multiple-module programs

Programs may be composed from several
files.

Addresses become more specific during
processing:

Iff\ﬁﬁf\f\ ~ "\ 2 2 VaYaYal B ofa

IUIdLIVU dUUIUbbCD alic 1Hicaouicu
the start of a module;

absolute addresses are measured relative to
the start of the CPU address space.

L
-5
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Computers as Components 29



Assemblers

Major tasks:
generate binary for symbolic instructions;
translate labels into addresses;
handle pseudo-ops (data, etc.).

Generally one-to-one translation.
Assembly labels:

ORG 100
labell ADRTr4,c

Computers as Components 30




Symbol table

ADD rO,rl1,r2 XX Ox8
xx  ADD r3,r4,r5 yy  0x10
CMP r0O,r3

yy  SUB r5,ro,r7

assembly code symbol table
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Symbol table generation

Use program location counter (PLC) to
determine address of each location.

Scan program, keeping count of PLC.

Addresses are generated at assembly
time, not execution time.
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Symbol table example

PLC=0x7

ol c=oxg 1D 10,rl,r2

51 C=0x9 D r3,r4,r5

D
PLCZOXlC,I 0,r3

w——sUB I5,r6,r7

XX
Yy

Computers as Components

Ox8
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Producing an Object Module

Assembler (or compiler) translates program into
machine instructions

Provides information for building a complete
program from the pieces

Header: described contents of object module
Text segment: translated instructions

Static data segment: data allocated for the life of the
program

Relocation info: for contents that depend on absolute
location of loaded program

Symbol table: global definitions and external refs
Debug info: for assQgciating.with source code 34



Two-pass assembly

Pass 1:
generate symbol table

Pass 2:
generate binary instructions

Computers as Components
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Relative address generation

Some label values may not be known at
assembly time.

Labels within the module may be kept Iin
relative form.

Must keep track of external labels---can’t
generate full binary for instructions that

use external labels.

Computers as Components
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Pseudo-operations

Pseudo-ops do not generate instructions:
ORG sets program l|ocation.

EQU generates symbol table entry without
advancing PLC.

Data statements define data blocks.

Computers as Components
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Linking Object Modules

Produces an executable image

1.Merges segments

2.Resolve labels (determine their addresses)
3.Patch location-dependent and external refs

Could leave location dependencies for fixing by
a relocating loader

But with virtual memory, no need to do this

Program can be loaded into absolute location in
virtual memory space
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Linking

Combines several object modules into a
single executable module.
Jobs: 2 passes

put modules in order; (load map)

resolve labels across modules after merging
all symbol tables into a larger one.

Computers as Components
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Externals and entry points

entry point
xxx ADD r1,r2,r3 . |a ADR r4.yyy
BJ ‘external referenee— ADD r3,r4,rd

yyy«<—SPACE 1

Entry points: the place in a file where a label is defined
External references: the place in a file where an external label is used.
Refer: Figure 5.10 (p. 226)

SPACE : alias %
EQU: alias *
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Module ordering

Code modules must be placed in absolute
positions in the memory space.

Load map or linker flags control the order
of modules.

modulel

module2

module3

Computers as Components 41



Static shared library and DLL

When different programs are running on a
computer, those different programs usually turn out

to share a lot of common code.

MNearly every C program uses routines such as fopen, and printf.

Frograms running under a GUI such as X Windows, or MS Windows all
use pleces of the GUI library.

Most systems now provide shared libraries for programs to use, so all
the programs that use a library can share a single copy of it.

Static shared library

* The linker binds program refersnces to library routines to those specific
addresses at link time.

Dynamic linked library

* Library sections and symbols are not bound to actual addresses until
the program that uses the library starts running.

Computers as Components
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Dynamic Linking

Only link/load library procedure when it is
called

Shares one copy of library among all
executing programs;

Requires procedure code to be relocatable
Automatically picks up new library versions
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Loading a Program

Load from image file on disk into memory
Read header to determine segment sizes
Validation: permission, memory requirement

2. Create virtual address space
3. Copy text and initialized data into memory

Nr cat nana tahla antrinoec cn t!f\e\

c Nn h
Ui OCL payc wdui ciilnics SU J

N
1 VAl 1

4. Copy command line arguments on stack
5. Initialize registers (including $sp, $fp)
6. Jump to startup routine

Computers as Components



Program design and analysis

Compilation flow.

Basic statement translation.
Basic optimizations.

Interpreters and just-in-time compilers.
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Compilation

Compi
com
Compl

ation strategy (Wirth):
pilation = translation + optimization

er determines quality of code:

use of CPU resources;
memory access scheduling;
code size.

Computers as Components
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Basic compilation phases

parsing, symbol table

machine-independent
optimizations

machine-dependent
optimizations

Computers as Components
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Statement translation and
optimization

Source code iIs translated into
Intermediate form such as CDFG.

CDFG is transformed/optimized.

CDFG is translated into instructions with
optimization decisions.

Instructions are further optimized.

Computers as Components
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Arithmetic expressions

a*h + 5*(c-d) a b

expression

14

DFG

Computers as Components
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Arithmetic expressions

d

b

DFG

C

d

ADD r8,r7,r3

code

Computers as Components
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Control code generation

If (a+b > 0)
X =5;
else
X =1;

< a+b>0 >—

X=5

X=7

Computers as Components
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Control code generation

B 00 g

label3 LDR r3,#7
ADR r5,X
STR r3,[r5]
label4

Computers as Components
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Procedure linkage

Need code to:
call and return;
pass parameters and results.

Parameters and returns are passed on

~tAanl,

SLAUA.

Procedures with few parameters may use
registers.

Computers as Components
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Procedure stacks

Stack growthl
procl procl(...) {
proc2(...);

FP — ¥
frame pointer

proc2

-} accessed relative to SP

SP —

stack pointer
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ARM procedure linkage

APCS (ARM Procedure Call Standard):

r0-r3 pass parameters into procedure. Extra
parameters are put on stack frame.

r0 holds return value.
r4-r7 hold register values.
rll is frame pointer, rl3 is stack pointer.

r10 holds limiting address on stack size to
check for stack overflows.
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Data structures

Different types of data structures use
different data layouts.

Some offsets into data structure can be
computed at compile time, others must be

~roomniitad at r
UUlllPULL’u CAL 1

iNn fiMmao
11 LIl

C
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One-dimensional arrays

C array name points to Oth element:

a[2] *(a + 2x4)

Computers as Components
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Two-dimensional arrays

Row-major layout:

a0,0] |

a[0,1] - M
Array size: a|M,N] N 7

a[1,0]

a[1,1] = a[I*M+]]
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Two-dimensional arrays

Column-major layout: FORTRAN

a[0,0]
a[1,0] e

Array size: a|M,N] N g
a[0,1]
a[1,1] = a[I+]*N]
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Structures

Fields within structures are static offsets:

aptr —
struct { ,
int field1: fieldd
char field2; _
} mystruct; field2

struct mystruct a, *aptr = &a;

Computers as Components

4 bytes

— *(aptr+4)
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Expression simplification

Machine independent transformation
Constant folding:
8+1 =09
Algebraic:
a*b + a*c = a*(b+c)
Strength reduction:
a*2 = a<<l

Computers as Components
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Dead code elimination

Dead code: difficult to identify In
general

Can be eliminated by analysis of
control flow.

a special case
#define DEBUG 0O

if (DEBUG) dbg(p1):
/

dbgiRL);

/l\
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Procedure Inlining

Eliminates procedure linkage overhead:
Increase code size

int foo(a,b,c) { returna + b - c;}

7 = foolw ¥ v)-
[ =5 lvv\v',l\,]l,

=

Z:W+X+y;

Computers as Components
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Loop transformations

Goals:
reduce loop overhead,
Increase opportunities for pipelining;
Reduce pipeline stalls

improve memory system performance.

Computers as Components
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Loop unrolling

Reduces loop overhead, enables some
other optimizations.

Expose parallelism
for (i=0; i<4; i++)
a[i] = b[i] * c[il;
=
for (1I=0; I1<2; i1++) {
a[i*2] = b[i*2] * c[i*2];
a[i*2+1] = b[i*2+1] * c[i*2+1];
}

Computers as Components
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Loop fusion and distribution

Fusion combines two loops into 1:

for (i=0; I<N; i++) a[i] = b[i] * 5;
for §=0; J<N; j++) wlj] = cj] * dlj];
= for (i=0; i<N; i++) {
afi] = b[i] * 5;
wli] = c[il * d[i];
¥

Loop distribution breaks one loop into two.
Both changes optimizations within loop body.

Computers as Components
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Loop tiling

Breaks one loop into a nest of loops.

Changes order of accesses within array.
Changes cache behavior:

Computers as Components
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Loop tiling example

for (i=0; I<N; I1++)
for (j=0; J<N; j++)
c[i] = a[i,jI*bli];

for (i=0; i<N; i+=k)
for (j=0; j<N; j+=Kk)
for (ii=0; ii<min(i+k,n); ii++)
for (jj=0; jj<min(j+k,N); jj++)
clii] = a[ii,jj]1*blii];
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Array padding

Add array elements to change mapping into
cache, which reduces cache conflict:

L B

Cache
Memory
/ I / -
! array #2 . v array #3
gap &ap

Computers as Components
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Code generation

Code selection
Tree parsing

Instruction scheduling
List scheduling

Register allocation
graph coloring

Computers as Components
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Register allocation

Goals:
choose register to hold each variable;

determine lifespan of variable in the register.

Basic case: within basic block.
Spilling registers: problematic

Computers as Components
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Register lifetime graph

w=a+ b; t=1
X=C+w,; t=2
y=c+d; t=3

a [ ]
b [ ]
c ]
d [ ]
w ]
X
[ ]

y [ ]

I I I

1 2 3 time

Register assignment
arO;brl;cr2;drO;,wr3; xr0;yr3

Computers as Components 12
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Conflict graph

1 2 3 time

Register assignment
arO;brl;cr2;drO;wr3; xr0;yr3

= Conflict graph
]
[]
1
- []

Minimum coring problem
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Instruction scheduling

Non-pipelined machines do not need instruction
scheduling: any order of instructions that
satisfies data dependencies runs equally fast.

In pipelined machines, execution time of one
Instruction depends on the nearby instructions:
opcode, operands.

Computers as Components
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Reservation table

A reservation table Is

used to relates

Instructions/time to

CPU resources.

Time/instr

Instrl
INStr2
INstr3
Instr4

Computers as Components

X X X [

75



List scheduling for
Instruction scheduling

Greedy heuristic algorithm: most common in practice
Data-ready instructions stored in a priority list

Priorities assigned according to heuristics
pick an instruction with the largest number of successorss
Pick iInstruction on the critical path or minimal slack
Pick long latencies instructions

If ready list is not empty

schedule top priority instruction
else

schedule a stall;
advance to next issue slot
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Compiler Code Generation

Schedule both before

code selection, literal handling

and after register 1
allocation prepass operation binding
Initial scheduling is }
free of real processor scheduling
register constraints |
2"d phase required register allocation and spill code insertion
due to spill code

postpass scheduling

|

code emission
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A Motivating Example

Machine model: one memory access (1-cycle), one
arithmetic operation (2-cycle) in parallel

Source code: Do-All style loop
for (I=0; i < n; i++)
Afli] =A[i] *b +c
Code for one iteration: 6 cycles/iteration
cycle 1. Read
cycle 2: Multiply
cycle 3:
cycle 4. Add
cycle 5:
cycle 6: Write

Computers as Components
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Loop unrolling

Unrolling replaces the body of the loop by several copies
of the body and adjusts loop-control code

Degree of unrolling = number of loop bodies
Unrolling once and schedule: 7 cycles/2 iterations

1: Read

2: Mul Read
3: Mul
4: Add

5: Add
6: Write

7 Write

Unrolling twice and schedule: 10 cycles/3 iterations
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Impact of Unrolling

What would be the optimal performance of this loop?
2 cycles/iteration (why? Consider resource constraints only)

Impact of unrolling: Let ¢ be the degree of unrolling
Execution Time of unrolled loop =6 + 2(v—1) =4 + 2u
Optimal execution time = 2u

.. 2U
Efficiency =
Efficiency =90 % = v =18

More you unroll, it become better, but the code size
Increases substantially
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Software Pipelining (SP)

An optimization technique that can schedule
Instructions beyond loop iteration boundaries
By overlapping iterations in a pipelined fashion
Multiple iterations can be executed in parallel
Future iterations can initiate before current ones finish

Generating a pipelined schedule in overlapped
Iterations

Must find a pattern of code composed of multiple
Iterations that can be executed repeatedly, which is
called a kernel
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Finding a Kernel
In Overlapped Code

N QT RN

N
= O

el el el o
QRN

1st iteration

Add

Write

2nd jteration 3 iteration 4t iteration 5 iteration

Read
Mul
Read
Mul
Add Read
Mul
Add Read
Write Mul
Add
Write
Add
Write
Write

Computers as Components
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. pattern
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| Fepeated

| pattern
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Generating a Pipelined Schedule

Read
v
Mul
v
Read
v
Mul
v
Add Read
v
Mul
v
Add Read
Wirite Mudl
v
Add
v
Write
Add
v
Write
v
Write

Computers as Components

Prolog

Code

Kernel

Code

Epilog

Code
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Software Pipelined Loop

A software pipelined loop Is composed of:
Prolog: pipeline startup code
Kernel: repeated pattern that is executed repetitively
Epilog: pipeline drain code

Initiation interval (11)

Interval with which the next iteration initiates start
after the current iteration initiates

Equals to the cycle length of the kernel
In our example schedule, Il = 2 cycles
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Benefit of Software Pipelining

Unlike unrolling, software pipelining can give you an
optimal result

Code size is much smaller than unrolling

Schedule of each iteration
Schedule of each iteration is identical

Enr findinn 2 nattarn aacilvy and Aarnelely
I Vi IIIIUIIIH A 'JULLLL,III \lu\)ll-y CAL I U|UIIUI\I_y

Locally compacted code might not be globally optimal

Computers as Components
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SP Across Loops

Source Code

for (i=0; i < n; i++) 1: read
Sum = Sum + A[i] 2: Mult
Alil =A[i] *b 3: Add

4: Write

Software pipelined Code

1: Read

2: Mul

3: Add Read | kernel

4:  Write Mul |

5: Add

6: Write

Computers as Components
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Instruction selection

May be several ways to implement an operation or
sequence of operations.

Represent operations as graphs, match possible
Instruction sequences onto graph.

N VNG e
L © ® ® 9
@ MUL ADD @
expression templates  mMADD
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Using your compiler?

Understand various optimization levels (-O1, -02, etc.)
Look at mixed compiler/assembler output.

Modifying compiler output requires care:
correctness;
loss of hand-tweaked code.

Computers as Components
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Interpreters and JIT compilers

Interpreter: translates and executes program
statements on-the-fly.

JIT compiler: compiles small sections of code into
Instructions during program execution.

Eliminates some translation overhead.

Often requires more memory.

Computers as Components
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Program design and analysis

Program-level performance analysis.
Optimizing for:
Execution time.

Energy/power.
Program size.

Program validation and testing.

Computers as Components
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Program performance analysis

Need to understand
performance in detail:

Real-time behavior, not
just typical.

On complex platforms.

Nz
Program performance = "

C P U pe I’fO §Mmance.: total execution time -

Pipeline, cache are
windows into program.

We must analyze the entire
program.

pipeline g
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Complexities of program
performance

Varies with input data:
Different-length paths.

Cache effects.

Instruction-level performance variations:
Pipeline interlocks.
Fetch times.

Computers as Components
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How toO measure program
performance

Simulate execution of the CPU.

Makes CPU state visible.
Measure on real CPU using timer.

Requires modifying the program to control the timer.
Measure on real CPU using logic analyzer.

Requires events visible on the pins.
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Program performance metrics

Average-case execution time.

Typically used in application programming.
Worst-case execution time.

A component in deadline satisfaction.
Best-case execution time.

Task-level interactions can cause best-case program
behavior to result in worst-case system behavior.
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Elements of program performance

Basic program execution time formula:
execution time = program path + instruction timing

Solving these problems independently helps
simplify analysis.

Easier to separate on simpler CPUs.
Accurate performance analysis requires:

Assembly/binary code.
Execution platform.
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Data-dependent paths in an if
statement

if (a || b) { /* T1*/ Eﬂl

if ( C ) [* T2 */ 0 T1=F T3=F: no assignments
X = r*s+t; /* Al */ O 0 1 TI1=F T3=T: Ad
else y=r+s; /* A2 */ O 1 0 TI=T, T2=F: A2, A3
Z = r+s+u; /* A3 */ O 1 1 TI1=T, T2=T: A1, A3
} 1 0 0 TI=T, T2=F: A2, A3
else { 1 0 1 TI1=T, T2=T: AL, A3
if(c)/*T3*/ 1 1 0 TI1=T, T2=F: A2, A3
y =r-t; /* A4 */ 1 1 1 TIi=T, T2=T:A1, A3
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Paths in a loop

for (i=0, f=0; i<N; i++)
f=f+ cfi] * X[il:
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Performance estimation

Once we know the execution path the
simplest estimate Is

Assume that every instruction takes the
same number of clock cycles

Multiply the count of instructions with the
per-instruction execution time

Computers as Components
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Instruction timing

Not all instructions take the same amount of time.

Multi-cycle instructions
Multiple load or store instructions
Floating point instructions

Execution times of instructions are not independent.

Register bypassing

Execution times may vary with operand value.
Floating-point operations.
Some multi-cycle integer operations.

Computers as Components
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Measurement-driven
performance analysis

More direct way

Not so easy as It sounds:
Must actually have access to the CPU.

Must know data inputs that give worst/best case
performance.

Must make state visible.

Still an important method for performance
analysis.
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Trace-driven measurement

Trace-driven:
Instrument the program.
Save information about the path.

Requires modifying the program.
Trace files are large.
Widely used for cache analysis.

Computers as Components
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Feeding the program

The biggest problem in measuring program
performance is figuring out a useful set of
Inputs to provide to the program
Need to know the desired input values.
May need to write to feed data
Into the program and get data out.
Software scaffolding may also need to examine
outputs to generate feedback-driven inputs.
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Performance measurement

Directly on hardware
By using a simulator
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Physical measurement

In-circuit emulator allows tracing.
Affects execution timing.

Logic analyzer can measure behavior at pins.
Address bus can be analyzed to look for events.
Code can be modified to make events visible.

Particularly important for real-world input
streams.
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CPU simulation

Some simulators are less accurate.

Cycle-accurate simulator provides accurate
clock-cycle timing.

Simulator models CPU internals.

Simulator writer must know how CPU works.

Simplescalar (http://www.simplescalar.com): a
framework for building cycle-accurate CPU
models.
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SimpleScalar FIR filter simulation

int X[N] = {8, 17, ... }; N total sim sim cycles
int c[N] = {1, 2, ... }: cycles per filt_er
execution

main() { 100 25854 259

:cnt , k, T 1,000 155759 156
or (k=0; K<COUNT; k++) 1,0000 1451840 145

for (i=0; i<N; i++)
f += c[i*x[il;
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Performance optimization
motivation

Embedded systems must often meet deadlines.
Faster may not be fast enough.

Need to be able to analyze execution time.
Worst-case, not typical.

Need techniques for reliably improving execution time.

Computers as Components 107



Programs and performance
analysis

Best results come from analyzing optimized instructions,
not high-level language code:

non-obvious translations of HLL statements into
Instructions;

code may move,
cache effects are hard to predict.
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Loop optimizations

Loops are good targets for optimization.

Basic loop optimizations:
loop invariant code motion
Induction-variable elimination;

strength reduction (x*2 x<<1).
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Code motion

for (i=0; i<N*M; i++)
Z[i] = a[i] + b[i];

z[1] = a[1] + b[i];

Computers as Components
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Induction variable

a variable that gets increased or decreased by a fixed
amount on every iteration of a loop,

or is a linear function of another induction variable.

The compiler can eliminate some induction variables
and apply strength reduction to others
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Induction variable elimination

Consider loop:
for (i=0; i<N; i++)
for J=0; j<M; j++)
z[1.)] = bLL]I;

Introduce an induction variable
for (i=0; i<N; i++)
for (J=0; J<M; j++) {
K =1*M + j; // induction variables
z[k] = b[K];
}
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Induction variable elimination

Rather than recompute i*M+j for each array in each
iteration, share induction variable between arrays,
Increment at end of loop body.

k=0;
for (i=0; i<N; i++) {
for (j=0; j<M; j++) {

z[k] = b[k];
k++; // a strength reduction
¥

}
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Cache analysis

Loop nest: set of loops, one inside other.
Perfect loop nest: no conditionals in nest.

Because loops use large quantities of data,
cache conflicts are common.
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Array conflicts in cache

for (i=0; i<N; i++) { /] N=256
for (j=0; j<M; j++) { // M =4
ali]i] = bLilb] * c;
by
by

Four-way set-associative cache
Line size = 4 words, 256 lines

Computers as Components
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Array conflicts in cache

Direct-mapped cache
Line size = 4 words, 256 lines

1024

a[0,0] T——0

7a[0,0] b[0,0]

cache
main memory
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Array conflicts in cache

Four-way set-associative cache
Line size = 4 words, 256 lines

[0,0] »b[0,0]
1024 — /'a //
a[0,0]
main memory

cache
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Array conflicts

Array elements conflict because they are

mapped into the same line, even if not mapped
to the same location.

Solutions:
move one array,
pad array.
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Performance optimization hints

Profiling the program to find hot spots
A profiler does not measure execution time

Two major ways to profile a program

add an counting instruction at a location, which
Increments every time the program passes that point

or sample the pc during execution and keep track of
the distribution of the pc values.

Profiling add relatively little overhead to the
program
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Performance optimization hints

Use registers efficiently.
group accesses to a value together

Use page mode memory accesses.
to reduce the latency of the memory accesses

rearrange variables so that they can be referenced
contiguously
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Performance optimization hints

Analyze cache behavior:

Instruction conflicts can be handled by
rewriting a small code to make it smaller,

move the instructions or pad with NOP
Instructions

conflicting scalar data can easily be moved,;
conflicting array data can be moved, padded.

Computers as Components 121



Cache behavior is important

Energy consumption has a sweet spot as cache
size changes:

cache too small: program thrashes, burning
energy on external memory accesses;

cache too large: cache itself burns too much
power.
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Optimizing for energy

First-order optimization:
high performance = low energy.

Making the program run faster also
reduces energy consumption

Memory access patterns: can be
controlled by the programmers
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Optimizing for energy

Use registers efficiently.
Identify and eliminate cache conflicts.

Moderate loop unrolling eliminates some
loop overhead instructions.

Eliminate pipeline stalls.

Inlining procedures may help: reduces
linkage, but may increase cache
thrashing.
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Optimizing for program size

Goal:
reduce hardware cost of memory;
reduce power consumption of memory units.

Two opportunities:
data:

\JIU\-‘-V\-,

Instructions.
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Data size minimization

Reuse constants, variables, data buffers In
different parts of code.

Requires careful verification of correctness.
Generate data using instructions.
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Reducing code size

Avoid function inlining.
Choose CPU with compact instructions.
Use specialized instructions where possible.
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Program validation

The goal of validating the requirement and
specification is to ensure that they satisfy the
following criteria (ref. 446 page)

correctness

unambiguousness

completeness

verifiability

consistency

modifiability

traceability
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Program testing

does It work?
Concentrate here on functional verification.
Create a good set of tests for a given program
How much testing Is enough?
Maior testing strateqies:
SR ROy ot yibe
Black box doesn’t look at the source code.
Clear box (white box) does look at the source code.

Computers as Components 129



White-box testing

CDFG is an important tool
Examine the source code to determine whether
It works:

Can you actually exercise a path?

Do you get the value you expect along a path?
Testing procedure:

Controllability: provide program with inputs.

Execute.
Observability: examine outputs.
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Example

frout=0.0; = Controllability:
for (j=curr, k=0; j<N; j++, k++) .

firout += buff[j] * c[K]: M_ust fill circular buffer
for (j=0; j<curr; j++, k++) with N values.

firout += buff[j] * c[K];
if (firout > 100.0) firout = 100.0;

Observability:

if (firout < ) firout = -100.0; Want to examine
firout before limit
testing.
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How to determine test sets

Can we test every path in an arbitrary
program? No

Does it make sense to exercise ever path?
No

The choice of an appropriate subset of
paths to be tested requires some thought.
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Execution paths and testing

Paths are important in functional testing
as well as performance analysis.

In general, an exponential number of
paths through the program.

N M

Cha lhe AdAam
OINOW Lllal. |J l.I 1S QOIMi

Heurlstlcally I|m|t paths.

iAata AtlhAr
Al UL ICI

S.
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Choosing the paths to test

Two reasonable
choices:
Execute every

not covered

statement at least

once.

Execute every branch

W w V i

direction at least once.

Computers as Components
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How to choose a set of paths

Intuition tells us that a relatively small
number of paths should be able to cover
most practical programs

Graph theory helps us get a quantitative
handla

1ICAT TGO

Cyclomatic complexity
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Basis paths

Approximate CDFG with undirected graph.

Undirected graphs have basis paths:

All paths are linear combinations of basis paths.

Computers as Components
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abcde
00100
00101
11010

Incidence matrix

10000
01000
00100
00010

00001

Basis set
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Cyclomatic complexity

Cyclomatic complexity

is a bound on the size :j : : :
of basis sets: | ¢ ____[===
e = # edges i | i
n = # nodes | S i
I [

p = number of graph B . |
components S e
M=e—n+2p. | |

VG)=8—-6+2=4
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Picking Basis Paths

Pick path through the code that
covers the most edges (1)

Pick a new path that covers at
least one new edge

Continue until the number of

paths equals the cyclomatic
complexity (i.e., number of basis
tests)

Note: The basis paths through
the code are not unigque

Because there are actually three
distinct paths in the graph,
cyclomatic complexity in this
case is an overly conservative
bound

VG)=8—-6+2=4
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Branch testing

Heuristic for testing branches.

Exercise both true and false branches of the
conditional.

Exercise every simple condition in the conditional’s
expression at least once.

One of the reasons to use many different types of test is
to maximize the chance that supposedly unrelated
elements will cooperate to reveal the error in a
particular situation

Computers as Components 139



Branch testing example

Correct:
if (a]|] (b >=¢)){ a=F
printf(*OKWn”); } (b >=c) =
Incorrect: Example:
It (a && (b >= C)) { Correct: [0 |] (3 >=
printf(“*OKWn”); } 2)] =
Incorrect: [0 && (3
>=2)] =F
so this test pick up the
error
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Another example

Incorrect code

Correct: _
If ((x == good_pointer) && Changes pointer.
x->fieldl == 3)) { Assignment returns
grintf(“got the valueW#1”); new LHS in C.
Incorreat- A test we want-to use
If ((x = good_pointer) && (X 1= qud—pomter)
x->fieldl == 3)) { && x->fieldl = 3)
printf(“got the valueWn"); Not guaranteed to
} uncover the error
But reasonable chance
of success
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Domain testing

i=3,j=5
Another sophisticated A
. j ® ® i=4j=5
strategy for testing o
. t=LJ=
conditionals S
- [=3,j=5 >
Heuristic test _fpr A S ,.
linear inequalities. V-
® i=1,j=2
Test on each side + | <=+t i=3,j=5
> A oy
boundary of : j ® @ i-4j-s
iInequality. Correct test o i-Lj-2
j>=i—1
|

i
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A potential problem with path
coverage

The paths chosen to cover the CDFG may not
nave any important relationship with the
program’s function.

Data flow testing using def-use analysis selects
paths with some relationship to the program’s
function
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Def-use pairs

Variable def-use:
Def when value is a3 mypointer;

_ . if (c > 5){
Ign fined). | N
assigned (defined) * while (a->field1 = vall)
Use when u§ed on a = a>next:
right-hand side. }
Exercise each def-use if (a->field2 <= val2)
pair someproc(a,b);

Requires testing
correct path.
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Loop testing

Loops need specialized tests to be tested
efficiently.

Heuristic testing strategy:
Skip loop entirely if possible.
One loop iteration.
Two loop Iiterations.
# Iterations much below max.
n-1, n, n+1 iterations where n iIs max.
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Black-box testing

Complements clear-box testing.
May require a large number of tests.

Tests software In different ways.
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Black-box test vectors

Random tests.

May weight distribution based on software
specification.

Regression tests.
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How much testing Is
enough?

Exhaustive testing Is impractical.

One important measure of test quality---bugs
escaping into field.

Good organizations can test software to give
very low field bug report rates.

Error injection measures test quality:
Add known bugs.
Run your tests.
Determine % injected bugs that are caught.
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