
9. System design techniques

Design methodologies.
Requirements and specification.

Computers as Components 1

D i th d l iDesign methodologies

Process for creating a system.
Many systems are complex:

large specifications;large specifications;
multiple designers;
interface to manufacturinginterface to manufacturing.

Proper processes improve:
quality;
cost of design and manufacture

Computers as Components 2

cost of design and manufacture.

T i l ifi tiTypical specifications

Functionality
Manufacturing cost
PerformancePerformance

Computers as Components 3

D i lDesign process goals

Time-to-market:
beat competitors to market;p ;
meet marketing window (back-to-school).

Design cost.g
Quality

Correctness
Reliability
Usability

A good methodology is critical to building
systems that works properly

Computers as Components 4

M Cli t ObMars Climate Observer
L t M i S t b 1999Lost on Mars in September 1999.

Most likely exploded as it heated up in the
atmosphereatmosphere

Requirements problem:
Requirements did not specify unitsRequirements did not specify units.
Lockheed (contractor) Martin used English : pound-
forceforce
JPL (user) wanted metric: N
1 pound-force ≡ 0.45359237 kg × 9.80665 m/s2p g /

= 4.45 N
= 32.17405 lbm·ft/s2

Computers as Components 5
Not caught by manual inspections.

M Cli t O bitMars Climate Orbiter

NASA started Mars Surveyor Program in 1993.
Mars Climate Orbiter was launched on Dec. 11, 1998.Mars Climate Orbiter was launched on Dec. 11, 1998.
Mars Polar Lander was launched on Jan. 3, 1999.

Computers as Components 6

MCO SMCO Scope

Develop and launch two spacecrafts to
Mars during the 1998 Mars transferMars during the 1998 Mars transfer
opportunity.
Development cost was estimated at p
$183.9 Million.
Collect and return to Earth, science data
resulting from the water and remote
investigations of the Martian environment
by the Landerby the Lander.

Computers as Components 7

MCO SMCO Scope

Orbiter should act as a
relay station for five yearsrelay station for five years.
Assist in data transmission
to and from the Mars Polarto and from the Mars Polar
Lander.
Provide detailed information about the atmosphericProvide detailed information about the atmospheric
temperature, dust, water vapor, and clouds on Mars.
Provide valuable information about the amount ofProvide valuable information about the amount of
carbon dioxide (CO2) in Mars.

Computers as Components 8

MCO SMCO Scope

Computers as Components 9

A b kiAerobraking

Aerobraking is a spaceflight technique wherein
biti ft b h i t th t fan orbiting spacecraft brushes against the top of

a planetary atmosphere.
The friction of the atmosphere against theThe friction of the atmosphere against the
surface of the spacecraft slows down and lowers
the craft's orbital altitude.
The solar panels is are used to provide the
maximum drag in a symmetrical position that
ll t l th ftallows some control as the spacecraft passes

through the atmosphere.

Computers as Components 10

MPL SMPL Scope

A second spacecraft Mars
Polar Lander will be
launched.
Perform daily recording of the
sound and images of Mars for one Martian year (687 g y (
days).
The Purpose of the mission is to gather atmospheric
data of each of the seasons on Mars.
The mission's projected end date is December 1, 2004.

Computers as Components 11

MPL SMPL Scope

Computers as Components 12

MCO C tMCO Cost
A total of $327 6 million was allocated for the Mars ’98A total of $327.6 million was allocated for the Mars ’98
Project (which included the Mars Climate Orbiter and
the Mars Polar Lander)the Mars Polar Lander)

$193.1 million for spacecraft development,
$91 7 million for launch and$91.7 million for launch, and
$42.8 million for mission operations

$80M of the $193 1M went toward the building of the$80M of the $193.1M went toward the building of the
MCO spacecraft
$5M of the $42.8M used to operations the MCO$5M of the $42.8M used to operations the MCO
$35.5M went toward the launching of the MCO
According to a later assessment, ’98 Mars Project was at

Computers as Components 13

According to a later assessment, 98 Mars Project was at
least 30% under-funded.

P j t M tProject Management

So What Went Wrong?

Computers as Components 14

P j t M tProject Management

The official report cited the following “contributing
factors” to the loss of the spacecraftp

undetected errors in ground-based models of the g
spacecraft the
the operational navigational team was not fully p g y
informed on the details of the way that Mars Climate
Orbiter was pointed in space
a final, optional engine firing to raise the spacecraft’s
path relative to Mars before its arrival was considered
but not performed

Computers as Components 15

but not performed

P j t M tProject Management

Summary
One Technical Problem

• failed conversion of unit

Many Process and Social Problems
• No review (e.g. verification), insufficient (g),

training, informal processes in place, formal
processes ignored

Led to a destroyed spacecraft

Computers as Components 16

D i flDesign flow

Design flow: sequence of steps in a
design methodologydesign methodology.
May be partially or fully automated.

Use tools to transform, verify design.

Design flow is just one component ofDesign flow is just one component of
methodology.

h d l l l dMethodology also includes management
organization, etc.

Computers as Components 17

g ,

D i th d lDesign methodology

Design methodology: a procedure for
ti i l t ti f t fcreating an implementation from a set of

requirements.
Methodology is important in embedded
computing:computing:

Must design many different systems.
We may use same/similar components in
many different designs.

Computers as Components 18
Design time, results must be predictable.

Embedded system design
h llchallenges

Design space is large and irregular.
We don’t have synthesis tools for many
steps.p
Can’t simulate everything.
M d b ild i lMay need to build special-purpose
simulators quickly.q y
Often need to start software development
before hardware is finished

Computers as Components 19

before hardware is finished.

Design complexity vs.
designer productivity

Computers as Components 20

B i d i th d l iBasic design methodologies

Figure out flow of decision-making.
Determine when bottom-up information is
generated.g
Determine when top-down decisions are
mademade.

Computers as Components 21

W t f ll d i l d lWaterfall and spiral models

Computers as Components 22

W t f ll d lWaterfall model

Early model for software development:

requirements

architecture

coding

testingtesting

maintenance

Computers as Components 23

W t f ll d lWaterfall model

Computers as Components 24

W t f ll d l tWaterfall model steps

Requirements: determine basic
h t i ticharacteristics.

Architecture: decompose into basic p
modules.
Coding: implement and integrateCoding: implement and integrate.
Testing: exercise and uncover bugs.g g
Maintenance: deploy, fix bugs, upgrade.

Computers as Components 25

W t f ll d l itiWaterfall model critique

Unrealisitic
O l l l f db k d it tiOnly local feedback---may need iterations
between coding and requirements, for

lexample.
Doesn’t integrate top-down and bottom-g p
up design.
Just for software developmentJust for software development

Assumes hardware is given.

Computers as Components 26

S i l d lSpiral model

system feasibility

ifi ispecification

prototypeprototype

initial system

req irements

enhanced system
requirementsdesign
test

Computers as Components 27

S i l d l Spiral model

Assumes that several versions of the system will
be bulitbe bulit.
Successive refinement of system.

Start with mock-ups, move through simple systems
to full-scale systems.

P id b f db k f iProvides bottom-up feedback from previous
stages.
Working through stages may take too much
time.

Computers as Components 28

S i l d lSpiral model

Computers as Components 29

S i l M d l S tSpiral Model Sectors

Objective setting
Specific objectives for the phase are identifiedSpecific objectives for the phase are identified.

Risk assessment and reduction
Risks are assessed and activities put in place toRisks are assessed and activities put in place to
reduce the key risks.

Development and validationp
A development model for the system is chosen
which can be any of the generic models.

Planning
The project is reviewed and the next phase of the
spiral is planned

Computers as Components 30

spiral is planned.

S i fi t d lSuccessive refinement model

specify specify

architect architect

design

build

design

buildbuild

test

build

test

initial system refined system

Computers as Components 31

S i fi t d lSuccessive refinement model

More make sense when you are unfamiliar to
the application domainthe application domain.
Successive refinement of system.

Start with mock-ups, move through simple systems
to full-scale systems.

P id b f db k f iProvides bottom-up feedback from previous
stages.
Working through stages may take too much
time.

Computers as Components 32

It ti A hIterative Approach

In the iterative approach, the lifecycle
h d l d f th l i lphases are decoupled from the logical

software activities that occur in each
phase, allowing us to revisit various
activities, such as requirements, design,activities, such as requirements, design,
and implementation, during various
iterations of the projectiterations of the project.

Computers as Components 33

Iterative Approach:
Lifecycle Phases

1. Inception phase
The team is focused on understanding the
business case for the project, the scope of the

j t d th f ibilit fproject, and the feasibility of an
implementation.
Problem analysis is performed the vision for theProblem analysis is performed, the vision for the
solution is created, and preliminary estimates of
schedule and budget, as well as project risk

Computers as Components 34

schedule and budget, as well as project risk
factors, are defined

Iterative Approach:
Lifecycle Phases

2. Elaboration phase
The requirements for the system are refined, anThe requirements for the system are refined, an
initial, perhaps even executable, architecture is
established, and an early feasibility prototype is
typically developed and demonstrated.

Computers as Components 35

Iterative Approach:
Lifecycle Phases

3. Construction phase
The focus is on implementation.
Most of the coding is done in this phase, and the
architecture and design are fully developed.

Computers as Components 36

Iterative Approach:
Lifecycle Phases

4 Transition phase4. Transition phase
Beta testing
The users and maintainers of the system areThe users and maintainers of the system are
trained on the application.
The tested baseline of the application isThe tested baseline of the application is
transitioned to the user community and deployed
for use.

Computers as Components 37

Iterative Approach:
It tiIterations

Computers as Components 38

Iterative Approach:
Iterations

Within each phase, the project typically undergoes
multiple iterationsmultiple iterations.

An iteration is a sequence of activities with anAn iteration is a sequence of activities with an
established plan and evaluation criteria, resulting in an
executable of some type.executable of some type.

Each iteration builds on the functionality of the priorEach iteration builds on the functionality of the prior
iteration; thus, the project is developed in an "iterative
and incremental" fashion.

Computers as Components 39

Iterative Approach:
Disciplines

Computers as Components 40

Iterative Approach:
Disciplines

In the iterative approach, the activities associated
with the development of the software are organized p g
into a set of disciplines.

Each discipline consists of a logically related set of
activities, and each defines how the activities must be
sequenced to produce a viable work product (orsequenced to produce a viable work product (or
artifact).

Although the number and kind of disciplines can vary,
based on the company or project circumstances,
there are typically at least six disciplines

Computers as Components 41

there are typically at least six disciplines.

Iterative Approach:
Disciplines

During each iteration, the team spends as much time
as appropriate in each discipline.

Thus an iteration can be regarded as a mini-waterfallThus, an iteration can be regarded as a mini waterfall
through the activities of requirements, analysis and design,
and so on, but each mini-waterfall is "tuned" to the specific
needs of that iteration.

The size of the "hump" indicates the relative amount
of effort invested in a disciplineof effort invested in a discipline.

For example, in the elaboration phase, significant time is
spent on "refining" the requirements and in defining the
architecture that will support the functionality.architecture that will support the functionality.

The activities can be sequential (a true mini-waterfall)
or may execute concurrently as is appropriate to the

Computers as Components 42

or may execute concurrently, as is appropriate to the
project.

Requirements in the Iterative
Model

From the requirements management
perspective the iterative approachperspective, the iterative approach
provides two major advantages:

1.Better adaptability to requirements change.

2.Better scope management.

Computers as Components 43

M d li i h dModeling in hardware

Technology databases capture
f t i i f timanufacturing process information.

Cell libraries describe the cells used to
compose designs.
Logic synthesis systems use routabilityLogic synthesis systems use routability
and timing models.

Computers as Components 44

E b dd d tEmbedded system

Often involve the design of hardware as
ll ftwell as software

requirements andrequirements and
specification

architecturearchitecture

hardware design software design

integration

Computers as Components 45

testing

H d d i flHardware design flow

Computers as Components 46

Hardware/software
d i flco-design flow

Computers as Components 47

C d i th d lCo-design methodology

Must architect hardware and software
t thtogether:

provide sufficient resources;
avoid software bottlenecks.

Can build pieces somewhatCan build pieces somewhat
independently, but integration is major
tstep.

Also requires bottom-up feedback.
Computers as Components 48

q p

Hi hi l d i flHierarchical design flow

Embedded systems must be designed
lti l l l f b t tiacross multiple levels of abstraction:

system architecture;
hardware and software systems;
hardware and software componentshardware and software components.

Often need design flows within design
flflows.

Computers as Components 49

Hi hi l HW/SW flHierarchical HW/SW flow

spec specspec

architecture HW architectureSW architecture

HW SW detailed designdetailed design

integrate

test

integration

test

integration

testtest

system

test

hardware

test

software

Computers as Components 50

C t i iConcurrent engineering

Large projects use many people from multiple
disciplines.
Work on several tasks at once to reduce design g
time.
Feedback between tasks helps improve qualityFeedback between tasks helps improve quality,
reduce number of later design problems.
Tries to eliminate “over the wall” design stepsTries to eliminate over-the-wall design steps
with little interaction between the two.

Computers as Components 51

Concurrent engineering
t h itechniques

Cross-functional teams: include members form various
disciplinesdisciplines

Concurrent product realization: doing several things toConcurrent product realization: doing several things to
reduce design time.

Incremental information sharing: as soon as new
information is available, it is shared and integrated into g
the design. Cross-functional teams are important to the
effective sharing of information in a timely fashion.

Computers as Components 52

Concurrent engineering
t h itechniques

Integrated product management: ensures that someone g p g
is responsible for the entire project, and that
responsibility is not abdicated once one aspect of the

k i dwork is done.

l d l l lEarly and continual supplier involvement

Early and continual customer focus

Computers as Components 53

AT&T PBX concurrent
i iengineering

AT&T applied concurrent engineering to the designs of
PBXs
They re-engineered their process to reduce design time
and make other improvement to the end product
Th d t d ib d b lThey used seven step process described below:

1. Benchmark against competitors.
2 Identify breakthrough improvements2. Identify breakthrough improvements.
3. Characterize current process.
4. Create new process.p
5. Verify new process.
6. Implement.

Computers as Components 54

7. Measure and improve.

AT&T PBX concurrent
i iengineering

1 Benchmark against competitors1. Benchmark against competitors.
They found that it took them 30% longer to
introduce a new product than their best competitorsintroduce a new product than their best competitors.
They decided to shoot for a 40% reduction in design
timetime

2. Identify breakthrough improvements.
Identify the factors that would influence their effortIdentify the factors that would influence their effort
Three major factors were identified:

increased partnership between design and manufacturing,increased partnership between design and manufacturing,
continued existence of the basic organization of design labs
and manufacturing, and

Computers as Components 55

support of managers at least two levels above the working
levels

AT&T PBX concurrent
i iengineering

As a result three groups were established to help
manage effortg

A steering committee formed by mid-level managers
A project office formed by a manager and an operation

l tanalyst
A core team of engineers and analysts formed to make
things happens g pp

3. Characterize the current process.
They built flowcharts and identified several root y
causes of delays

Design and manufacturing tasks were performed
ti ll

Computers as Components 56

sequentially

AT&T PBX concurrent
i iengineering

Groups tended to focus on intermediate milestones related
to their narrow job descriptions, rather than trying to take
into account the effects of their decisions on other aspectsinto account the effects of their decisions on other aspects
of the development
Too much time was spent waiting in queues – jobs were
handed off form one person to another very frequently Inhanded off form one person to another very frequently. In
many cases, the recipient didn’t know how to best
prioritize the incoming tasks. It s a typical managerial

blproblem
Too many groups has their own design databases,
creating redundant data that had to be maintained andcreating redundant data that had to be maintained and
synchronized.

Computers as Components 57

C t Current process

Computers as Components 58

N New process

Computers as Components 59

AT&T PBX concurrent
i iengineering

4. Creating the target process: Based on its studies, the
core team created a new development process.

5. Very the new process: the team undertook a pilot
product development project to test a new process

M h i l l d PCB b dMechanical enclosures and PCB boards

6. Implement across the product line
This activity required training of personnel documentation ofThis activity required training of personnel, documentation of
the new standards and procedures, and improvement to
information systems

7. Measure results and improve: the team found that
product development time had been reduced form 18-
30 months to 11 months

Computers as Components 60

30 months to 11 months.

Pl tf b d d iPlatform-based design

Platform includes
hardware supportinghardware, supporting
software.
T tTwo stage process:

Design the platform.
Use the platform.

Platform can be
reused to host many
different systems.

Computers as Components 61

Pl tf d iPlatform design

Turn system requirements and software models into
detailed requirementsdetailed requirements.

Use profiling and analysis tools to measure existing
executable specifications.executable specifications.

Explore the design space manually or automatically.p g p y y

Optimize the system architecture based on the results of
simulation and other steps.

D l h d b t ti l d th ft
Computers as Components 62

Develop hardware abstraction layers and other software.

P i l tfProgramming platforms

Programming environment must be customized to the
platform:platform:

Multiple CPUs.
Specialized memorySpecialized memory.
Specialized I/O devices.

Libraries are often used to glue together processors on
platforms.platforms.

Debugging environments are a particular challenge.

Computers as Components 63

Debugging environments are a particular challenge.

Standards-based design
th d l imethodologies

Standards enable large markets.

Standards generally allow products to be differentiated.
Different implementations of operations so long asDifferent implementations of operations, so long as
I/O behavior is maintained.
User interface is often not standardizedUser interface is often not standardized.

Standard may dictate certain non-functionalStandard may dictate certain non-functional
requirements (power consumption), implementation
techniques.

Computers as Components 64

q

Reference
i l t tiimplementations

Executable program that complies with the I/O
behavior of the standardbehavior of the standard.

May be written in a variety of language.

I th f i l t ti iIn some cases, the reference implementation is
the most complete description of the standard.
Reference implementation is often not well-
suited to embedded system implementation:

Single process.
Infinite memory.

Computers as Components 65
Non-real-time behavior.

Designing standards-based
tsystems

Design and implement system components that
are not part of the standardare not part of the standard.
Perform platform-independent optimizations.
Analyze optimized version of referenceAnalyze optimized version of reference
implementation.
Design hardware platformDesign hardware platform.
Optimize system software based on platform.
F th ti i l tfFurther optimize platform.
Test for conformity to standard.

Computers as Components 66

H 264/AVCH.264/AVC

Implements video coding for a wide range
f li tiof applications:

Broadcast and videoconferencing.
Cell phone-sized screens to HDTV.

Video codec reference implementationVideo codec reference implementation
contains 120,000 lines of C code.

Computers as Components 67

Design verification and
lid tivalidation

Testing exercises an implementation by
l i i t d t ti t tsupplying inputs and testing outputs.

Validation compares the implementation p p
to a specification or requirements.
Verification may be performed at anyVerification may be performed at any
design stage; compares design at one
level of abstraction to another.

Computers as Components 68

Design verification
t h itechniques

Simulation uses an executable model,
li i trelies on inputs.

Formal methods generate a (possibly g (p y
specialized) proof.
Manual methods such as design reviewsManual methods, such as design reviews,
catch design errors informally.

Computers as Components 69

A methodology of
th d l imethodologies

Embedded systems include both hardware and
softwaresoftware.

HW, SW have their own design
th d l imethodologies.

Embedded system methodologies control the
overall process, HW/SW integration, etc.

Must take into account the good and bad g
points of hardware and software design
methodologies used.

Computers as Components 70

g

Joint algorithm and
architecture development

Some algorithm design is necessarily
f d b f l tf d iperformed before platform design.

Algorithm development can be informed g p
by platform architecture design.

Performance/power/cost trade offsPerformance/power/cost trade-offs.
Design trends over several generations.

Computers as Components 71

R i t l iRequirements analysis

Requirements: informal description of what
customer wantscustomer wants.
Specification: precise description of what design
t h ld d liteam should deliver.
Requirements phase links customers with
designers.

marketing

Computers as Components 72

T f i tTypes of requirements

Functional: input/output relationships.
Non-functional:

timing;timing;
power consumption;
manufacturing cost;manufacturing cost;
physical size;
time-to-market;
reliability.

Computers as Components 73

reliability.

G d i tGood requirements

A good set of requirement should meet seven tests:
correctness, unambiguousness, completeness, , g , p ,
veriability, consistency, modifiability, traceability
Correctness: avoid over-requiring
Unambiguousness: clear, only one interpretation
Completeness: all requirements should be included
V ifi bilit th h ld b t ff ti tVerifiability: there should be a cost-effective way to
ensure that each requirement is satisfied in the final
system.y

“attractive” : without some agreed definition
Consistency: requirements should not contradict each
th

Computers as Components 74

other.

G d i t t’dGood requirements, cont’d.

Modifiability: the requirement document should be
structured so that it can be modified to meet changing g g
requirements without losing consistency, verifiabilty, etc.
Traceability: each requirement should be traceable in
the following waysthe following ways.

trace backward to know why each requirement
exists;exists;
trace forward to go from source documents
(marketing memos) to requirements;
trace forward to go from requirement to
implementation;
t b k f i l t ti t i t

Computers as Components 75

trace back from implementation to requirement.

S tti i tSetting requirements

Customer interviews.
Comparison with competitorsComparison with competitors.
Sales feedback.
Mock ups prototypesMock-ups, prototypes.

Next bench syndrome (HP): design a product forNext-bench syndrome (HP): design a product for
someone like you.

the ability to turn to the engineer at the next bench—or desk—the ability to turn to the engineer at the next bench or desk
and ask what features they want.

Computers as Components 76

S ifi tiSpecifications

Capture functional and non-functional properties:
verify correctness of spec;verify correctness of spec;
compare spec to implementation.

Many specification styles:Many specification styles:
control-oriented vs. data-oriented;
textual vs graphicaltextual vs. graphical.

UML is one specification/design language.

Computers as Components 77

SDLSDL

Used in
telecommunications

telephone
on-hook state

telecommunications
protocol design.
E t i t d t t

caller goes
ff h k input

Event-oriented state
machine model.

dial tone

off-hook put

t tdial tone

caller gets t t

state

caller gets
dial tone

output

Computers as Components 78

SDLSDL

Language designed for specification of distributed
systems.systems.

Dates back to early 70s,

Formal semantics defined in the late 80s,

D fi d b ITU (I t ti l T l i tiDefined by ITU (International Telecommunication
Union): Z.100 recommendation in 1980
U d t i 1984 1988 1992 1996 d 1999Updates in 1984, 1988, 1992, 1996 and 1999

Computers as Components 79

SDLSDL

Provides textual and graphical formats to please all
users,users,

Just like StateCharts, it is based on the CFSM
d l f t ti h FSM i ll dmodel of computation; each FSM is called a

process,

However, it uses message passing instead of
shared memory for communications,s a d o y o o u a o s,

SDL supports operations on data.

Computers as Components 80

SDL-representation of
FSM /FSMs/processes

state

input

state

output

Computers as Components 81

O ti d tOperations on data

Variables can be declared locally for processes.
Their type can be predefined or defined in SDLTheir type can be predefined or defined in SDL
itself.
SDL supports abstract data types (ADTs)SDL supports abstract data types (ADTs).
Examples:

Computers as Components 82

Communication among
SDL FSMSDL-FSMs

Communication between FSMs (or „processes“) is
based on message-passing, assuming a potentially g p g, g p y
indefinitely large FIFO-queue.

• Each process fetches
next entry from FIFO,

• checks if input enableschecks if input enables
transition,

• if yes: transition takes
placeplace,

• if no: input is ignored
(exception: SAVE-
mechanism)

Computers as Components 83

mechanism).

Process interaction
didiagrams

Interaction between processes can be described
in process interaction diagrams (special case of
block diagrams).

In addition to processes, these diagrams contain p , g
channels and declarations of local signals.

Example:Example:

,

Computers as Components 84

St t h tStatecharts

Ancestor of UML state diagrams.
Provided composite states:

OR states;OR states;
AND states.

C it t t d th i f thComposite states reduce the size of the
state transition graph.

Computers as Components 85

St t h t OR t tStatechart OR state
s123

S1

i1

S1

i1
s123

i1

i2 S1

i1 i2
S2 S4

i2
S2 S4

i1 i2

i2

S3

di i l

S3

Computers as Components 86

traditional OR state

St t h t AND t tStatechart AND state

S1 3 S1 4
c sab

S1-3 S1-4
d

bb a

S1 S3

S2-3 S2-4

b a
c

b a
c db a

S2 3 S2 4

S5

rd S2 S4

S5
traditional S5AND state

r

Computers as Components 87

AND state

AND OR t blAND-OR tables

Alternate way of specifying complex
conditions:conditions:

cond1 or (cond2 and !cond3)

OR

cond1 T -
d2 TAND

OR

cond2 - T
cond3 - F

AND

Computers as Components 88

CRC dCRC cards

Well-known method for analyzing a
t d d l i hit tsystem and developing an architecture.

CRC:
classes;
responsibilities of each class;responsibilities of each class;
collaborators are other classes that work with

la class.

Team-oriented methodology.

Computers as Components 89

gy

CRC d f tCRC card format

Class name: Class name:Class name:
Superclasses:
Subclasses:
Responsibilities: Collaborators:

Class name:
Class’s function:
Attributes:

Responsibilities: Collaborators:

f t b kfront back

Computers as Components 90

CRC th d lCRC methodology

Develop an initial list of classes.
Simple description is OK.
Team members should discuss their choices.

Write initial responsibilities/collaborators.
Helps to define the classesHelps to define the classes.

Create some usage scenarios.
Major uses of system and classes.

Computers as Components 91

CRC th d l t’dCRC methodology, cont’d.

Walk through scenarios.
See what works and doesn’t work.

Refine the classes, responsibilities, andRefine the classes, responsibilities, and
collaborators.
Add class relatoinships:Add class relatoinships:

superclass, subclass.

Computers as Components 92

CRC d f l tCRC cards for elevator

Real-world classes:
elevator car, passenger, floor control, car
control, car sensor.

Architectural classes:
car state floor control reader car controlcar state, floor control reader, car control
reader, car control sender, scheduler.

Computers as Components 93

Elevator responsibilities
d ll b tand collaborators

class responsibilities collaborators

El t * M d d C t lElevator car* Move up and down Car control, car
sensor, car control
sendersender

Passenger*

Pushed floor
control and car

Car control,
floor control

Floor control* Transmits floor
requests

Passenger, floor
control reader

Car state Records current
position of car

Scheduler, car
sensor

Computers as Components 94

Q lit Quality assurance

Quality judged by how well product
ti fi it i t d d f tisatisfies its intended function.
May be measured in different ways for
different kinds of products.

Quality assurance (QA) makes sure thatQuality assurance (QA) makes sure that
all stages of the design process help to
deliver a quality productdeliver a quality product.

Computers as Components 95

Therac-25 Medical Imager
(L d T)(Leveson and Turner)

Six known accidents: radiation overdoses
l di t d th d i i jleading to death and serious injury.
Radiation gun controlled by PDP-11.g y
Four major software components:

t d d tstored data;
scheduler;
set of tasks;
interrupt services

Computers as Components 96

interrupt services.

Th 25 t kTherac-25 tasks

Treatment monitor controlled and
it d t d d li f t t tmonitored setup and delivery of treatment

in eight phases.
Servo task controlled radiation gun.
Housekeeper task took care of statusHousekeeper task took care of status
interlocks and limit checks.

Computers as Components 97

T t t it t kTreatment monitor task

Treat was main monitor task.
Eight subroutines.
Treat rescheduled itself after every y
subroutine.

Computers as Components 98

T t t it t kTreatment monitor task

Computers as Components 99

S ft ti i Software timing race

Timing-dependent use of mode and
energy:

if keyboard handler sets completion behavior
before operator changes mode/energy data,
Datent task will not detect the change, but
Hand task will.

Computers as Components 100

S ft ti i Software timing errors

Changes to parameters made by operator
h b t t b d bmay show on screen but not be sensed by

Datent task.
One accident caused by entering
mode/energy changing mode/energymode/energy, changing mode/energy,
returning to command line in 8 seconds.
Skilled operators typed faster, more likely
to exercise bug.

Computers as Components 101

g

Leveson and Turner
b tiobservations

Performed limited safety analysis:
d t b biliti tguessed at error probabilities, etc.

Did not use mechanical backups to check p
machine operation.
Used overly complex programs written inUsed overly complex programs written in
unreliable styles.

Computers as Components 102

Th 25Therac-25

Low energy mode
200 rads electrons

HIgh energy mode
25 Mev x-ray

Computers as Components 103

Th 25 f ltTherac-25 fault

Computers as Components 104

Consequences of the over
ddosage

1 The breast was removed, complete loss of arm and shoulder mobility
and constant pain

2 Patient severely burned, died November 1985

3 Tissue necrosis, chronic ulcerations and pain in the treated area and
several skin grafts were made and the patient is alive today (1995)

4 Pain in neck and shoulders, periodic nausea and vomiting, radiation
induced myelitis of the cervical cord paralysis of the left arm and bothinduced myelitis of the cervical cord, paralysis of the left arm and both
legs, left vocal cord and left diaphragm
Died after five months due to the complications

5 Patient died one month later

6 The patient died within weeks from a severe terminal form of cancer

Computers as Components 105

but the over-dosage probably shortened his life

Characteristics of the
id taccidents

Three cases involved carousel rotation prior to
treatment (confirmed)
The accelerator malfunctioned shortly after “beam on”,
reporting a malfunction code at the console

The codes were cryptic and not recognized by the operator as e codes e e c ypt c a d ot ecog ed by t e ope ato as
indicating a serious error

In several cases, the operator repeated the exposure
one or more timesone or more times
Following treatment, the patients complained of burning
sensations, sometimes accompanied by a feeling of
electric shockelectric shock
In each case, the patients received doses of between 4
and 25 KRADs in a very brief exposure (1-3 seconds)

Computers as Components 106

Summary of causes of accidental
exposure

Manufacturer recycled software
Earlier model functioned somewhat differently, so software was

t ti l it blnot entirely suitable
Newer model relied entirely on software for safety, whereas
older model had mechanical and electrical interlocks
Th f t f th t t l t d h lThe safety of the newer system was not evaluated as a whole,
only the hardware was evaluated since software had been in
use for years…

The manufacturer had no mechanism for investigatingThe manufacturer had no mechanism for investigating
and reporting accidents

After the first accident, the manufacturer refused to believe the
equipment was at faultequipment was at fault
The FDA was not notified, nor were other users
The vendor kept their opinion that this machine was safe

Computers as Components 107

Lessons: Suggested by computer
science consultants

Documentation key from beginning
Use established software engineering practicesUse established software engineering practices
Keep designs simple
Build in software error logging & audit trails

Extensive software testing and formal analysis
at all levels

Revalidate re used softwareRevalidate re-used software
Don’t rely only on software for safety
Do incorporate redundancyDo incorporate redundancy
Pay careful attention to human factors
Involve users at all phases

Computers as Components 108

Involve users at all phases

Th ti tiThe continuation
The 11 machines were refitted
with the safety devices required by
the FDA and remained in servicethe FDA and remained in service
No more accidents were reported
from these machines
After the Therac-25 deaths, the
FDA made a number of
adjustments to its policies in anadjustments to its policies in an
attempt to address the
breakdowns in communication and
product approval.

In 1990, health care facilities were
required by law to report incidents to

Computers as Components 109

Image supplied by Larry Watts
required by law to report incidents to
both the manufacturer and the FDA.

ISO 9000ISO 9000

Developed by International Standards
i tiorganization.

Applies to a broad range industries.pp g
Concentrates on process.
V lid i b d iValidation based on extensive
documentation of organization’s process.g p

Computers as Components 110

CMU Capability Maturity
M d lModel

Five levels of organizational maturity:
Initial: poorly organized process, depends on
individuals.
Repeatable: basic tracking mechanisms.
Defined: processes documented andDefined: processes documented and
standardized.
Managed: makes detailed measurementsManaged: makes detailed measurements.
Optimizing: measurements used for
improvement

Computers as Components 111

improvement.

V ifi tiVerification

Verification and testing are important
th h t th d i flthroughout the design flow.
Early bugs are more expensive to fix:y g p

requirementsst
 to

 fi
x

requirements
bugco

s

coding bug

Computers as Components 112

time

Verifying requirements and
ifi tispecification

Requirements:
prototypes;
prototyping languages;p yp g g g ;
pre-existing systems.

Specifications:Specifications:
usage scenarios;
formal techniques.

Computers as Components 113

D i iDesign review

Uses meetings to catch design flaws.
Simple, low-cost.
Proven by experiments to be effective.y p

Use other people in the project/company
to help spot design problemsto help spot design problems.

Computers as Components 114

D i i lDesign review players

Designers: present design to rest of team,
k hmake changes.

Review leader: coordinates process.p
Review scribe: takes notes of meetings.
R i di l k f bReview audience: looks for bugs.

Computers as Components 115

B f th d i iBefore the design review

Design team prepares documents used to
d ib th d idescribe the design.
Leader recruits audience, coordinates ,
meetings, distributes handouts, etc.
Audience members familiarize themselvesAudience members familiarize themselves
with the documents before they go to the
meeting.

Computers as Components 116

D i i tiDesign review meeting

Leader keeps meeting moving; scribe
t k ttakes notes.
Designers present the design:g p g

use handouts;
explain what is going on;explain what is going on;
go through details.

Computers as Components 117

D i i diDesign review audience

Look for any problems:
Is the design consistent with the
specification?
Is the interface correct?
How well is the component’s internalHow well is the component s internal
architecture designed?
Did they use good design/coding practices?Did they use good design/coding practices?
Is the testing strategy adequate?

Computers as Components 118

F llFollow-up

Designers make suggested changes.
Document changes.

Leader checks on results of changes, mayLeader checks on results of changes, may
distribute to audience for further review
or additional reviewsor additional reviews.

Computers as Components 119

M tMeasurements

Measurements help ground our beliefs:
Do our practices really work?
Do they work where we think they work?y y

Types of measurements:
bugs found at different stages of design;bugs found at different stages of design;
bugs as a function of time;
bugs in different types of components;
how bugs are found.

Computers as Components 120

how bugs are found.

