Programming Methodology

Spring 2009 Introduction

Course information

TAs, course web site, grading, exams, assignments

Objectives of this course and class schedule

Introduction to programming

Qualities of software: depending on programming skill
Software /algorithm specification for programming

Programming languages

Programming Methodology

General information

0 Instructor: Bl & S (ypaek@snu.ac.kr)

Office hour: by prior appointment thru e-mail

0 Head TA: @& (prog-ta@optimizer.snu.ac.kr, B: 880-1742)

0 References
Lecture notes: main reference source

Textbooks for C/C++ programming

m Deitel, How to Program C++, 6" ed., Prentice Hall

Textbooks for programming language concepts
m R. Sebesta, Concepts of Programming Languages, Addison-Wesely
m R. Sethi, Programming Languages: Concepts & Constructs, Addison-Wesley

o Class home page:
http://eng.snu.ac.kr/lecture

Programming Methodology
©onn

RANHBAN

Lecture information
p

-
RANHBAN

0 Organization of the lecture
One regular lecture

One programming lab

o Regular lectures
Th
10:30-12:10

0 Programming lab hours
Fr
13:00-15:00

Programming Methodology
©onn

Tentative grading policy
E g

0o Two exams: 60 % i
o Assignments: 30%

For every programming hour, one pair of programming assignments will
be handed out.

One is in-class and the other is at-home.
mostly simple programming assignments using the C++ language

Details will be given by the TAs later.
o Class attendance: 10%

Attendance sheets will be handed out during the regular lecture and the
programming lab hour.

Please sign it up for your attendance verification.
—> But, do not do it for your friend(s)!!

Programming Methodology
©onn

Objectives of this course

[l

[l

make it better to understand languages you have been using

allow better choice of programming languages as an engineer
who needs programming to solve his/her problem

Increase

vocabulary of programming constructs

write better programs

practice various programming constructs of C/C++, the most

popular |

ultimate!

anguages ever used in engineering societies

y, help you fulfill the course requirements and get a

better jo!

D.

-> Every engineer today surely needs a good programming skill!

Programming Methodology

RANHBAN

What to cover

0 Principles of programming for software development
0 Basic programming language concepts and constructs
types, polymorphism, coercion, overloading

expressions, assignments, conditional statements

procedures/functions, parameter passing
o Moving towards Object Oriented Programming
blocks, storage managements scope, binding

modules, data abstraction, object abstraction

0 Exercising OOP with C++, subsuming C

getting used to diverse programming constructs common in most
existing languages

practice object-oriented programming as well as imperative one
Programming Methodology
Oonn

RANHBAN

Programming language constructs

......

—
int foo(char* l&
tyPes/ Int j, K; variables
float X, VY, z;/
]

expressions

statement
blocks

parameters

procedures/functions

Programming Methodology @

Tentative class schedule

week lecture Programming lab
1 Class information & programming basics
2 C-related features in C++
3 Types, Polymorphism
4 Types, Polymorphism
5 Variables, Scopes, Binding, Parameters C++ basics
6 Variables, Scopes, Binding, Parameters
7 Control Structures (expressions, statements, functions)
8 Blocks, Modules, Data abstraction Exam 1
9 Blocks, Modules, Data abstraction
10 |Object abstraction, Object-oriented programming
11 |Objectabstraction, Object-oriented programming OOP practice with C++
12 | Objectabstraction, Object-oriented programming
13 | Additional issues on OOP with C++
14 | Additional issues on OOP with C++
15 |Exam 2 Advanced OOP practice

@

Programming Methodology

RANHBAN

Course information

TAs, course web site, grading, exams, assignments

Objectives of this course and class schedule

Introduction to programming

Qualities of software: depending on programming skill
Software/algorithm specification for programming

Programming languages

Programming Methodology

What is programming?

o0 Software development 7]

executable

software
code

specification

0 Programming...
is an essential part of software development.

converts an algorithmic description of a user task into the code that can
be executed on the machine.

=> Qualities of software are determined by how well the code is written.
Programming Methodology -

Representative qualities of software
r

Reability @ Verifiability
Portability
Reusability Maintainability

Reliability
Interoperability

User friendliness
(Eeney

Programming Methodology
©onn

Reliability
r

RANHBAN

0 An application must perform its functions correctly as expected.

Unfortunately, there is no formal way to verify a software product is
absolutely correct. > Most products are not absolutely correct

Release 1 of a product is usually buggy, and software products are thus
commonly released along with a list of ‘Known Bugs..

But, they are considered to be reliable if a software error is minor.
0 A program is said to be robust if it behaves reasonably even in
unanticipated (mostly, erroneous) circumstances.

hard to measure because even a correct program may not be robust, and
not all unexpected situations can be tested for the program.

A good program should be well prepared for ill-formatted input.

scanf(“%d”,b) ; Are this code is robust?
if (a/ b <0) ‘ What if b is zero?
How to make this code more robust?

Programming Methodology
Oonn

Efficiency (=~ performance)

o Efficient use of time/resource for computation
- typical measures: latency, throughput, memory/disk space
0 Meaning of efficiency is changing.
Memory was once scarce and expensive decades ago.
CPUs today are several orders of magnitude faster.
Some systems such as embedded systems impose strict constraints on
memory space and CPU performance.

0 Ways to evaluate or predict the performance of a system

Analysis of the complexity of algorithms
Ex) find a key from a sorted list key list

for (i = 0; i < n; i++) J=0; k=n; i=n/2;
if (key list[i] == key) Wh!]'ce lg' >|9)t{_ .
return i; /* The key is found */ ' rgtﬁ)lfﬁ :S [1] = key)
_ _\Time complexity = O(n) if (k«_ey_liét[i] > key) k = i;
Simulation Time complexity = O(logn ?'fe d(= J') /.
n/2,n/4..,4,2,1 } ’

Programming Methodology
Oonn

User friendliness

o0 User friendly interface

important in some systems

window/mouse-based GUI

- MS Windows vs. MS DOS, X-windows for Unix
less critical in embedded and scientific applications

0 User friendly programming environment
express algorithms with more intuitive high-level constructs
- for,while, 1T, <>%* (C/C++ vs. machine/assembly code)
write a program in the natural mathematical sense
- functional vs. imperative languages
simplify programming by describing only what (not how) to do
- logic vs. imperative

application domain specific supports
- Ex) Java/C# with full of APIs & libraries for web/Windows apps

Programming Methodology
Oonn

Portability

0 Capability of software to run in designed for 32-bit machines
different environments int 1, n, m;

ST . I = 1024; /* = 210 */

0 Compatibility issue m = 4096; /* = 212 */

n=1=1%m; /*=22%*/

Some code is not executable on different

machines
—> assembly vs. high-level languages

Some code makes assumptions on
machine facilities.

o0 Performance portability issue Szx; 0ld programs were usually

$

Even if this is high-level
language code, it is still
incompatible to 16-bit machines

Machine-dependent assumptions make ™ programmed with many complex

the code less performance-portable. data compaction or overlay schemes
to save memory space because

0 Solutions? memory was once expensive. Such
smart Compilers, flags for each machine programs are not efficient these days
platform, ... when virtual memory is supported,

and memory is abound and cheap.

Programming Methodology
©onn

Maintainability

0 Software maintenance... s

means the modifications (read/write) that are made to a software
system after its initial release.

is a very important factor of software design since...
total costs of software = 40% of initial development + 60% of maintenance.

0 Two properties of maintainability
Repairability (20% of the software maintenance cost)
m removing residual errors = corrective maintenance

m easier to repair a program with well-designed modules than a
monolithic program

Evolvability (80% of the maintenance cost)

m adjusting the application to changes in the environment
-> adaptive maintenance

m changing the software to improve some of its qualities
-> perfective maintenqnce

Programming Methodology
Oonn

Reusability

£
0 part of maintainability, akin to evolvability
0 use an existing product to build another new product

UNIX shell: existing commands easily extensible with new user programs
Libraries: the same library routines called by other codes after linking
=» ocx, drv, dll: libraries in MS Windows

0 Object-oriented design: base class reused for derived class
Ex) Code for several types of collection

Queue Stack
Tuple

QQ/S
) S

Collection

Programming Methodology

Software specification

0 Every software system must be carefully specified before it
begins to be actually programmed.

—> A clearly, well-defined specification will ease programming and reduce
errors in the final software product.

0 Software specification is important since the software design
based on a well-defined specification can achieve better

qualities of software than a naive, bruteforce design.
—> ensuring correctness and robustness, reducing product development time,
increasing maintainability and reducibility, ...

0 Specification styles
Descriptive = The desired properties (not behavior) are stated.
Operational = Software is specified by describing the desired behavior,
which is described by providing an abstract model of the software that in
some way can simulate its behavior.

Programming Methodology
Oonn

RANHBAN

Software specification styles
EN

[l

Descriptive /declarative specification
quite formal = easier to verify the specification
Example: the sorting
—> An array b[0:n] is the result of sorting an array a[0:n] if b is a permutation
of a such thatfor alli, 0 <i <n, b[i] < b[i+1].
less flexible = limited applicability to various applications

Operational /procedural specification
rather informal, more flexible to describe software

Example: the sorting of an array a

Leta[0:n] be an array to be sorted.

Allocate another array b[0:n] which will store the sorted result of a.
Find the minimum of a and remove it from a to place it at b[0].

Find the minimum of the array of the remaining n elements of a after
removing its minimum and remove it from a to place it at b[1].

5. RepeatStep 4 with b[2]... until all n elements of a have been removed.
Programming Methodology

s Wb

RANHBAN

Descriptive specifications
£

REIN

0 Operational specifications describe how the software system
is designed to work.

0 Describing ‘how’ is low level way to specify software thus...
flexible but informal
usually more difficult to verify the specification
maybe more time consuming and error-prone
0 Descriptive specifications define what the software system
should perform by stating its desired properties.
applicable when the detailed ‘how’ is not needed to achieve the task.
most effective when ‘how’ is not a decisive factor for the performance.
0 Methods for descriptive specification
Logic specifications
Algebraic specifications

Programming Methodology
©onn

Logic specifications

0 based on a mathematical formula of a First-Order Theory (or
predicate calculus) thatis ...
=> an expression involving variables, numeric constants, functions and
predicates, all of which are connected via logical operators (A, v, =, =, =)
o Examples
x/1=x
X>YAY>Z>X>Z
x>5vx<l1

X=y=y=X
VX, V,Z(X>YAYy>Z—>X>1Z)
Vx (Ay (y=x+12))

0 types of variables

bound variables: quantified in the formula
free variables: not bound variables

Programming Methodology
©onn

Specifying a program with FOT
| e

REIN

in the following form:} {input: iy, iy, . 1} |

. F(mput args iy,..,i,; output args o4,...,0,,) i

{output 01, 0y, vy om, iy, 1y eyl i

F is a function in the pro_éfﬁfr_l __
i,'s are input argument variables and o,’s output ones;

{input/output: v,,v,,...,v,} is a set of formulas involving v,'s.

O Example Logic specification does not
Design a program div_multiple which, given two say anything about how the
integers x and y, produces the division x /'y code is implemented.
If x is a multiple of y.
--- int div_multiple(int 11, 12) {
{Hn(ml,lzeZ/\ll:lz n)} : int r = il / 12 * i2;
implementation if (r == i1)

return 11 /7 12;

'dlv _multiple(ininti,,i,; outint o,):
i /* else is undefined */

{0 L€Znrnoy =i /1) specification
——— }
Programming Methodology

More examples

£
o A function that produces the greater of two integers

O What does this program func do?

(assume that all variables are integers)

{11>0/\12>O}
-func(ln inti,, i,; outinto,)
{(EIZ y(11—o1 ZAl,=0;%Yy)) /\—.(EIh(E|Vw(ll—h*V/\lz—h*w)/\h>01))}

Programming Methodology

Pros and cons of logic specifications
£

o Quite formal specification, thus verification of a given

specification is facilitated.

. e L. {dn (n,iy,i; € Z Ai; =1, * n)}
Ex) Prove this specification for - div_multiple1(inint i i,; out int 0,)
div_multiplel is incorrect

{0,€Znro0y =1, /14}
(An(n,i,i, e ZAi;=i,*n))A(o,€eZAr0,=1, /1)
=i,j,eZAdn(neZAi;=1,*n)A (0, € ZAi;=1i,*0,1)

From the two expressions in red, we have n = 0,1, which implies o, € Z.

Conclusion: 0,€ Z A 0,1 € Z implies that div_multiple1 works correctly only when i, = i,.
So, we conclude “This specification is different from what we originally intended to design’.

0 less flexible so that only certain limited types of software

systems can be described.
possibly quite complicated to describe long sequential operations
awkward to describe non-numerical programs such as text processing
and information retrieval

Programming Methodology
©onn

Algebraic specifications

[26 | ~>a generation of arithmetic ~ #*
/— =mEa
o Algebra, instead of logic, is used as the underlying

mathematical formalism to specify the software system.

Properties of software are described by a collection of data sets together
with operations on the sets.
Example: (data sets, operations)
m (integers, {add, multiply, subtract, divide, ...})
m (strings, {new, add, length, concatenation, compare, ...})

o Example of a syntax of the algebra

algebra handle_strings;

sets Str, Char, Int, Bool;
operations

Execution samples

neW - «wn”

add(lei,new) = lle" - elll"

new: & > Str; ?edndg(tﬁ(z(cjljgzzg‘év())e) :e:/i)e)")ie;e" e

add: Char x Str = Str oo i Y i p
concat(“ee”,s|“nu”) = “eesnu

concat: Str x Str = Str compare(“ee”,add(e,add(e,new)) = true

length: Str > Int reverse(“eesnu”) = “unsee”

compare: Str x Str = Bool o .
reverse: Str = Str Look similar to Class in C++?

end Programming Methodology
'OHR

Axioms: specification of operations
r

AU

RANHBAN

0 Operations are described in a list of equations/functions, called
axioms, that define the properties of the arithmetic (not logic!)
operations on its data sets.

0 Example of axioms for the program handle_strings

axioms for handle_strings with [Str s, t; Char c]

new = “";

add(c, s) =c| s;

concat(new, s) =s;

concat(add(c, s), t) = add(c, concat(s, t));

length(new) = 0;

length(add(c, s)) =1 + length(s);

compare(new, new) = true;

compare(new, add(c, s)) = false;

compare(add(c, s), new) = false;

compare(add(c, s), add(c, t)) = compare(s, t);
Programming Methodology

Pros and cons of algebraic approach

0 can be verified, but less formally than logic specification.

9

length(“eesnu”) = length(add(‘e’“esnu”) =1 + length(“esnu”) =1 +
length(add(‘e’,snu”) = 2 + length(“snu”) = ... = 5 + length(new) =5
concat(“ee”“snu”) = concat(add(‘e’,“e”),"snu”) = add(‘e’,concat(“e”,snu”) =
add(‘e’add(‘e’,concat(new,‘snu”)) = add(‘e’add(‘e’‘snu”)) = add(‘e’e|“snu”)) =
e|e|“snu” = “eesnu”

compare(“eesnu”“eesnu”’) = compare(add(‘e’‘esnu”),add(‘e’‘esnu”)) =

N

compare(“esnu”“esnu”) = ... = compare(new,new) = true

compare(“eesnu”‘eesun”) = compare(add(‘e’,‘esnu”),add(‘e’‘esun”)) = ... =
compare(“nu”‘un”) = compare(add(‘n’;u”),add(‘u;n”)) = 7?

The correctness is proved by less formal, case-by-case examinations!

—> add and new are not provable by reasoning. So they are assumed to be correct

9

based on intuition.

The original axioms are incomplete since we cannot deduce the desired

correctness of ‘compare’ for handle_strings/

0 relatively more straightforward to write a program from an

JOAR

algebraic specification than a logic specification.

rogramming ogy

RANHBAN

Operational specifications

“d
m ln
ARy

RANHBAN

0 Notations for operational specification
Data flow diagrams
Finite state machines
Petri nets (= This won’t be discussed in this lecture)
0 Mostly notations are pictorial since graphical specifications
can be more intuitive and easier to grasp than textual ones.
—> A picture is worth a thousand words, according to folk wisdom!

0 Not a single notation works for specifying every S/W system.

It is important to understand advantages and disadvantages of each
notation and to decide the most appropriate notation for the intended
software system.

Often several notations are combined to specify the software.

Programming Methodology

DFD (data flow diagram)
p

o is a widely used notation for specifying the functions of an o
information system (where various data are flowing), such as

data base systems

web-based information retrieval systems.

0 5 basic components

:
Input / output / dataflow

o Exx(X - y) *(z + X / w)

Programming Methodology

A library information system in DFD
r

.........

< ———
Data m author
list topic llSt books

borrowed
book %04 9% §"
L]
request by title, % - pame
u uth 't\e,\ls
the user Ser A 2 book ook ¥
eta boo
5 book ‘/ book
' Code / reception
topic b topic [/ search by . P
w . d
request by topics to?eSref
the user S topfp% .
¢ .
display of
titles

Programming Methodology
©onn

FSM (finite state machine)
8

o In most software systems, control flow as well as data flow

must be specified.
DFDs lack the capabilities to handle control flow information, such as
external inputs or interrupts that alter or control the normal course of
data flow.
FSMs are a simple, well-known model for describing control aspects.

o Basic components of a FSM
a finite set of states Q which tells the current status of the system
a finite set of inputs ~ which is input from outside or some action
a transition function, 6 : Q x 2 — Q, which tells how the system should
react to the current input push-off-switch
Ex: a FSM for a lamp switch o ushooneswitch

Q = {start, lamp-on, lamp-off} .
> = {install, push-on-switch, install push-on-switch

push-off-switch} bush-off-switch

Programming Methodology
©onn

Vending machine system
£

REIN

Price: (Coke = 500), (Juice = 700) Coins to be accepted: 100 and 500

care for
a drink

q; =2 100*i Won for 0 <i <6

q, =2 =700 Won

gg =2 ejectcock and return
change (input — 500)

cock qy =2 ejectjuice and return
change (input — 700)

qq0 2 return all input money

Building a DFM for this
machine will increase the
' quality of its final S/W code
]

or H/W implementation in

terms of maintainability,
reliability & reusability.

Programming Methodology

Course information

TAs, course web site, grading, exams, assignments

Objectives of this course and class schedule

Introduction to programming

Qualities of software: depending on programming skill
Software /algorithm specification for programming

Programming languages

Programming Methodology

Issues that have been covered
£

0 Programming, as an essential component in the software
development

0 Qualities of software depending on programming skill
reliability
Efficiency
User friendliness

Portability
Maintainability, Reusability

o Software/algorithm specification for programming
descriptive specification: logic and algebraic

operational specification: DFM, FSM

Programming Methodology
©onn

Programming languages provide...
£

0 a vehicle for expressing high-level software specification =
0 a notation for writing algorithms in user code

0 a formalism for describing a task to the computer.
Like natural languages or software specifications (we just saw), they
provide a means for communication between software developers.

-
o

A well-designed language provides a tool for the user to efficiently
instruct/program a machine. \\/

, . /\lgn;;uagf/k»

If a language is poorly designed/chosen, it may resultin ...

or even ...

Programming Methodology
©onn

Programming languages are...
£

0 an important factor that determine software qualities.
Reliability, verifiability - static type checking, aliasing
Efficiency: language features for performance, their associated compilers
User friendly programming environment
Maintainability: simplicity vs. expressiveness, clarity of syntax and
naturalness for the application/task, factoring and abstraction
Reusability: subroutines, objects
Portability: compiler flags or macros (#1fdef, #1fndef, #define, ...)

0 classified into several paradigms and levels.
paradigms: imperative, object-oriented, functional, logic
levels: high-level(human oriented), machine-level(machine oriented)
Each programming paradigm and level has ...
m its own principles and philosophies in programming.
m different emphasis on the representative qualities of software.

Programming Methodology
Oonn

Programming language classification

AU
RANHBAN

T L)

logic algebraic
specification specification

operational
specification

\“\/

Programming Methodology

Real programming languages

REIN

o Numerous programming languages have been developed since

the advent of the electronic computer.
machine/assembly-level languages
high-level languages: Fortran, Lisp, PL/1, Cobol, C, APL, Ada, ...
o Each language has its own representative paradigm.
C = imperative
C++,Java = object oriented
Lisp, ML, scheme = functional
Prolog - logic
0 But often it is very unclear to characterize one language with
one paradigm.
Ex) one language may represent multiple paradigms.
m C++Java - object-oriented + imperative
m scheme - imperative, object-oriented, functional

Programming Methodology
©onn

Machine level languages

0 Machine languages
In 1940s when the first electronic computer was introduced, all
programs were written in machine code.
use of numeric codes
m Ex: “add 5 and the contents of address 127 and store the result into

address 127 and then jump to address 18”

000000001010: 0010 0101 01111111
000000001100: 0101 OOOO OOOlOQéO

0000000100107 -+ -+ -
;000000010100 ¢

difficult to read/maintain/modify the codes
m Ex: right after address 3 insert a new instruction, “multiply the
contents of address 64 by 4 and store the result into addres@
1011 0100 01000000

Programming Methodology
©onn

Machine level languages

£
0 Assembly languages
Soon after machine code was used, assembly languages that use pseudo
codes (translated to machine code by the assembler) were introduced.

Ex: add 5, 1
Jmp L

relative addressing

m Absolute addresses are determined by the linker/loader (not by user)
m Ex: insert a new instruction “mul 4, J”

easier to read/write a code, but not enough

® unstructured - difficult to write and maintainable

m still machine-oriented programming - not portable

m error-prone and long development time

Programming Methodology
©onn

High-level programming languages
g

RANHBAN

0 From mid 40s, primitive forms of interpreted high-level
programming languages had been studied.

0 In 1954, the first compiled high-level language, Fortran I, was
announced for the IBM 704.

Numerous high-level languages have been introduced since then...
Fortran, C/C++, Lisp, Html, Ada, ...

O properties
human oriented programming with full of syntactic sugars
structured, readable, portable, reusable, ...

0 Ex: 1 =1 + 1
goto L - using high-level mathematical notations
J=J*14
L:

0 less efficient?
Programming Methodology
©onn

Genealogy of high-level languages

[4
1950s | 1960s | 1970s | 1980s | 1990s (2000s S £
| | - | |
ettt £ > /_\>
/ ML———___ >LaSML SQL/92,5Mt, 97
7 Haskell
LISP=————— - - — Scheme CLisp— CLOS
Fortran] — Fortran IV ," \\\ » Fortran 77 » Fortran 90 — HPF
COBOL PL/1 / Modula-2 — Modula-3
ALGOL 58/60 Pascal <— > Ada » Ada95
ALGOL 68y-~. VHDL » VHDL 93
ST Verilog XL — Verilog HDL

cPL — B —»C -

Ci
| 7C++ \ 7
SIMULA L Smalltalk Java

imperative
AN

' object-oriented
Prolog

logic

Programming Methodology

Genealogy of high-level languages

2
o First generation languages (late 50s~early 60s)
Fortran (for scientific applications), COBOL (for business applications)
simple programming structures
m control structures - non-nested branches, no recursion
m data structures - primitive structures, static storage management
® no block structures, no pointers
m static type checking
other early languages
m APL,SNOBOL - dynamic type checking and storage management
- used for string or array operations

m Pure Lisp - pure functional programming, processing of lists
(noncontiguous memory cells chained with pointers) for Al

Programming Methodology
©onn

Code examples

o Fortran

subroutine saxpy(n,sa,sx,incx,sy,incy)
C constant times a vector plus a vector.

real sx(*),sy(*),sa

integer i,incx,incy,ix,iy,m,mpl,n

1T(n<=0)return

iIT (sa == 0.0) return

1T(incx==1&&incy==1)go to 20

ix =1
iy =1
if(incx<0)ix = (-n+l)*incx + 1
if(incy<0)iy = (-n+l)*incy + 1

do 101 =1,n
sy(iy) = sy(iy) + sa*sx(ix)
iX = IX + Incx
iy = 1y + incy
10 continue

o Cobol

* COMPUTE LOAN AMOUNT
004000-COMPUTE-PAYMENT .
MOVE O TO LW-LOAN-ERROR-FLAG.
IF (LW-LOAN-AMT ZERO)
OR
(LW- INT-RATE ZERO)
OR
(LW-NBR-PMTS ZERO)
MOVE 1 TO LW-LOAN-ERROR-FLAG
GO TO 004000-EXIT.
COMPUTE LW- INT-PMT = LW-INT-RATE / 1200
ON SIZE ERROR
MOVE 1 TO LW-LOAN-ERROR-FLAG
GO TO 004000-EXIT.
COMPUTE LW-PMT-AMT ROUNDED =
(LW-LOAN-AMT * LW-INT-PMT) /
(1 - 1.00000000 / ((1 + LW-INT-PMT)
** LW-NBR-PMTS))
ON SIZE ERROR
MOVE 1 TO LW-LOAN-ERROR-FLAG
GO TO 004000-EXIT.
COMPUTE LW-TOTAL-PMTS = LW-PMT-AMT
* LW-NBR-PMTS
ON SIZE ERROR
MOVE 1 TO LW-LOAN-ERROR-FLAG

return
20 m = mod(n,4)
if(m==) go to 40
do 301 =1,m
sy(1) = sy(1) + sa*sx(1)
30 continue
if(n <4) return
40 mpl = m + 1
do 50 i = mpl,n,4
sy(1) = sy(1) + sa*sx(1)
sy(hi + 1) =sy(i + 1) + sa*sx(1 + 1)
sy(i + 2) =sy(i + 2) + sa*sx(i + 2)
sy(i + 3) = sy(i + 3) + sa*sx(i + 3)
50 continue
return
end

GO TO 004000-EXIT.
COMPUTE LW-TOTAL-INT = LW-TOTAL-PMTS
- LW-LOAN-AMT.

004000-EXIT.

EXIT.

Programming Methodology

*

Genealogy of high-level languages
g

o0 Second generation languages (60s)
Algol-60, PL/1, Basic
block structures - begin-end pair
m control name space and dynamic storage allocation
recursive calls - due to dynamic storage management
more structured control - while/for statements

o0 Third generation languages (early 70s)
Algol-68, Pascal, Simula, C
user-defined data structures and types - struct, record
simple language structures and efficient object code

o0 Fourth generation languages (70s)

Ada, SETL, CLU, Modula-2, Mesa, Gypsy
modules, information hiding, data abstraction

Programming Methodology
©onn

Genealogy of high-level languages

o Fifth generation languages (mid 70s~90s)

proliferation of programming paradigms
functional (or some experimental) programming
m Scheme, Common Lisp, Haskell

m data base query languages: SQL

logic programming -> Prolog

object-oriented programming

m C++ Smalltalk

imperative programming

m Fortran 90

concurrent or parallel programming

m High Performance Fortran, Split-C, Concurrent C, Sisal

Programming Methodology

RANHBAN

Genealogy of high-level languages
p

o Sixth(?) generation languages (mid 90s~)
post-PC era
m proliferation of embedded and internet systems
domain-specific languages
m esterel, matlab, DFL, Silage, Numeric-C
architecture description languages
m nML, Mimola, Expressions
portable, light-weight languages for internet
m Html, Java, C#
etc:
m aspect-oriented programming
®m meta languages or specification languages: XML, UML, ...

Programming Methodology
©onn

