Chapter 5

Protein Structure and Function

Amino Acids and Primary Structure

- Amino acids
 - 1
 - . ..
- Peptide bond
 - Between ..
- Polypeptide
 - A chain of amino acids
 - N terminus and C terminus

Amino Acids

Primary and Secondary Structure

- Primary structure
 - Linear arrangement (sequence) of ..
- Secondary structure
 - Core elements of protein architecture
 - Neutralization of partial charges of the peptide backbone by ..
 - Local folding of polypeptide chain

Common Hydrogen Bonds in Biological Systems

α -Helix

Hydrogen bond between ...

- Directionality on the helix : The same orientation of H bond donor
- Side chains point outward : Determine ..

β-Sheet

 Hydrogen bonding between ..

 \rightarrow ...

. .

Usually not flat, but ..

Tertiary Structure

- Overall folding of a polypeptide chain
- Stabilization
 - weak interaction
 - Hydrophobic interaction between ..
 - Hydrogen bond between polar side chains and peptide bonds
 - Disulfide bond formation

Graphical Representation of the Protein

(a) C_{α} backbone trace

(c) Ribbons

(b) Ball and stick

(d) Solvent-accessible surface

Higher Levels of Structure

Domains

- One stable, compact, three-dimensional shape
- Fundamental units of ..
 - DNA binding domain, transmembrane domain
- e.g. lambda repressor (236 aa)
 - N terminal domain : DNA binding
 - C terminal domain :

Interaction with C terminal domain of another molecule (dimerization)

Modular Proteins

- New proteins by combination of functional domains
- Biotechnological application using recombinant DNA technology

Quaternary Structure

- Association of multiple polypeptide chains
 - Lambda repressor : dimer
 - *E. coli* RNA polymerase : Five polypeptide chains

Disruption of Protein Structure

Factors disrupting protein structure

Denaturation

- Complete unfolding of ..
- Sometimes irreversible : e.g. boiled egg
- Melting temperature (T_m)
 - .. temperature for a given protein
 - Depending on protein structure
 - Proteins from organisms living at high temperatures

Examples of

Protein Structure and Function

- Keratin
 - Structural protein for hair, wool, feathers, nails, scales, hooves, horns, skin
 - Very strong and water insoluble
 - Hydrophobic alpha helices
 - Long α -helix with hydrophobic amino acids
 - Forming fibers by hydrophobic interactions
 - Disulfide bonds
 - The more S-S bonds the harder the structure
 - Permanent hair wave
 - » Reducing of disulfide bond → Generation of new disulfide bond

Lambda Repressor

 Binding of Nterminal domain helix 3 to specific bases within the DNA sequence

Trp Repressor

- If plenty of Trp in the cytosol
- Binding of Trp into Trp Repressor and change the conformation
- Trp repressor binds to DNA and represses the expression of genes involved in Trp synthesis

Predicting Protein Structure

- It is difficult to predict three dimensional structure from the amino acid sequence
- Compare to other proteins with known function or structure
 - Easy access of information through public database
 - NCBI (National center for Biotechnology Information) run by National Institutes of Health (NIH)
 - <u>http://www.ncbi.nlm.nih.gov</u>
 - Testing structure-function prediction
 - Using molecular biological tools

Protein Engineering

- Manipulation of ...
- Chemical manufacturing
 - Develop enzymes more suitable for industrial applications
 - Increasing enzyme stability
 - e.g. bacteriophage lysozyme: introduce S-S bond to increase heat resistance
 - Proteases in detergent