
Chapter 19

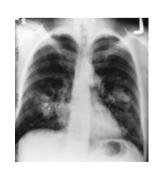
Health Care Applications

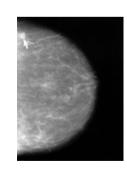
Better Medical Technology

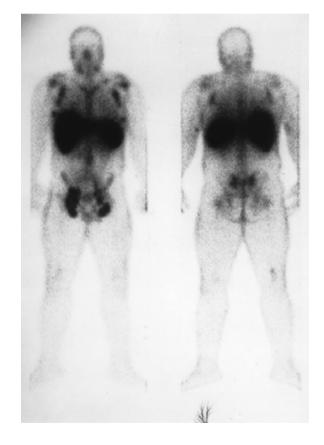
- More significant information for improving health
- Early and cheap diagnosis
- Identification of the cause, not a symptom
- Cure rather than management, disease prevention rather than treatment
- Fewer adverse side effects
- More efficacious and more affordable

Molecular Diagnostics

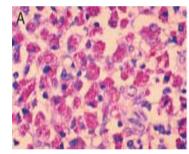
Diagnosis


- Based on symptoms
 - Different disease with same symptoms
 - Maybe too late to cure
- Visualization
 - X-ray
- Chemical imbalance and blood disorders
- Molecular diagnostics
 - Detection of a specific molecular event related to disease
 - Less invasive: use urine, blood, or saliva


Disease diagnosis

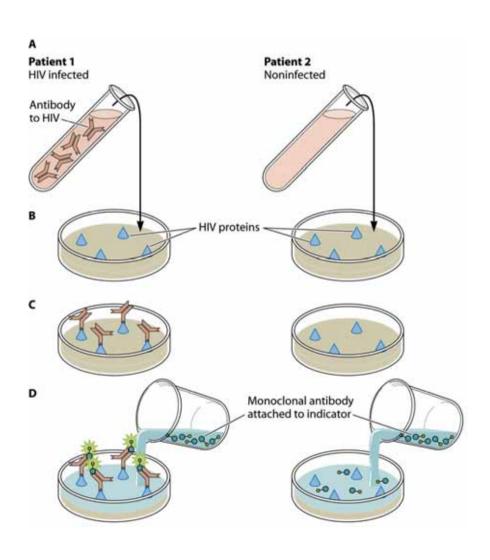


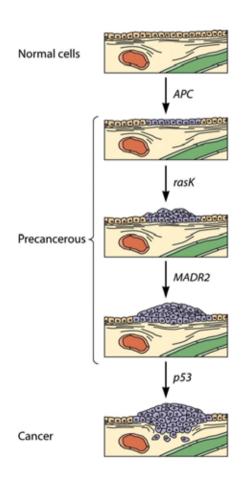
Breast cancer


Monoclonal antibodies in cancer detection

 A radioactive isotope attached to monoclonal antibodies

Early Diagnosis of Contagious Disease


- Monoclonal antibody-based diagnosis
 - Detection of pathogenic bacteria without culture
 - Diagnosis of HIV
 - AIDS-defining illnesses
 - Rare infectious diseases and uncommon cancers
 - Do not appear until 9 to
 10 years after infection

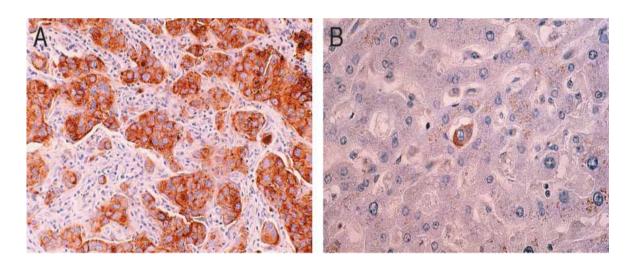

- Detection of HIV using antibody
 - HIV infection was identified as a cause of AIDS (1983)
 - Detection of HIV antibody generated in the patient
 6 to 12 months after infection
 - Detection of HIV DNA by PCR

Detection of HIV

Other Diseases and Disorders

- Biomarkers
 - Molecular changes specific to the stages of disease progress
 - Provide targets for disease treatment
- For example, a number of mutations to become cancerous
- Identifying biomarkers and using them
 - Disease treatment
 - → Disease prevention

Genetic Information for Familial Diseases


- Simple and complex genetic diseases
 - Simple genetic diseases
 - Caused by a single gene mutation
 - Multigenic disorder
 - Many genes contribute to the disorder
 - Multifactorial disorder
 - Genes and environmental factors interact and lead to the disorder
- Majority of mortal diseases are both multigenic and multifactorial.

Biotechnology Therapeutics

- Features of biotechnology-based therapeutics
 - Specificity
 - Specific inhibition of targets rather than general inhibition
 - Cancer-specific targeting
 - Biological therapeutics
 - Use natural products synthesized by plants, microbes, insects, and other animals
 - Search diverse ecosystems like sea
 - New production methods
 - Large-scale, economically feasible production
 - Recombinant DNA technology, cell culture, biomanufacturing technologies

Targeted Therapy with Monoclonal Antibodies

 Monoclonal antibodies can deliver chemotherapeutic toxins specifically to cancer cells.

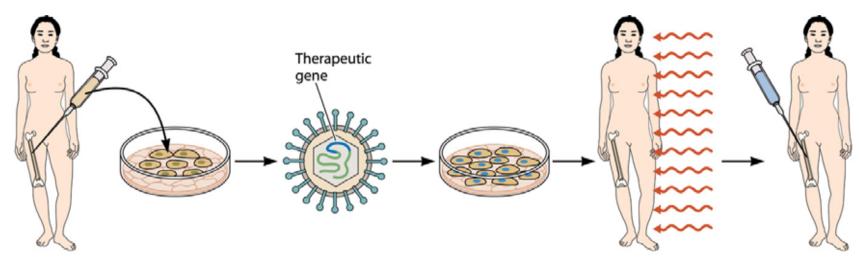
- A. Cytoplasm of tumor cells in breast tissue is stained brown with a monoclonal antibody
- B. The same monoclonal antibody is able to locate a single breast cancer cell that has metastasized to the patient's liver.

Biotechnology Therapeutics

- Use immune systems for treatments
 - Cytokines boosting immune response
 - Interleukin-2: cancer, AIDS
 - Interleukin-12: some infectious disease
 - Cancer vaccines
- Replacement of missing proteins with recombinant proteins
 - Insulin for diabetes
 - Glucocerebrosidase for Gaucher's disease
 - Hemophiliacs: missing components in the formation of a blood clot
 - Treatment of recombinant factor VIII (for hemophilia A) or factor IX (for hemophilia B)

Gene Therapy

- Administration of correct gene
- Applicable to some hereditary monogenic diseases
 - Hemophilia
 - Severe combined immunodeficiency disease (SCID); bubble boy disease
- Trial to transient gene therapy for non-hereditary disorders like cancer, infectious disease
- Still many technical barriers to overcome
 - e.g. gene delivery


Gene Therapy

- A. Child with SCID in germ-free environments
- B. In 1991, two children with SCID received gene therapy to correct the genetic defect.

Gene Therapy

Remove bone marrow stem cells from patient. Grow stem cells in culture.

Infect stem cells with altered RNA virus containing "healthy" human gene. Propagate genetically altered stem cells. Whole-body radiation to destroy patient's "diseased" bone marrow cells. Introduce altered cells to patient. Repaired cells populate bone marrow cavities and give rise to normal RBCs.

Cell or Organ Transplantation

- Not enough supply of organ donations
 - In U.S. 60,000 people are on organ recipient list
 - 12 death/day while waiting
- Xenotransplantation
 - Organs from other animals like pig
 - Problems
 - Self protection mechanism of body
 - Risk of infectious viruses or retroviruses
 - Solutions
 - Genetic modification of the donor animals
 - Deletion of pig genes triggering the rejection
 - Adds genes of human membrane proteins
- Cell transplant therapy

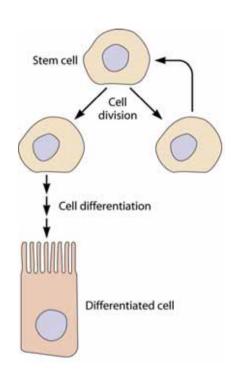
Cell Transplant Therapy

Bone marrow transfer

- In some cases, the patient's own bone marrow cells are removed, grown in culture, and reimplanted after chemotherapy
- In the case of leukemia or other blood cell cancer, the transplanted bone marrow must come from a healthy donor who is genetically similar to the patient.
- Implantation of insulin-producing cells for diabetes
- Prevention of immune response
 - Monoclonal antibodies to various receptors on T cells, that recognize and reject foreign cells.
 - Cell encapsulation: prevent recognition by the immune system

Regenerative Medicine

- Use the body's natural healing processes to cure diseases
- Endogenous proteins promoting cell division and differentiation
 - Epidermal growth factor: wound healing
 - Fibroblast growth factor: healing ulcers, broken bones, growing new blood vessels
 - Transforming growth factor β : promote cell differentiation
 - Nerve growth factor: repair damage resulting from head and spinal cord injuries, degenerative neural diseases

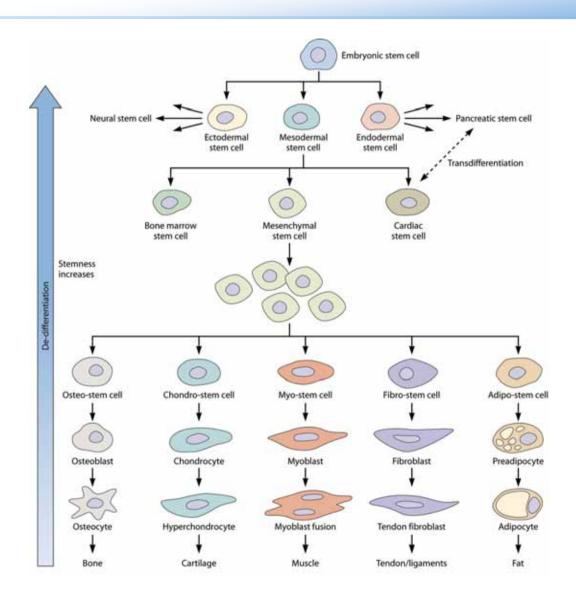

Stem Cells for Regenerative Medicine

Adult stem cells

- Partially differentiated progenitor cells
- Types of AS cells
 - Bone marrow AS cells → cells in blood and bone
 - Liver AS cells → liver cells: bilesecreting cells, glycogen storage cells

ES cells

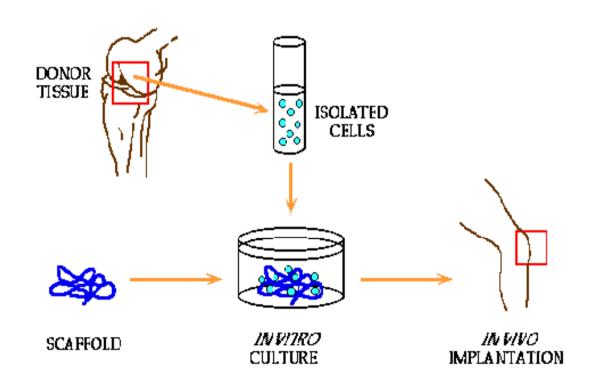
- Pluripotent
- Isolation of human ES cells (1998)
 - From blastocysts or progenitor germ cells from aborted fetuses



One stem cell and one differentiated cell after cell division to maintain a constant supply

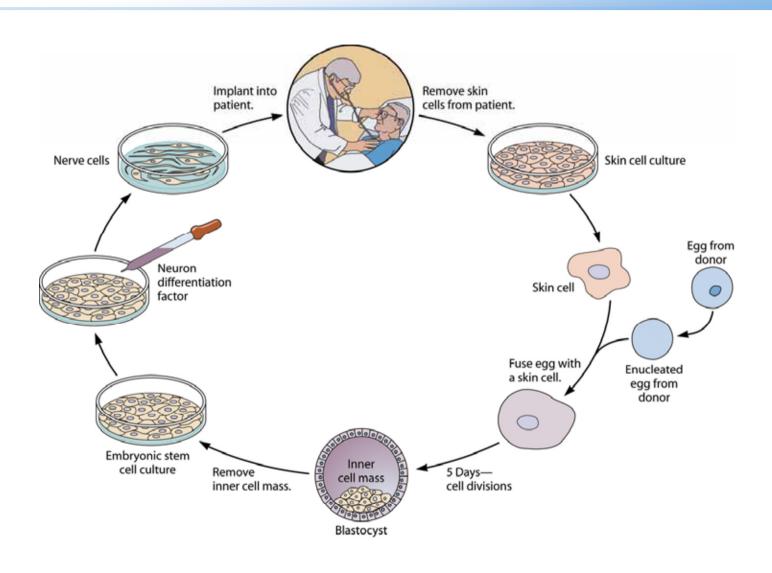
Therapeutic Potential of Stem Cells

- Replacement of damaged cells with AS or ES cells
- Research on differentiation
 - Identification of proper growth factors, nutrients, and environmental factors for specific differentiation
 - Transdifferentiation
 - From one AS cell to another type of AS cell
- Research on dedifferentiation
 - Factors that reverse differentiation
 - Dolly: cloning from the fully differentiated somatic cell
 - Dedifferentiation can provide ES cells without using embryo,
 BUT... it is hard to study dedifferentiation without using ES cells


AS Cell De differentiation

Tissue Engineering

- Generation of semisynthetic tissues and organs
 - Biocompatible scaffolding materials
 - Synthetic polymer or natural material (e.g. collagen)
 - Living cells grown in culture
 - Fully differentiated cells
- From simple tissues and organs (skin, cartilage, urinary bladders) to whole organs using stem cells


Tissue Engineering

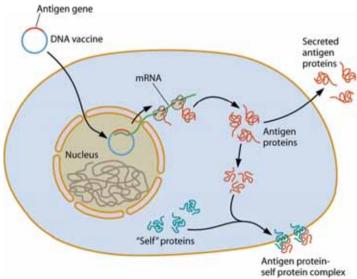
Solving the Problem of Tissue Rejection

- Use AS cells from the patient
- Freeze umbilical cord blood with plasticity for the future use
- Somatic cell nuclear transfer
 - Therapeutic cloning
 - Generate differentiated cells from ES cells

Immune-Compatible Stem Cells

Vaccines

Vaccines


 harmless agents that elicit an immune response, thereby providing protective immunity against a potential pathogen

Types of vaccines

- Killed vaccines, attenuated vaccine
 - Potential problems
 - Side effects: allergic reactions, cause disease
 - Difficulty in mass production outside of the human body
 - Potential risk during human testing
- Subunit vaccines
 - Surface proteins of pathogen inducing immune response
 - Production using recombinant DNA technology
 - Vaccines for infectious virus (Hepatitis B), diabetes, cancer, chronic inflammatory disease etc.

DNA or Edible Vaccines

- DNA vaccines
 - Delivery of vector containing antigen gene

- Edible vaccines
 - Genetically modified animals or plants producing vaccines
 - Vaccines in milk
 - Vaccines in bananas or potatoes