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Summary

Variables and Equations

If we are interested in finding the displacement
components in a body, we may reduce the system of
equations to three equations with three unknown
displacement components.

Given : Body force X Y Z
u, v, w

Find : Displacement

(/1+G)?+GVZU+X =0
X

A1+G @+GV2V+Y =0
oy

(A+G)?+GV2W+Z =0
z

3 Variables
3 Equations

X,Y,Z:bodyforce in x,y, and z direction repectivelyg
ou ov owi®=o, +0'y+0'Z§

oX 0Oy OzipuA:lLame Elastic constant:

52 G : Shear Moldulus:

—t—t+— v : Poisson'sRatio:
OX" 0z" 0y” |E:Young's Modulus'

innovative Ship Design - Elasticity
et - e

18 Variables

9 Stress Oy Ty Ty Ty 1Oy Ty 1 Ty 1Ty, 3 O,
6 Strain &, yE € Yy Yy Vi
3 Displacement U,V,W

18 Equations

@@

6 Equations of force equilibrium \
aO-x 8ryx az-zx _
ZFX: ax +W+€+X—O ZMX:TVZ_TZYZO
Zij;szauaaTZMY:o 2 My =70 =7, =0
ZMZ = xy_z-yx =0
or, 0t, oo
DR =424 7=0
\_ x oy & Y,
(" 6 Relations btw. Strain and Displacement N
ou ov ow
gx =—, E, =—, gz =—,
ox 7 oy oz
LN v aw_ow
\ Tyt a7 T y
ﬁ Relations btw. 6 Strain and 6 Stress \
vE E __E
o, = e+ &y !Txy _—yxy
@L+v)Q-2v) (1+v) 2(v+1)
o, = vE e+ E & _—E
Y+ v)@-2v)  @Q+v) ! YT (v +1) Ty
vE E E
O-Z = e+ 82 , :—7/
A+v)d-2v)  (1+v) 2Av+D T
,e=¢&c +&,+&

/

o)
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Summary

If we are interested in finding only the stress components
in a body, we may reduce the system of equations to six

equations with six unknown stress components

Given : Body force

X, Y, Z

Find : Stress Oy O-y’ O, z-xy’ z-yz’ T
/ v (oX oY oz X s 1 0°0 _ \
—| —+—+—|+2—+V'0o, + =
l-viox oy oz OX 1+v ox°
v (0X oY dZ N 1 6 ©_
— | —t—+—|+2—+Vo, +
1-viox oy oz oy 1+v ay
v [oX 6Y 6Z oz _, 1 0°0
— —+—[+2—+Vo,+ —— =
1-v| ox ay 0oz 0z 1+v oz
oY oX 2 1 0%0
—+— |+Vr, , +—— =
oX oy Y v+10x0y
oZ oY 2 1 0°0© c
—+— |+Vr, +—— = >
5 azJ et oyer |::> 6 Varlab.Ie:
AN 50 6 Equation
+Vr, +t———=
K oo v +1 620X /

N

S

X .Y, Z:bodyforce in x,y, and z direction repectivelyg
O=0,+0,+ o-zé
.1, A - Lame Elastic constant:

52 G : Shear Moldulus:

O
oy

v : Poisson's Ratio:
E : Young's Modulus:

o’

P
Innovatlve Shlp Design -~ Elasticity”

18 Variables
15 Variables

9 Stress Oy Ty 1Ty Ty 1Oy Ty 1 Ty 1Ty, 0,

6Stfai/7 gvlg\llg-/!yxy’}/yziyzx

18 Equations ->» 15 Equations

6 Equations of force equilibrium
oo, , oty 0

TZX
2F= ox oy +§+X=O zMx:Tyz_sz_O
0 0 ZMZ:TXY_TW:
> F= o T 0% 720
\ ox oy oz y,
/

Cpmpatlblllty equations 3 /n ependent Equations

agx agy a}/XV 288 a a}/yl ayzx %
o> ox° oxoy oyor x| ox oy oz
82 6ng 0? Yy or |2 62£y 0 0%y 07, N 07y
622 o oy oox oyl ox oy @
2 2 2
aiz-f-a ;Zayzx 82 0 a}/yl_,’_a}/zx_%
OX 0z 020X axay az X ay oz
6 Relations btw. 6 Strain and 6 Stress E
o, = vE e+ E g, 1Ty = Ty
A+v)(1-2v)  (L+v) 2(v+1)
o, = VE e+ E & T. = E
-2 @) e o1
vE E E
o, = e+ g, r =
(l-‘r- V)(l— 21/) (l+ V) VP x 2(V +1) Vx

=&+, teg,
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Classification fevascfsfone (Sl @ a00m 0] -Ea o

K; F
. -
whenever a smooth ‘classical(strong)’ 2) | Apprommat? WictHed
solution to a (D.E.) problem exists, it [ Weak Form integration by part and Collocation
is also tk;;e solution of the weak ) dsg‘r::: :ri;:fnf;':::‘:“:gs Least Square
problem [ +u—xvdx= 0 [Luv +w - x)dx =0 Galerkin > FEM
u(0 90,u® =0 .
( | )0, u(d) ‘ | 7[$ z| G u i " shape function
Differential Equation multiply V' and integration u(x) =3¢ ol
n ;XA—H
(ODE/PDE) v(x) =D ad(X) sl AL
-u"+u=x, 0<x<l,
Ex.) 4(0 20, u(l) =0 — Work and Energy Principle Approximate Method
I - T | Rayleigh-Ritz |
‘ ‘ ‘ ) Varlatlor.\al =L
q q multiply 0Y and integration formulation y(x) ~ ¢0(X) + C1¢1(X) 1L ooodk Cn¢n (X)
) —| T +po’y+p=0
) dx d i d dy , dy 2 - Variation and integration
d( dy B . Dty
J-o(dx [T dx)—'_pa) y+ pjgydx 5-[ |: PO y + py— (dxj :ldx_o ntegration and variation

integration by part and B/C

—> Approximate Method

Leibnitz formula?

problem of a “hereditary’ nature® chsk(x) ~F(X) ,s.(x) =¢k(X)—/1_[:K(Xv§)Y(§)d§
k,

S Feads = [0 F X de s R B0l - Fix AL Integral :
Equations [ Collocation | >'c,s,(x) = F(x)
E
.. What is the relationship Volterra ) Galerkin e w0 (0 dx = (w30 F () dx
ibetween ‘week form’ and a(X)y(x) = F(x)juﬂh_[a K(x,£)y(&)déE I | kz; k.[a vi(X) 8 (x) L yi() F(x)
‘Variational formulation’? JWw(X)= " ad(x
Fredholm y(x) =, adx)

a()y(x) = F(9) + 2] K(x&)y(£)dé

Q 2
| Least Square | min Ib{zcksk(x)—F(x)} dx
dlia

) Jerry, Aj., Introduction to Integral Equations with Applications, Marcel Dekker Inc., 1985, p19~25

) 'variational statement of the problem’ -Becker, E.B., et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, 1981, p4

) Becker, E.B., et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, 1981, p2 . See also Betounes, Partial Differential Equations for Computational Science, Springer, 1988, p408 “...the weak solution is actually a strong (or classical) solution...”

) some books refer as ‘Method of Weighted Residue’ from the Finite Element Equation point of view and they have different type depending on how to choose the weight functions. See also Fletcher,C.A.J., “Computational Galerkin Methods”, Springer,
1984

) Jerry, Aj., Introduction to Integral Equations with Applications, Marcel Dekker Inc., 1985, p1 “Problems of a ‘hereditary’ nature fall under the first category, since the state of the system u(t) at any time t depends by the definition on all the previ
states u(t-1) at the previous time t-T ,which means that we must sum over them, hence involve them under the integral sign in an integral equation.

1
2
3
4
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Classification

N

Ex: Rotating String)

dx\ dx

multiply 5y and integration

—» (it has a physical

what is the relationship between ‘week form’ and ‘Variational formulation’?

differential equation

i(T dy)+pw y=-p

virtual displacement

meaning)

whenever a smooth ‘classical(strong)’
solution to a (DE) problem exists, it |
is also the solution of the weak |
problem?)

Weak Form?

u(0 J0,u@) =0
Differential Equation multiply v and integratio
(ODE/PDE)

—u"+u=x, 0<x<l, 1

-}-(-u d-u-x)v-d«—ﬂ— R

alte
(integratior bypn and 8/0

Work and Energy Principle

60
u(© 90, u®) =0

Approximate Method®
Collocation

Least Square

J( uV'+uv—xv)dx =0 Galerkin L SFEM
T Xk =F shape function

w00~ 5150 S T
______ "_(X)EZ a0 » LA

o\ dx

dx

jl L} Td—y + po’y + p(Pydx =0

2

Variational formulation:

T(d
> 5] Sy py |

physical meaning : “Minimize the
difference of kinetic energy and
potential energy”

Innovatlve Shlp Design - Elasticity

€ integration by part and B/C

L 2

= U I 1 T d

£a §j = p?y? + py——| | dx+
3w 0| 2 2\ dx

g

e v

2

| a similarity

Td—yéy =0
dx

0

dx=0

0

Ritz method

y(x) ~ Z?Zlcj¢j (x)

Approximate Method
Variational Rayleigh-Ritz

J multiply 5y and integratio formulation
&

dy | I
3) dx[de)+pwy+p 0 ’d(

det gx +pmy+p}ydx [ /ﬂ—pﬁy oy %—%Hux—u‘ i

integration by part and B/C
Lelbnltzformula” problem of a “hereditary’
L Raas = [ 0D i prS - Fix Al Integral

Equations

Method

nature? [chsk () ~F() L 50=400-4]" K(x,:‘)y(:)dc’]
&

e ()= Fx)
Volterra . [Galerkin ] 3c.[ ~['w,
a0y09 =FO0+ 2] K(x ()8 ZeLncos 00 [y F
Fredholm . vwwzzk:,am,(x)
R INCE YIS i 855 0t o

multiply V and ‘week form’
Ifd(.d
(22
ol dx\ dx
Weighted Residual

J"i'rﬂ
ol dx\ dx

2 _r
+ po°y vdX—J‘O pvdx

+ po’y+p [vdx=0

if is has a meaning of minimizing the weighted residual,
we may rewrite is as

I d dy
ol | —| T—=
IO dx\ dx

in case of using Galerkin method, weight function can be
regarded as a kind of y since they have same basis functions

y(x) = Zr;:lcj¢j(x)
=" ad(x)
+po’y+p |ydx=0

+po’y+p lvdx=0

@ Advanced Ship Design Automation Lab. 6/183
http.//asdal.snu.ac.Kr



Classification

€
%what is the relationship between ‘week form’ and ‘Variational formulation'?

Our reference to certain weak forms of boundary-value problems as
“variational” statements arises from the fact that, whenever the
operators involved possess a certain symmetry, a weak form of the

problem can be obtained which is precisely that arising in standard
problems in the calculus of variations.

Innovative Ship Design - Elasticity

1) Becker E.B., Finite Elements An Introduction, Volumel, Prentice-Hall, 1981

7/183




(Au,u) = '[: Au'*dx

Classification

"!':
@
i‘;what is the relationship between ‘week form’ and ‘Variational formulation'?
Remark 14.1Y In the case of positive definite operators, the Galerkin method brings nothing new in comparison with the Ritz method ; the

two methods lead to the solution of identical systems of linear equations and to identical sequences of approximate solution. However, the
possibility of the application of the Galerkin method is much broader that that of the Ritz method.

The Galerkin method, which is characterized by the condition (AU, — f,¢,) =0, k=1..,n does not impose beforehand any essential
restrictive conditions on operator A

It is in no way necessary that the operator A be positive definite, it need not even be symmetric, above all it need not ne linear.
Formally speaking, the Galerkin method can thus applied even in the case of very general operators

Remark 14.2- Although both the Ritz and the Galerkin methods lead to the same results in the case of linear positive operators, the basic
ideas of these methods are entirely different.

ex: deflection of beam

[Elu”]” =((X) withthe B/c U(0)=u’(0)=0, u(l)=u’(l)=0, or | minimize the function of energy
L' E1uryzdx - [ quax

> Jo Bl W)X | qu

Definition 8.15? An operator A is called positive in its domain DA if it is symmetric and if for all U € DA , the relations

(Au,u)>0 and (Au,u)=0 = u=0 in D, hold.

2 2
If, moreover, there exists a constant C > (Q such that for all U € DA the relation (AU,U) >C ”U” holds,

then the operator A is called positive definite in D A

Innovative Ship Design - Elasticity

1) Rectorys, K. Variational Methods in Mathematics, Science and Engineering, Second edition, D.Reidel Publishing, 1980, p163 8/183

2) Rectorys, K. Variational Methods in Mathematics, Science and Engineering, Second edition, D.Reidel Publishing, 1980, p106




Classification

'!':
|

what is the relationship between ‘week form’ and ‘Variational formulation’?

Remark 14.2- Although both the Ritz and the Galerkin methods lead to the same results in the case of linear positive operators, the basic
ideas of these methods are entirely different.

ex: deflection of beam

E1uT . 0) —u'(0) < . u(l N =0 or | minimize the function of energy
[ U] —q(X) W'ththeB/C U()—U()— ,U()—U()— ’ %J'OIEI(UN)ZdX_J.OIqudX

approximate solution

Zk -1 a.@;, where @, satisfy the B/C

Ritz method
Galerkin method : multiply ¢ and integration

aij Elg/) (pldx+aj (Elg;) (/)1dX+ +aj Elg)) ¢1dx:jlq¢ldx al_[ El( dx+aj Elg o) dX +-- +a.[EIgo" "dx = jq¢1dx
, different?
alj (Elg (pzdx+a2j (Elgo;’) ¢2dx+---+anjo(El¢§) (ode=.[oq(ode = aij Elp/o)dx +a, J El( dx+ ‘+a I Elgaggor']'dX:jOQgpde

alj:(Elgpl') gondx+a_[ (Elg}) (pndx+ +a_[ (Elgl) ndx:jc:qgondx alj.;E|(pl"(pr']'dX+a2L:El(/)g(p:dx—l----—i—anﬂEl

"2 :
(#}) dx=] ag, dx
The Galerkin method starting with the differential equation of the pro

blem and the Ritz method with the respective functional

L: (Elg)) ¢ dx = [( Elgf) o, 1 - IOI(EI o)) g dx=—[ (Elg))g} |+ L: (Elg) o dx

—I Elg!) g dx

; ; ) . identical
Innovative Ship Design - Elasticity

1) Rectorys, K. Variational Methods in Mathematics, Science and Engineering, Second edition, D.Reidel Publishing, 1980, p163

9/183



Self-adjoint form

d

differential equation &(T &j b AgRl \
£0) 4 d dy then the differential
— | T—= [+ pa) y+p ydx equation is obtained by
Jol dx\ dx the Euler equation
multiply 0y and integrate
v 'Ii(T dy)&ydx+] @ y5ydx+j poydx=0 @Q(zﬁj‘ﬁz
Jodx\ dx P N 2
Lnr:;gt:sct)i';?\cliois:dr:tions | 1 T(dy ? dy ! let F = E,oa)zy2 + py —I(ﬂjz
5] — pa’y’ + py——[—j dx+[T—5y} =0 2 2\dx )
0| 2 2\ dx dx |, f
A% _

'variational problem | o| 2

i1 T(dyY
5I —pa)2y2+py—5(d—§j dx

while the technique of forming the left directly to the right is a particularly convenient one, and certainly is appropriate in
this case, its use in other situation may be less well motivated unless it is verified that the differential equation involved is
indeed the Euler equations of some variational problem, 61 =0 whose natural boundary conditions include those which
govern the problem at hand*

Can this procedure be used for any
differential equations?

j;(D.E)aydx 0 = 61=0

Innovative Ship Design - Elasticity

‘ Seoul
Nat/ona/
Un/V

*Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965 pl84

@ Advanced Sh/p Desj kqn Automation Lab. 10/183
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Self-adjoint form

7’:
€. Can this procedure be used for any ! _ _
i‘}) : ! j jO(D.E)aydx_o < 61=0

differential equations?

while the technique of forming the left directly to the right is a particularly convenient one, and certainly is appropriate in
this case, its use in other situation may be less well motivated unless it is verified that the differential equation involved is
indeed the Euler equations of some variational problem, 61 =0 whose natural boundary conditions include those which
govern the problem at hand*

equivalent equation X2 V" +2Xy' + Xy = X

Ex) (X°y)+xy=x ,0<x<I
=Xxy"+2y' +y=1
multiply 0y and integrate

J‘;[(xzy’)'+xy—x]5ydx L:(xy”+2y'+ y—1)8ydx

U
this form cannot be transformed to a proper variational
J —X (y) +— xy — Xy | dx +[X y 5y] problem, 5| =0 , merely by multiplication by oy and

subsequent integration by part

multiply 0y and integrate

if the specified boundary conditions are such that introducing weighting function x

[XZ y,5y]:) ~0 In the case of a D.E. of order greater than two, it may happen

. that no such weighting function exists.
the varlatlonal problem
However, it is readily verified that the abbreviated procedure is
I -X (y) + = xy — Xy dx =0 valid ( when appropriate boundary conditions are prescribed ) if
the governing equation is of the so-called self-adjoint form

Xy=(py) +qy="f ,p,q:function of x or const.

or, after calculating the variation . .. .
9 That is such an equation is the Euler equation of a proper

J-(:[(Xzy')’ + Xy — x]éy dx variational problem, ?I = 0 which is equivalent to the condition
sz(say— f)oydx .

Innovative Shi Design - Elasticity

2 Seoul
National Advanced Sh/p Desi fgn Automation Lab, 11/183
Uniyv. http.//asdal.snu.ac.




Self-adjoint form*

nonhomogeneous boundary value problem

d’y dy o
AN+ A+ AX)Y =Ly = ()

ay(@)+a,y'(a)=0
BYb) + B,y'(b)=0

the self-adjoint form, which means (vLu—uLv)dx must be exact differential

dg = (V Lu—u Lv)dx for any two functions U(X) and V(X) operated on by L
A very important example in applied mathematics if a self-adjoint differential operator is
d du
Lu=—[r(x)——I+[a(x) + Ap(x)Ju=0
dx dx

which is used with well-known Sturm-Liouville problem

Lu= di[r(x)d—“] +[q(x) + Ap()Ju =0
X dx
Subjectto: o, y(a)+a,y'(a)=0

ﬂly(b) + ﬂzy’(b) =0

Innovative Ship Design - Elasticity

. : : — )
*Jerry AJ., Introduction to Integral Equations with Applications, Marcel Dekker, 1985, p96-97 @‘%E:E sizertl] SDAL
! ! ! ! 1 National ; ; : 12/183
'E—EE 28 Univ. Advanced sfip, Design Automation Lab.




Self-adjoint form*

the self-adjoint form, which means (vLu—uLv)dx must be exact differential
dg = (V Lu—u Lv)dx for any two functions U(X) and V(X) operated on by L

2

d d
Y AL+ A(X)y=Ly=f(x)
self-adjoint form dx dx

Lo =L (024 [900 + AP =0 Symrrorm A
dx dx

d d
Lu—u k=v—[r(x)u’ A —u—I[r(x)v' A
HEEEE i dx[ (U VIg(x) + Ap()lu —u dx[ (v]+ulax) +Ap()lv Note that the governing differential equation in linear second-

order problems can be written compactly in the operator form?

Au=f

d d
=V—[r()u]-u—[r(x)v]

dx dx Where A is the differential operator for the problem.
=vr'u"+vru” —urVv' —urv’ If U and V are arbitrary smooth functions vanishing at x=0, x=/,
the operatorA is said to be formally self-adjoint whenever

=r(vu”"—uv") +r'(vu’ —uv’) | |
j vAudx=I u Avdx

=r(vu”"—uv"—=v'u' +v'u) +r'(vu’ —uv’) 0 0

it can be shown that an energy functional exists fqr a given

= r(V'U' +wvu”"—u'v — UV”) + I"(VU’ = UV') boundary-value problem only when the operator A for the

problem is self-adjoint. For self-adjoint problems and, therefore,

, , for all problems derivable from an energy functional and the

= —[I’(VU —uv )] stiffness matrix resulting from the Rits approximation will always

be symmetric.

Clearly, when Ritz method is applicable, it leads the the same
system of equations as Galerkin method.

vLU —uLv = %[r(vu' —uv')]

(VLU . ULV)dX — dg, g= [I’(VU, _ UV,)] In the general case, the operator was not self-adjoint. For this

reason, it is clear that Galerkin method is applicable to a wider

. . . .. class od problems that is Rits method
Innovative Ship Design - Elasticity

Jerry AJ., Introduction to Integral Equations with Applications, Marcel Dekker, 1985, p96-97
1) Becker, E.B., et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, p63 , see also Greenburg, M.D., Application of Green’s Functions in Science and Engineering, p6-9 1971, p6-9

esi';qn Automation Lab. 13/183
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Summary : Variational Problem and D.E.

Green Function

[solution of D.E. } solution of Integral Equation

‘, Approximation
/ / -Galerkin /Collocation /Least Square
L—
d (Tg—yj+pa)2y+ p=0
" ﬁ

Differential Equation Ex) dx
I d dy then the differential
—|T— |+ pa) Y+p de equation is obtained by
multiplyo'y and integrate oL dx\ dx the Euler equation

1d (. dy | ' 2| )-=-
f_(T&)5ydx+fopa)2y5ydx+.|‘0p5ydx=0 ox\ oy’ oy

0 dx
integrating by part 0
and two end conditions |_1 T dy 2 dy | et F 1 dy
5[ | = pa?y? +py——=| =L | |dx+|T=L8y| =0 & ‘Ep“’“py“[d_j
k| 32" + Py 2(dx” { dx yl "
A4 g :
'Variational formulation | W1 22 T(dyY )/
5j —poY +py——| —| [dx=0
o 2 2\ dx
\
EApproximation
- Rayleigh-Ritz

Innovatlve Shlp Design - Elasticity

2 Seoul
National Advanced Ship Desj fgn Automation Lab, 141183
Uniyv. http.//asdal.snu.ac.




Variational problems for deformable bodies

Calculus of variation

Calculus of variation are concerned chiefly with the determination of
maxima and minima of certain expression involving unknown functions*

Variational problems for deformable bodied

a variational problem can be derived from a differential equation and the
associated boundary conditions...such formulations are readily adapted to
approximate analysis**

Innovative Ship Design - Elasticity

*Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p119
**Hildebrand, F.B.,, Methods of Applied Mathematics, second edition, Dover, 1965, p172

[ =53 S 7

KR s ENSDAL

%ﬁ@ National Advanced Ship Desl/éqn Automation Lab, 15/183
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Variational problems for deformable bodies

boundary conditions...such formulations are readily adapted to approximate analysis

[a variational problem can be derived from a differential equation and the associated J
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string
< derivation of the differential equation*------------- - - oo oo

p : string density =T,cos(z +6,)i +T,Ccos6,i
w : string angular velocity . -
T : magnitude of tension = _Tl COS 91' + T2 COS HZI

=0

-.T,cos6, =T, cosb,

let T,cosé, =T,cosb, =T

T T

then T, =——, T, =
CoS &, cos &,

%‘%@!;;ﬁ: fvea;?gna/ @ %}%%E_s;gﬁug%sgn Automation Lab. 16/183

Univ.

*Zill,D.G, Cullen,M.R., Advanced Engineering Mathematics, Third Edition, Jones and Bartlett, 2006, p107



Variational problems for deformable bodies

a variational problem can be derived from a differential equation and the associated

boundary conditions...such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string

% derivation of the differential equation*------------- << oo oo
force equilibrium in x-direction
T T
T, = v 12 =
cos 6,

~ cosé,
resultant force in y-direction

z Py =T, +T,
=T,sin(z +6,)j+T,sinb,]j

p : string density
w : string angular velocity

T : magnitude of tension = _T,sin6,j+T,sin6,j
5
sing, . _sing, .
=-T Lj+T—=
CoS 6, Cos 6,
=-Ttangj+T tan g,]
d d
ﬂ tan g, _ Y ,tan 6, =
dX X dX X-+AX
. ’ ' -
R B >F, =TIy'(x+A%) - y ()]}
nnovative Ship Design - Elasticity! 1 .
— - - - - — QEPD S0y,
Zill,D.G, Cullen,MR, Advanced Engineering Mathematics, Third Edition, Jones and Bartlett, 2006, p107 ;ﬁi@!ﬁfxzxém %}%%ES/%U%%MM”M”M s 17/183




Variational problems for deformable bodies

a variational problem can be derived from a differential equation and the associated

boundary conditions...such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string

< derivation of the differential equation*----------------- oo oo SemmesEEesses s e esEeesaRe
resultant force in y-direction

D F, =TIy (x+ax) - y'(x)]j

acceleration in y-direction
assum.: AX <1

p : string density Masss M= ,OAS ~ ,OAX
w : string angular velocity 2 negative sign : acceleration
o 0 3 B~ —_— points in the direction
7 : magnitude of tension Centripetal acceleration: ay =—lw opposite to the positive y
direction
y(x + Ax) T2,y =T2 sin HZJ When Ax is small,
.-+ linearization
T, =-T,sind]j N\ e, _neATEATION
1,y 1 1 T
yA)  As = 12 r+Ar~r=
7
R
Y _g¥-== i 0, , 2
T, {| B=ro? | [T+Ar .d, =—Yo
A ! ,
] ' ~~(pAX)
.
Innovative Ship Design - Elasticity ! :'
*Zill,D.G, Cullen,M.R, Advanced Engineering Mathematics, Third Edition, Jones and Bartlett, 2006, p107 %B%&T’Sﬁu‘:”’ %5,0%/”’ e D
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Variational problems for deformable bodies

a variational problem can be derived from a differential equation and the associated

boundary conditions...such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string

% derivation of the differential equation*---------------~----- - - - o- T
* resultant force in y-direction

D F, =TIy (x+4x) - y'(X)]]

* acceleration in y-direction
2
ma, =—p-AX-y-@

p : string density « Newton's 2" law > F, =ma,j
w : string angular velocity
T : magnitude of tension

TIY(X+AX) =Y (X)]=—p -AX-y -0

T, =T,s8in6,j
oy A -y (0

2
=0
\2@ T, Ax + po°y

' ' 2
52 When Ax is small, y (X+A4x) -~ y'(X) ~ d 2/
AX dx
r+Ar d®y ,
] =T ™ + pw°y =0
> X
X 4+ AX
Innovative Ship Design - Elasticity ! :'
= s . " " ) ?."“'q A"”‘Seou/
Zill,D.G, Cullen,M.R., Advanced Engineering Mathematics, Third Edition, Jones and Bartlett, 2006, p107 V:&ﬁﬁg&ngmﬂ %%%,Eﬁ’;’ﬁug?ﬁ”’“”m’mﬁ"” Ly, 197183




Physical Meaning of Green Function

Ex) Rotating String dzy
ST — + pw’y =0
dx
2
%Jr/lyzo,y(O) =0, y(I)=0

(3

(1-x) when &<x

S y(x) = /1!; K(XE)Y(E)dE ke -

X —

p : string density
w : string angular velocity
7 : magnitude of tension

I—(I —¢&) when &> x

Green function

y(X+AXx) T |
i displacement can be occurred with no

external force and homogeneous B/C ?

in this example, string’s angular velocity are causing the
displacement. If tension is zero, this equation is not valid. With
non zero tension, displacement is affected by the string's
angular velocity and in the equation it is A .

1
1
H \;l X+ AX Even in the case of homogeneous B/C and no external force
\‘ ! (actually, it means the nonhomogeneous term in the equation),
v/ there could be ‘a source’ causing ‘motion’ of the system in the
\ 4

equation *

Innovative Ship Design - Elasticity

-Hill, 1953, p791~p793

N7

* this statement is just writer’'s no
. __
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Variational problems for deformable bodies

[a variational problem can be derived from a differential equation and the associated }

boundary conditions...such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string
%+ The governing differential equation
y : the displacement of a point from the axis of rotation
d dy p : linear mass density
+ p’y+p=0

w : string angular velocity __-@__ ¢___________’_ :
dX dX 7: magnitude of tension . = 6 = '\\ “x=1
p : intensity of a distributed radial load - = /-

Recall, *

.. . P,0,T, I real-valued functions
-/Regular Sturm-Liouville Problem B.V.P ) continuous on an interval [ b]

d , - r(x)>0, p(x)>0
Solve : &[r(x)y]+[q(x)+lp(x)]y:0 ’

for every X in the interval [@,0]

Subject to: A y(a)+B,y'(a)=0 A,B,  are not both zero

Az Y(b) + BZ y’(b) =0 A,, B, are not both zero
i

nnovative Ip Design - ElastcCIty

’Ws /
*Zill, D.G., Cullen, M.R., Advanced Engineering Mathematics, Third Edltlon Jones and Bartllet, 2006, ch.12.5 ot @
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Variational problems for deformable bodies

a variational problem can be derived from a differential equation and the associated

boundary conditions...such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string

%+ The governing differential equation

y : the displacement of a point from the axis of rotation

d dy o : linear mass density
w : string angular velocity __-@__ ____________ g
dX dX + p(() y+p= 0 T : magnitude of tension ol ] ? -

_ -~ ] - X = I
p : intensity of a distributed radial load x=0 =<2 -

“+in order to formulate a corresponding variational problem

multiply 0V and integrate over (0, 1) « psy=5(py)
I;%(T%j5ydx+jolpa)zyéydxwtjc: poydx=0 . pa)zyé'y:é'(%pa)zyz]
~ d (- dy dy -] o dy d(sy)
sl TV laxs s 2 g dx = 0 [alTa oo o] - Lr g gl o
! Z(dxj |, ( yj o (p)ox- {T%CW}‘JT%&%@
~ d d
T ( dy 2 dy | '-'d—5y=5d—y
o P’y + py——(—j }dx{T—éy} = 4/ d q
3 o) [T, Sk 2o -1{H(2

Innovatlve Shlp Design - Elasticity

2 Seoul
National Advanced Sh/p Desi fgn Automation Lab, 22183
Uniyv. http.//asdal.snu.ac.



Variational problems for deformable bodies

a variational problem can be derived from a differential equation and the associated

boundary conditions...such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string

%+ The governing differential equation

y : the displacement of a point from the axis of rotation
d dy p : linear mass density
+ p’y+p=0

w : string angular velocity @.- ¢___________’_ i
dX dX T: fnagni-tude of tgnsion . o 6 e, '\\ E o “x=1
p : intensity of a distributed radial load = S~ -

T(dy)Y’ dy . ]
5!{ PO’y +py——(d—ij }dx{Td—iéy} =0
0

if we impose at each of the two ends one of the conditions

dx

i1 T(dyY
) LI I PV
I[zpwy py 2(dx”

d |
y=y, or TQ:O then {Td—y5y} =0
X 0

Innovative Ship Design - Elasticity

2 Seoul
National Advanced Ship Desj fgn Automation Lab, 23/183
Uniyv. http.//asdal.snu.ac.



Variational problems for deformable bodies

a variational problem can be derived from a differential equation and the associated

boundary conditions...such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string
»The governing differential equation

d( dy)+pa)y+p 0---(A)
“dx | dx

+» The variational form

T(dy ?
5I = p’*y? +py——— dx=0---(B)
dx

’!':

. y=y, or T%:O---(B.l)
X
i.; the solution are different ?

it must satisfy (A) = if y renders the integral in (B) stationary
conversely,

if y satisfies (A) and end conditions . . . .

of the type required in (B.1) ———> it renders the integral in (B) stationary

|
the end conditions (B.1) or equivalently [T %54 =0
0

are so-called ‘natural boundary condjtions of the variational problem (B)

y: the displacement of a point from the axis of rotation

p: linear mass density
w : string angular velocity
T : magnitude of tension
. . . .. p: intensity of a distributed radial load
Innovative Ship Design - Elasticity
*Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172
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Variational problems for deformable bodies

a variational problem can be derived from a differential equation and the associated

boundary conditions...such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string

<+ The variational form (meaning of terms)

[E T(dyY _ Y
- %

5j;%pw2y —(g(%} —pyﬂdX=0---(B)

potential energy per unit length due to the radial force

N

potential energy per unit length due to the tension in the string, to a first approximation

2 2
kinetic energy of the T ds —dx -T { 1+ (d_y) _1} - ds = dx. [1+ (ﬂj

string per unit length dx dx

>

1(dy
:T{“_(_yj +..._1} < Taylor series
2

>

Innovative Ship Design - Elasticity

: ; . — .
*Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172 @‘%‘%Zﬁsm‘!’ SDAL
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ML iy, Advanced sfip, Design Automation Lab.




Linearization

If 0«1 YN

dx

2
ds® = dx* + dy* —ds = dx 1+(d_yj

dx
Iet,z=(d—yj2then, 1+(d_yj2: 1+z
dx dx
iE=stie \$ 1. 1( 1
f(0)=1 ;f(n:1+52+§{_sz+”.
f'(")%(“”; j% —if,0<1

3
5 1

R f(z) =1+ z1+%z

f«@:-%a+n‘

Innovative Ship Design - Elasticity
——— :
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The Rayleigh-Ritz method

Innative Ship Design - Elasticity
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The Rayleigh-Ritz method

general procedure for obtaining approximate solutions of problems expressed in
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

In the case when a function y(x) is to be determined,

- assuming that the desired stationary function of a given problem can be approximated by a linear
combination of suitably chosen functions, of the form

Y(X) = @, (X) + Ch (X) + C,¢8,(X) +--- + C ¢, (X)

where ¢k (X) , k = 0,1,....n: (basis) functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c’'s
C.(X) ,k =0,1,....n : constants to be determined

Recall, * 3 5
i X X
iI Edit ie Insert Tools Window Help CIBEX ex )Sln X=X——+——-- .,
DEEH&S KA A/ 220 31 51
A
| X
il 3 5
2l X X
| R
o 3 5
b .
[ sin X
3|
s 3
B \ X
Ipnqvati\- e e ) 3'

 *see also Larson R., Hostetler R.P., Edwards B.H., Calculus with Analytic Geometry, English Edition, Houghton Mifflin Company, 2006, p679 example 2
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The Rayleigh-Ritz method

[general procedure for obtaining approximate solutions of problems expressed in 1

variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

In the case when a function y(x) is to be determined,

- assuming that the desired stationary function of a given problem can be approximated by a linear
combination of suitably chosen functions, of the form

Y(X) = ¢y (X) + C¢ (X) + Co0,(X) + -+ + C @, (X)
where ¢k (X) , k = 0,1,....n : (basis) functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c’'s
C, (X) 'k =0,1,....n : constants to be determined

Example : the problem of determining small static «=0 deflections of a string fixed at the points (0,0)
and (I,h) , p(x)=-ax/I and subject to a transverse loading

w=0
corresponding variational problem p(x) =—qx /1

5][ Ty +q= y}dx 0o <J 51{—‘1.5%2(%)2}’“0 - 5]{ pa’y +py——[%j2}dx=0---(8)

y=y, or Tﬂzo---(B.l)
dx

recall, the variational form

" whi )
YO 90, y()=h  Voieh Tt ond points

Innovative Ship Design - Elasticity

2 Seoul
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The Rayleigh-Ritz method

general procedure for obtaining approximate solutions of problems expressed in
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

In the case when a function y(x) is to be determined,

- assuming that the desired stationary function of a given problem can be approximated by a linear
combination of suitably chosen functions, of the form

y(X) = @y (X) + €4 (X) + C,00, (X) + -+ + C 4, (X)
where ¢k (X) ,K=0,1,....n : functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c's
C, (x) 'k =0,1,....n : constants to be determined

Example : the problem of determining small static «=0 deflections of a string fixed at the points (0,0)
and (I,h) , p(x)=-ax/I and subject to a transverse loading

variational problem 5]{ Ty? +q= y}dx 0 ,y(0 90, y()=h }

(

The function % (X) then is to satisfy the end conditions, whereas the other coordinate functions
@ (X),4,(X),---,¢,(X) are to vanish at the both ends.

If polynohmials are to be used, for convenience, among the simplest choices, the functions are
H() =% A(X)=x(x=1), ¢,(x) = X*(x=1), ., (x) = X" (x = 1)
Which correspond to an approximation of the form

y(X) zlﬂx+c1x(x—I)+czx2(x—l)+---+cnx”(x—l)

Innovative Ship Design - Elasticity

Un/V http.//asdal.snu.ac.
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The Rayleigh-Ritz method

[general procedure for obtaining approximate solutions of problems expressed in

variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

In the case when a function y(x) is to be determined,

- assuming that the desired stationary function of a given problem can be approximated by a linear
combination of suitably chosen functions, of the form

y(X) = @y (X) + €4 (X) + C,00, (X) + -+ + C 4, (X)
where ¢k (X) ,K=0,1,....n : functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c's
C, (x) 'k =0,1,....n : constants to be determined

Example : the problem of determining small static «=0 deflections of a string fixed at the points (0,0)
and (I,h) , p(x)=-ax/I and subject to a transverse loading

variational problem 5]{ Ty? +q= y}dx 0 ,y(0 90, y()=h }

(

h
y(X) zl—x+c1x(x—l) +C,X (X = 1) +---+¢ X" (x=1)
For simplicity, we consider here only the one-parameter approximation, n=1

?
h @. can it be the solution
y(X) = —x+cx(x—1) of the relevant
| differential equation?

X
I

Ty"—q==0 ,y(0 90, y(I)=h

Innovative Ship Design - Elasticity
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The Rayleigh-Ritz method

general procedure for obtaining approximate solutions of problems expressed in
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

In the case when a function y(x) is to be determined,

- assuming that the desired stationary function of a given problem can be approximated by a linear
combination of suitably chosen functions, of the form

y(X) = @y (X) + €4 (X) + C,00, (X) + -+ + C 4, (X)
where ¢k (X) ,K=0,1,....n : functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c's
C, (x) 'k =0,1,....n : constants to be determined

Example : the problem of determining small static «=0 deflections of a string fixed at the points (0,0)
and (I,h) , p(x)=-ax/I and subject to a transverse loading

skt r [ h
variational problem 5]{ Ty2 + g% y}dx 0 ,y(0 20, y() = h} My(X)zI—X+C1X(X—I)

(

5]; {%Ty'z + qlly} dx = 5J‘OI {%T (Iﬂ +C,(2x - I)J + q%(?x +CX(X — I)ﬂ dx

Innovative Ship Design - Elasticity
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The Rayleigh-Ritz method

variational problem

(

o3

ZTy? +qly

| }dx 0 ,y(0 90, y(I) = h}

1, X
5J'0{5Ty ? +q|—y}dx:5

)

2
=5 %T (Iﬂj X + 2C —(x —Ix) +c? (—x —2x2I+I2x)j+q (
1_(h? h1
=0| =T|—+¢, |3 21% +1 —ZP+c (=l
ST ( + )J+ql(l3 ¢y (
2
_s| it h—+£|3C1 +q(nl—c—l3j
2 | 3 2 12

| 2
ol
of 2

T +c(2x—I)J I ($x+c1x(x—l)j

ET{ n 2c1|ﬁ(2x—|)+cf(4x2 _axl + 1)

replacing y(X) = IDX +CX(x—1)

dx

+ q%(lﬂxz +c (x> - Ixz)ﬂdx
+c (—x - xs)ﬂ

hl
—=x
I 3

0

1., 1,
4 _EI)B

L 1I‘°’2c 5¢, —q-— 1 I°sc, | ,since here only c, is varied
2 3 12

Elasticity

Innovative Ship Design -
B T

1
TZc,—q—
=075

:.3( 1

e j&cl , since c, is arbitrary
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The Rayleigh-Ritz method

[general procedure for obtaining approximate solutions of problems expressed in

variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

In the case when a function y(x) is to be determined,

- assuming that the desired stationary function of a given problem can be approximated by a linear
combination of suitably chosen functions, of the form

y(X) = @y (X) + €4 (X) + C,00, (X) + -+ + C 4, (X)
where ¢k (X) ,K=0,1,....n : functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c's
C, (x) 'k =0,1,....n : constants to be determined

Example : the problem of determining small static «=0 deflections of a string fixed at the points (0,0)
and (I,h) , p(x)=-ax/I and subject to a transverse loading

skt r [ h
variational problem 5]{ Ty2 + g% y}dx 0 ,y(0 20, y() = h} My(X)zI—X+C1X(X—I)

(

Innovative Ship Design - Elasticity
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The Rayleigh-Ritz method

general procedure for obtaining approximate solutions of problems expressed in
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

Example : the problem of determining small static »=0 deflections of a string fixed at the points (0,0)
and (I,h) , p(x)=-ax/I and subject to a transverse loading

e e )
variational problem

L 5][ Ty'? +q— y}dx 0 ,y(0 90, y(I)=h

J/

h _ SRV B
y(x)~|x+clx(x ) — iy(x) Ix+4_|_x(x )

(approximation)

?':
€. what about the 1 X o[ O 0
LJ.; differential equation? 't F = ETy’Z +0—Y then, by the Euler equation —~_ F |- 5 F=0

| ' ox\ oy’

8 8 1 /2 X a 1 12 X

— =T Zyll-=|=T Zyl=0

ax(ay'(z g +quD ay(z g +quj =
0 X
—(Ty")-q==0
Gx( y) qI

Tyﬂ_qﬁzo

Innovatlve Shlp Design - Elasticity
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National Advanced Sh/p Desi fgn Automation Lab, 35/183
Uniyv. http.//asdal.snu.ac.



1 o ayleigh-Ritz solution: %) =y Lyl
SO'UtIOh Of D.E. . IntegratIOn Rayleigh-R I Y(X) =X+ x(x =)

4 X
Ty —q|—=0 ,¥(0 90, y(I)=h
Integration twice
y' =0z ¥(©) =0
y(0)=D
y': 9 X2+C D=0
271
y -9 v icx+D
6Tl
h y(h=h
q,2
y(l)=—1°+ClI
y:ix3+hx—ilx af
6TI I 6 i|2+CI :h
q 6T
> y=—X+—x(x2-1? _h_a
Y= e X C=1 e
Ingrlg\‘/itiv h_ip Design - Elasticity
: £ ....:—_' =- R
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1 o ayleigh-Ritz solution: %) =y Lyl
SO|UtIOn Of D.E. . IntegratIOn Rayleigh-R I jegi= s e )

4 X
Ty _qT:O ,¥(0 90, y()=h
Homogeneous Solution Nonhomogeaeous Solution Y=Y, +Y,=C +CX+ %)@
y'=0 Y=g
— AX y(O) =C, = O

By =€ try y = A+ BXx 1 q
then it is associate with Y, y(l)=cl+—1"=h
12Te™ =0 then, Let’'s assume particular solution as e h g |

e Uy — -
. 22 =0 (double roots) y = AX+ BX? I 6T

it is also associate witl, e (h—il)x +ix3
y,=C | 6T 6Tl
So, Let's assume particular solution as
Yo =Cx Ax? + Bx® or y="y4d X(x* —17%)
y=AX"+BX ST
-y, =C,C +C,Cx y"=2A+6Bx
=C, +C,X A=0
B4
6Tl
Ir![laq\l/ative 5_th Design - Elasticity _ @
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° Raﬁlgh -Ritz solution: y(x)——x+—x(x 1

Solution of D.E. : series soluti T

14 X
Ty —qT=0 ,y(0 90, y(I)=h

assume y(X) = ZCan y(|) =h
__9
Y(X) Zn CX y(l)—6_|_|| +C1I
y(0)=0 q.,
y"(x)=> n(n-1)-c,x"? y(0) =c, G_T' P =l
n=2 5.C, =0
U ° .'.CI:IE—GiTI
TZn(n—l)-cnx”‘Z—%x:O
T(2-1-c2x°+3-2-03x1+4-3-c4x2+---)—ng:0
(T-2-1-c2)x°+(T-3-2-c3—%jx1+(T-4-3-c4)x2+ =0
q V
¢,=0,c,=0,c.=0,--- ,C;=— A,
2 4 5 37 BT — Y(X) =c,x° +c X' + TIX .,.y:(ﬂ_i jx 9 s
| 6T 6Tl
=Dx+ix(x2 1?)
| oTl

[ ¥ Nationai @ Advanced Ship Des. kqn Automation Lab. 38/183
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The Rayleigh-Ritz method

general procedure for obtaining approximate solutions of problems expressed in
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

Example : the problem of determining small static »=0 deflections of a string fixed at the points (0,0)
and (I,h) , p(x)=-ax/I and subject to a transverse loading

Variatlonal problem 5j { Ty +q-— y} dx=0 ,y(0 90, y()= h}
h h q
y(x)sz+clx(x—I) —> y(x):l—x+ﬁx(x—l) <
(approximation) 7:
lefLerentlaI Equation i q|§ 0 (0 90, y(I)=h } (i; what .cs;g:mirs?ce or
h
(exact solution) y= I_X + %X(X - I ) < 'E

@. what happens if we
use two-parameter
approximation?

Innovatlve Shlp Design - Elasticity
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The Rayleigh-Ritz method

Differential Equation

" X
[ Ty _qT:

(exact solution)

,¥(0 90, y()=h }

y(X) zlhx+clx(x—l)

Variational problem

[SI[ Ty? +q= y}dx 0 ,y(0 90, y()= h}

D

h ¢ 3
X)=(———DXx+—x
o) = (=5 5m
y(0)=0
y(1)=0
QET
same Vv
_h_q13° _h g _
2 6T24 2 16T X=

alues at

o1
2

(approximation solution)

LV
y(x)_|x+4Tx(x )

y(0)=0
y(1)=0

2
fi2-2
2 2 16T

basis functions (from characteristic equation)

1 x

which satisfy the homogeneous equation

y”:O

Elasticity

Innovative Ship Design -
e - -

basis functions (with assumed coefficient)
h
T X, X(x-=1)

which satisfy the boundary conditions

,¥(0 90, y()=h
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The Rayleigh-Ritz method

varlLatlonaI problem 5][ Ty,z+q| y}dx 0 ,y(0 90, y()=h

replacing

<—

5J.0| [%Ty'2 + qléy}d #5_[(: {%T (IDJrcl(Zx—l) +c2x(3x—2l)j + qlé(lhx+clx(x—l) +c2x2(x—l)ﬂd

2
h x3

2
(Tj x+cf(%x3—2le+I2x)+(:22(%x5—3x4l+%I2x3)+201|D(x2—Ix)+2clcz(%x4—%lx3+l X?)+2c, ID(X —Ix )J+q (I 3

(J I+c( 1° =21 +13) +¢,? ( 15 -31° + —I)+2c—(|2—l )+2cc( 14— 3 1441 )+20(I3—I)J+q [h|;+c(|4 '4)

1_(h? 1 2 1 I E 4
=8| =T|—+c =P+, =P +cc,=1* |[+q| h=——¢,—-¢c,—
2 |\ 1753 2 150 1483 437491 %%

3 4
= (clT %|3§c1 +c,T % I°s¢c, +¢,T %|45cl +c,T é|45C2)+ [—q1|2§c1 - qé()&cz}since here only c,andc, are varied

=’ [cl %T +CZ%|T —112qj501 +1* (cz %IT +01%T —Zloq)(ic2 ,since c,,c, are arbitrary

=0
1. 1. 1

fgT4e, 2T ==

a3 "% Tt
1 2 1 q q
=T +6,—IT =—-q, LG =1, g ==L

“6 "“15 20" “Ter e y(x)~bx+ 9 x(x—1)+ (I 2(x—1)

| 6T 6IT

y(X) zlnx+clx(x—l)+c2x2(x—l)

2
:5I;{1T[(Tj +C7(4x2 —4xI +17) +¢,2(9x" -1 )él+4I2x2)+2c1$(2x—l)+2c1c2(6x3—7Ix2+2I2x)+2c2|D(3x 2Ix)J+q (hx +¢,(x° = 1x?) + ¢, (x* —Ix )ﬂ

|
N X3 X5 x*
SANRILY CA AN P A A
1)+ 6 4)H

0

(—'S)H
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The Abbreviated Procedure

differential equation variational problem
d dy) ax ! i(Tﬂ)_% oydx —— ¢ I[1Ty’2+qu}dx:0 ,Y(O 2)0, Y(l):h
a3 = (A8 = i
integrating by part approximation
multiply 5y and integrate and two end conditions \l/ y(X) ~ IDX N 01X(X B |)

approximation

h integration and then variation
X) ® —X+CX(x -1
Y(X) = TX+ex(x=1)

[ X
6_[0[2Ty2+qu}dx:0
| I X o1 (h : Xx(h
5.[0[2Ty +q|y}dx_5.[0|:2T(l+c1(2x—l)j +q|[|x+clx(x—l)ﬂdx

- 5-[0' {;T ((Tj ! chTh(ZX —D+ci(ax* —axi + |2)J + Q%G x*+¢,(¢ - Ixz)ﬂdx

variation and then integration $
(the abbreviated procedure)

LH&(T (T+ cl(g —1)]]—%} X(x— I)5c1}dx -0 >

I gx B _ _ , :
IO (ZTCl_I_jX(X o, |dx =0 —s5|ir h X+ 2¢ h(xz—lx)+c2(ix3—2le+I2x) +q} DEx3+cl(1x4—lx3)
iyt 2 (I "l ! I3 4 3 7))
1_(h 4 1(h1 1, 1,
501.[0'(2T01(X2—|X)—%(X3—|X2)jdX=O =0 ZT[I+C]_2(3|3_2|3+|3)]+q|[|3|3+Cl(4| —§| )n
1_(h* 1 h 1
601(Tcl(—lls)+il3j=0 this procedure =9 ZT(|+3'3ij+q(2|_°112|3n
3 2 frequently involves a .
reduced amount of =(%T%I32cl§cl—qﬁl36clj ,since here only c, is varied
q calculation
C,=—0
Lot = I{T%cl—qéjﬁcl , since c, is arbitrary
the abbreviated procedure cF%

Innovative Ship Design - Elasticity
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The Abbreviated Procedure

.[0I [di(-r %j o %j 5y dX apprOXImatlon
’ ” y(x) = x +ex(x—1)

i

&ZI_+C1(2X 1) sy =x(x-1)dc,

A

J‘;K%(T ID+C1(2X_1) j—%}x(x—l)&cl dx=0

X KZTCl _ %} x(x—1)dc, |dx =0

| R 3 i _
LKZTQ(XZ_IX)——? (X3_Ix2)j5c1 dx=0 5C1(2Tc =l __|) ( | 5 ))—O
- _1 3 g s _
5C1J.;(2Tcl(x2_IX)—?(X3_Ix2) dx =0 501(Tc1( 3| )+12| J 0
—_— 1 .', Clzi
§C1K2Tcl(;xa——; Ix2)—|ﬂ(zx4—|§x3)ﬂ =0 4T

]

e Seoul S
1 ¢ National Advanced Ship Desi fgn Automation Lab. 43/183
= Univ. http.//asdal.snu.ac.
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Strain Energy
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Strain Energy

When a body is deformed by external forces, work is done by these
forces.

The energy absorbed in the body due to this external work is called
strain energy.

If the body behaves elastically, the strain energy can be recovered
completely when the body is returned to its unstrained state.

Innovatlve Shlp Design - Elasticity

reference : Chou.p.c, Pagano N.J., Elasticity , d. van nostrand, 1967
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Strain Energy

When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy due to a uniaxial stress u :displacement
(3/2" y] _ ax |
D C
D C dy
d
A 4 A B
dx B dx

o =53 S 7

FEMY, Seou SDAL
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Strain Energy

When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy due to a uniaxial stress u :displacement
u+—adx
(ﬂ y/l\ < dX > < ax >|
deformation ‘
D C D’ C’
D ; C dy o < i
A y A B A B’
dx B . dx ‘
< 0 >
X

Innovative Ship Design - Elasticity
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Strain Energy

When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy due to a uniaxial stress u :displacement
ou
u+—adx
(ﬂ y/l\ < dX > < ax >|
deformation ‘
D C D’ C’
D ; C dy o < i
A y A B A B’
dx B _dx ‘
< 0 >
X

on the plane DA, the stress vector acts in the opposite direction of the displacement U

the work done by O on DA is negative
‘no contribution is made to the strain energy

the work done by 0 on BC is positive EYV andW as Oy and0, are assumed to
e zero
the normal stress O increase from zero to O,
Innovative Shi-p Design - Elasticity
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‘no contribution is made to the strain energy
by Vandw as 0, and0, are assumed to

Strain Energy e

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy due to a uniaxial stress u :displacement

ou

on thg plane DA,. the stress vector acts in the opposite A Cdx u+&dx )
direction of the displacement < "1 ¥ deform g

_ . D C ation D C’
the work done by & on DA is negative dy o o
the work done by 0 on BC is positive A B A’ B’

<« O R

the normal stress O increase from zero to O, ° U g

the net work done on the element

[” " od (u +6—udxjdydz— " cdudydz
o=0 ax o=0

= """Xa(duma—“dx—du]dydz

Jo=0 5)(
[ od M dxdydz
Jo=0 ax

Innovative Ship Design - Elasticity
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‘no contribution is made to the strain energy
by Vandw as 0, and0, are assumed to

Strain Energy e

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy due to a uniaxial stress u :displacement

ou
on the plane DA, the stress vector acts in the opposite A dx u+&dx
direction of the displacement ) *|“ deform >
_ . D C ation D C’
the work done by & on DA is negative dy o e
the work done by 0 on BC is positive A B A’ B’
<« O R
the normal stress O increase from zero to O, ° U g )
the net work done on the element
J-a=ax odlu+ 5_U dx |dydz — o adudydz 5_U = ¢ definition of strain
=0 OX o=0 OX
co=0, ou — 2 Hooke’s |
(77 00 2 S
Jo=0 aX
ou 1
o=o 1 d (— - —do
= — o do dxdydz B
o O':0 E y aX E
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Strain Energy

‘no contribution is made to the strain energy
by Vandw as 0, and0, are assumed to
be zero’

When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the

body is returned to its unstrained state.

v'Strain Energy due to a uniaxial stress

on the plane DA, the stress vector acts in the opposite
direction of the displacement

the work done by & on DA is negative
the work done by 0 on BC is positive

the normal stress O increase from zero to O,

the net work done on the element
, which is equal to the strain energy dU

du=["" éadadxdydz

o=0

O
1 & = — :Hooke’s law
E

. dU = — & *dxdydz
2E

1 1 o
or dU = nggxdxdydz — EE(gfd)(dydz ’6% direction

Innovative Ship Design - Elasticity

u :displacement
ou

u+—adx
y % P dX P OX =
h "I deform -
D C ation D C’
a o €— >0
A B A’ B’
L dx .
< 0 >

ou
note that O, U, — are variables and
OX ou
the integration is with respect to the displacement gradient 8_
X

dx,dy,dz are constant for this integration

O,

j”:”*iadadxdydzzi[lazJ dxdydz
= E|2

0

_ 1 o, “dxdydz
2E

[ =53 S 7
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v'"Modulus of Elasticity ‘E’ & = EO'X

° g®z direction
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE, = —VEX

v'Modulus of elasticity in shear ‘G’ Vxy :Efxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy due to a uniaxial stress e, =%=Ad—o)|:( net displacement of
the net work done on the element on the element , Ifiq
which is equal to t]P-le strain energy dz e/
_ = 2 D |
du = P o, ~dxdydz 1s o,
dy :
The strain energy per unit volume, force
the strain energy densit A
( ay y) o dy dz dx B
1 1
Up = EO-X oru, = EJXEX work done by Uniaxial Stress
1
U,==E&’
2 X o, dy dz
For a linear stress-strain relation,
the force-displacement curve is a straight line and ‘ £ adx

the work done is equal to the area of the shaded triangle &, ax displacement

Innovative Ship Design - Elasticity
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Strain Energy

When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy due to the shear stress components 7,, and 7,, u,v:displacement

dx
N

—

o =53 S 7
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v'"Modulus of Elasticity ‘E’ &y = EO'X

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE, = —VEX
1

v'Modulus of elasticity in shear ‘G’ Vxy :Efxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy due to the shear stress components 7,, and 7,, u, v displacement

B y] dx
1 ov ou .
dU = 2 _(rxydydz) K& dxj +(z,,dxdz) (5 dyﬂ | D
- dy[
1 T, @+a—u dxdydz _l
2| \ox oy —
1 av ou

ZE(TXWXV)dXdde A o

The shear strain energy per unit volume, (the shear strain energy density)

2

UO—ET or U

~ o P =20
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v'"Modulus of Elasticity ‘E’ & = EO'X

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE, = —VEX
1

v'Modulus of elasticity in shear ‘G’ Vxy :Efxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy under the action of both &, and o, u, v :displacement
dz
Let the action take place in the following order D C |
Step Ox Ex Oy &y > O«
y dy ‘
(o2 o Vv
1 increase zero to O, 0—>—=* (Ty remains zero 0>-—o0, A
E dx B
2 | O remains constant 9x Ox YOy increase zero to O 9y o) > X
X E E y E / _
Z =y
\¥ IS ?
D C
-> 0,
y| |
a8,

Innovative Ship Design - Elasticity
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v'"Modulus of Elasticity ‘E’ & = EO'X

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE, = —VEX
1

v'Modulus of elasticity in shear ‘G’ Vxy :gfxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy under the action of both &, and o

Let the action take place in the following order

Step O, &, O'y gy
. O, . 1%
1 increase zero to O, 0—> E Gy remains zero 0— _EO-X
o,  9x"Voy ; Oy
2 | O _remains constant] — — ——— | increase zero to (Ty —
X E E E

The work done by O,

recall,
U :%axgxdxdydz _ Es2dxdydz =éaxzdxdydz

1 o |
dUl :E(Gxdde) Exdx i force
i o dy dz
— i O'dedde : work done by Uniaxial Stress
i o, dy dz
> g dX
: £, X displacement

Innovative Shi Design - Elasticity
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Strain Energy

® engineering elastic constant

v'"Modulus of Elasticity ‘E’ & =0,

v'Poisson’s ratio ‘v’

E
— — — O-X
&, =&, =—vE, =—V—>

v'Modulus of elasticity in shear ‘G’ Vxy :gfxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy under the action of both &, and o

Let the action take place in the following order

Step O, E O'y gy
1 increase zero to O'X 0->—= Gy remains zero 0—>—-—o,

o, — VO . to O O'y

i — incr zer —

2 eremalns constant E —> £ crease zero to y e

The work done by 0, recaII,
1 VO
dU, =—(o,dxdz )| - dy

=0

Innovatlve Shlp Design - Elasticity

du, = é oZdxdydz

U :%axgxdxdydz _ Es2dxdydz =éaxzdxdydz

force

o dydz

work done by Uniaxial Stress

o, dydz

> ¢ dx
g, ax

X displacement
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v'"Modulus of Elasticity ‘E’ & = EO'X

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE, = —VEX
1

v'Modulus of elasticity in shear ‘G’ Vxy :gfxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy under the action of both &, and o

Let the action take place in the following order

du, = é oZdxdydz

Step Oy Ey Oy &y du, =
Oy . 14
1 increase zero to O, 0— = Gy remains zero 0—>-—o0,
o — Vo . oy
2 i tant| = — y increase zero to O —
O, remains constan E E y =

The work done by T recaII,

U :%axgxdxdydz _ Es2dxdydz =éaxzdxdydz

force

1 o
dU3 :E(GdedZ) Edy
o dydz

1

_ O'ZdXdde E work done by Uniaxial Stress

o, dydz

> g dx

£, X displacement

X

Innovatlve Shlp Design - Elasticity
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Strain Energy

v'"Modulus of Elasticity ‘E’ & =0,

® engineering elastic constant

v'"Modulus of elasticity in shear ‘G’

v'Poisson’s ratio ‘v’ &

E
— — — O-X
y =&, = Ve =V

7xy :7Txy

G

When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the

body is returned to its unstrai

ned state.

v'Strain Energy under the action of both &, and o

Let the action take place in the following order

du, = é oZdxdydz

—VO

=(o,dyd !

dy, dx

—V

= o,o,dxdydz

Innovatlve Shlp Design - Elasticity

' o, =Cconst

: 1 —vo
v dU, 5 =(o.dydz J
: 4 O-X y )[ E

.

o} & _
Step GX ‘C"x y y du , =
O-X . 1 2
1 increase zero to O 0—— O',, remains zero 0Ob>—0o dU3 =—o.dxdydz
X E 4 — i 2E Y
o, — Vo (o
2 O  remains constant Ix T Ty increase zero to (Ty L
X E E E
The work done by o, =const | Il oo
- + the factor %2is not included since recall,

U :%axgxdxdydz _ Es2dxdydz =éaxzdxdydz

force

o dydz

work done by Uniaxial Stress

o, dydz

> ¢ dx
g, ax

X displacement

”“b Seoul
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v'"Modulus of Elasticity ‘E’ & = EO'X

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE, = —VEX
1

v'Modulus of elasticity in shear ‘G’ Vxy :gfxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy under the action of both &, and o

Let the action take place in the following order

du, = é oZdxdydz

Step O, &, Oy €y du, =
1 i to O 0— 2 O ., remains zero 00—V du L o dxdydz
x e _ =
increase zero to O, = y zero £ %x 2 =5 %y
o, — VO o) _
2 O _remains constant 9x ——-—2 | increase zero to Gy — du, = _Vo'xo'dedde
E E E E

Total strain energy accumulated in the element
dU =dU,+dU, +dU, +dU,

1 1 i
- (E o‘fdxddej +(0)+ [E ajdxdydzj + (E axaydxdydzj

i(O'f +0, —2vo,0, ) dxdydz

Innovatlve Shlp Design - Elasticity
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v'"Modulus of Elasticity ‘E’ & = EO'X

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE = _VEX

v'Modulus of elasticity in shear ‘G’ Vi = < Ty

Total strain energy accumulated in the element

du = é(af +0, —2vo,0, ) dxdydz

E " (_E 2 E E
(1_]/2 (&, +V8y)j +(1_V2 (¢, +V8X)j —2\/(1_ - (&, +V8y)j(l_ >
2
j [(83 +2ve,&, + v25§)+ (55 +2ve,¢, +vie’l ) — 2V(8X8y +vel + vej + vzgxgy )} dxdydz
—_I‘E/Z)z :gf +2ve,&, + V28§ + 85 + 2))},)(/5y +v2el —2/1/6{6‘)/ —2v%el — 21/235 — 2v3gxgy}dxdydz
E 1 2.2 2 .2 3
— @+ ve, e, HVve, t& +— 2vie, —2v sxey]dxdydz
(1—V ) - N |
E
14

(&, + vex)j dxdydz

N
"‘ m"“

m

T

<
N

N, NP NFE NP NP NN
~
=

N

<

|
- Y , recatl, ----------ooooeo e
— +(L-v)e, +2v(l-v)e,é, } dxdydz 6 Relations between 6 Strain and 6 Stress

In case of “Plane Stress State”, 0, =7 = O = 0

E -, ) i 5, 7(0_ 2(v +1)
= & +&E+2ve £ }dxdydz .
(1—V2) | X y X<y :

i &y Generalized Hooke's
= E (& tvee, +ei+vee ]dxd dz i g = (a +0,) Stes st
— (1_ V2) | X Xy y Xy y ' k

E ' Strain-stress relation for “Plane Stress State”
_ | E
= ) _ex(ex +ve ) +e, (e, +vgx)}dxdydz i o= 17 (5+ve)
| E
! o =_—V2(8y+V8X), 7y =Gy,
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v'"Modulus of Elasticity ‘E’ & =0,

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE = _VEX
1

v'Modulus of elasticity in shear ‘G’ Vxy :afxy

Total strain energy accumulated in the element

du = é(af +0, —2vo,0, ) dxdydz

E
—Vz)[gx (6, +ve,)+&,(s, + vgx)] dxdydz

1
2
1 e, —— (e, +ve )+e L(5 +ve, ) |dxdydz
2| v TS ) x

1_

2

1

2

| £,0,+¢,0, ] dxdydz

| 0,8, + 0,8, ] dxdydz

recatb,-----------------------mooo e
6 Relations between 6 Strain and 6 Stress

In case of “Plane Stress State”, 0, =7 = O = 0
XV+DT

&, (0'

&y = Generalized Hooke's
Law for “Plane
k‘c" —_ (O_ +o ) Stress State”

Strain-stress relation for “Plane Stress State”

E
o, =m(gx +vgy)

E
—_—Vz(gy+vex), Ty ZG}/xy

Innovatlve Shlp Design - Elasticity
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v'"Modulus of Elasticity ‘E’ & = EO'X

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE, = —VEX
1

v'Modulus of elasticity in shear ‘G’ Vxy :Efxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy under the action of both &, and o

Let the action take place in the following order

du, = é oZdxdydz

Step O, &y Oy &y du, =
1 i 0— 9x O ., remains zero 0 v dUu. = 1 2dxdvd
increase zero to O'X E y —> ——0, 3 _Eo-y xayaz
o —VOo . o =
2 ||o remains constant| ——>———> || increase zero to Gy — du, = —VO'XO' dxdydz
X E E E E y
recall, ~ T

'6 Relations between 6 Strain and 6 Stress

fln case of “Plane Stress State”, 0, =7,, = 7, = 0 \

XV+D

Total strain energy accumulated in the element

X

1

1

1

1

1

1

1

|

l 1

i &y E(O- TGenerallzed Hooke’s
1 Law for “Plane
E % (0' s ) Stress State”
|

1

1

1

1

1

1

1

1

1

1

1

1

1
1 ) ) £ E(O’
du :E(GX +o, —ZVGXO'y)dXdde

Strain-stress relation for “Plane Stress State”

LdU = %[Gxgx +0,¢, | dxdydz

E
(o =m(8x+vgy)

E
o =_—V2(6y+vgx), 7y =Gy,
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v'"Modulus of Elasticity ‘E’ & = EO'X

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE, = —VEX
1

v'Modulus of elasticity in shear ‘G’ Vxy :gfxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy under the action of both &, and o

Let the action take place in the following order

du, = é oZdxdydz

Step O, &y Oy &y du, =
1 i to O 0— Ix O’ .. remains zero 0> v dU 1 o-zdxdydz
“x e _ =
INCrease zero 10 X E y J‘.L E X 3 ZE y
— VO o) =
2 ||or_remains constant| —* —> ———¥ &Hincrease zero to Oy = du, = —VO'XO' dxdydz
X E E E E ’
=Y o= ] |

'6 Relations between 6 Strain and 6 Stress

fln case of “Plane Stress State”, 0, =7, = 7, = 0 \

ZV+D

Total strain energy accumulated in the element

1
&
=

du = %[ngx to,8, ] dxdydz

1

1

1

1

1

1

1

:

l 1

i &y E(O- Generalized Hooke’s

. . . i Law for “Plane

If we assume that the stresses are applied in a different order, we can ! s, (G +0,) Stress State”

i k

I

:

1

1

1

1

1

1

[}

[}

I

1

1

prove that the strain energy stored in a body will be exactly same.

Strain-stress relation for “Plane Stress State”

That is, the strain enerqy depends on the final state of the stress and _E
is independent of the manner in which the stresses are applied O =102 (e +vey)
E
o, =m(5y +Ve,), Ty = G}/Xy
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Strain Energy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'Strain Energy due to a uniaxial stress
1 dz
dU = — & “dxdydz D
2E |
y y
v'Strain Energy under the action of both O, and Gy [ :
1 VA
du = E[axgx +0,, | dxdydz 4
Y
v'Strain Energy due to the shear stress components z'xyand Tyx
1 d
du = E(Txyyxy ) dxdydz y

v'The Strain Energy stored in the element under a general three
dimensional stress system can be found in a similar way,

dU =%(0X O E,+0,6 TVt T,V Ty 7., )dxdydz

Innovative Ship Design - Elasticity
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Strain Energy

When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'The Strain Energy stored in the element under a general three dimensional stress system can be
found in a similar way,

1
dU = E(O'X Et O+ 0,8, Tyt 7,7t Ty 7, )dxdydz

v'The Strain Energy Density

1
U, =§(GX8X +0,6,+ 0,6+ T Yyt TV, T, Vn)
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Strain Energy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'The Strain Energy Density under a general three dimensional stress system can be found in a
similar way, 1

U, =§(Gxgx + 0,6+ 0,6+ TVt T,V T, )
by using generalized Hooke's law,

it may be expressed in terms of
the stress components or strain components

6ﬁ?e/ations between 6 Strain and 6 Stress \ 6 Relations between fES” ain and g Stress E
1 2Av +1) ST wna—) > Y T
&, ==lo,~v(c,+c,)] | 5 = - @+v)1-2v)  (1+v) (v+1)
£ y = v c e B E
= z' =
£ zi[a —v(o,+0)] 7 _AvtD), = ) @) e
y T gty 2 X . E & vE E E
1 _ 2(V +1) o, = 1 1-2 e+ 1 & Ty =<V
N 5=clo,-vlo+o)l 7= " ) Seli=) s 2Av+1)

e=¢&,t&, +¢,
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v'"Modulus of Elasticity ‘E’ & = EO'X

)
(o
St ra I n E n e rgy ® engineering elastic constant v'Poisson’s ratio ‘v’ Ey =g, =-VE, = —VEX

v'Modulus of elasticity in shear ‘G’ Vxy :Efxy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'The Strain Energy Density under a general three dimensional stress system can be found in a
similar way, 1

U, =§(Gxgx + 0,6+ 0,6+ TVt T,V T, )

by using generalized Hooke's law,it may be expressed in  Relations between 6 Strain and 6 Stress

terms of the stress components s = % o, ~v(0,+a)] 7, - 2(VE+1) .
1 2(v+1)
gy :E[Gy _V(O-z +O_x)] 7ye ZTT)/Z
1 1 [ ( IR 2(v+1) .
&, =—|0,—Vv(0O,+O x x
U, :E(axgx + 0,8, + 0,8, + Ty ¥y + TV + Tnla) K E y E
1

=—| o, l[0'X ~-v(o, +0,)]+ o, l[O'Y -v(o,+0,)]+ o, l[0'Z —v(o, +o,))]+ 7,
2 E E E
1

== l(0'2+0'2+O'2)—2—V(0' ,to00,t0,0,+0,0,+ 0,0, +0'0')+1(2' +2' + 172
2 E X Yy z E Xy

2(VE+ 1) I+t 2(VE+ 1) s 2(VE+ 1) szj

111 2v 1 2 2
U,=— G-i—G ‘+ o, -—(0,+0,0,+0,0,)+—(7,+7,+7T
0 2 E( ) E( ) G( yz zx)
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® engineering elastic constant

Strain Energy

v'"Modulus of Elasticity ‘E’ & = EO'X

o)
vPoisson’s ratio v’ £, =&, =—VE, = -v—=

v'"Modulus of elasticity in shear ‘G’

7xy :E‘[xy

When a body is deformed by external forces, work is done by these forces.

T 2Av+l)

vE

T (Lrv)1-2v)

The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the

body is returned to its unstrained state.

v'The Strain Energy Density under a general three dimensional stress system can be found in a

similar way, 1

U, =§(Gxgx + 0,6+ 0,6+ TVt T,V T, )

by using generalized Hooke's law,it may be expressed in

6 Relations between 6 Strain and 6 Stress

vE E
terms of the strain components T na-20) @)
o, = vE e+ E &
o@+v)@-2v)  @Q+v) ?
1 o, = vE e+ E g,
@+v)a-2v) (@1+v)

UO :E(O'xgx + Oy¢, +0,¢+ Ty Vxy + Ty Vv i TZX}/ZX)

e=& +&, +&,

:%((ieJrZng)gX +

1
:E(ie(gx +é&, +&,)+2G(g’ +g§ +522)+G(7fy +7/§z +722x))

1
“Ug =2 (46" +26(57 + 27 +8)) + Gy, + 77, +72))

Elasticity

Innovative Ship Design -

”“b Seoul

Txy =
Tyz =

T =

(Ae+2Ge, )&, + (Ae+2Ge, )&, + Gty + G 1ty + G

E
WDy
E
2Av+1)
E
2w+l >
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° v'"Modulus of Elasticity ‘E’ &, =E0'x G =
- | o, 2Av+1)
ra I n n e r ® engineering elastic constant vPoisson’s ratio v' £, =&, =—VE, =—V—-
1E vE
v I (o . e
Modulus of elasticity in shear ‘G Yy G (1+ V)(l— 2V)

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'The Strain Energy Density under a general three dimensional stress system can be found in a
similar way, 1

U, =§(Gxgx + 0,6+ 0,6+ TVt T,V T, )

by using generalized Hooke’s law, 6 Relations between 6E5tra/'n and g Stress E
it may be expressed in terms of o, =—— e+ £y | Ty Sty
@+v)@-2v) (@+v) 2(v+1)
the stress components £ E
B — O'y = 4 e+ Ey T . = E /4
1 2v 1+v)@-2v)  (1+v) oAv+D T
(o} + 0o, +G)——(O'(7+GG+G(7) vE E £
1 E E o, = e+ & 1 =
Uo _ - A+v)1-2v)  (1+v) % = o +1) £
2 1 —
+=(7,g + T, + T, =6 & T e,
G ]
- Il
Gﬁi’e/ations between 6 Strain and 6 St\reés \
in terms of strain components
p & = _[O-x _V(O-y +o—z)] 7xy Z@TW
1
. 2 2 2 2 2 2 2 1 2(v +1)
UO —E(ﬂde +ZG(8X +‘9y +€Z)+G(]/Xy +7/yz +7/zx)) 5y=E[‘7y_V(Uz+Ux)] T =" Tn
_2Av+])

1
K 82 = E[O-z — V(O-x + O-y )] 7ZX - E TZX /

% 2 Seoul
National Advanced Sh/p Desi fgn Automation Lab, 10/183
Uniyv. http.//asdal.snu.ac.
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v'"Modulus of Elasticity ‘E’ & = EO'X

G =
: o . o 2(v+1)
ra I n n e r ® engineering elastic constant vPoisson’s ratio v’ &, =&, =—VE, = e
1E vE

v'"Modulus of elasticity in shear ‘G’ Vxy :Efxy = (1+ V)(l— 2V)

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'The Strain Energy Density under a general three dimensional stress system can be found in a
similar way, 1

UO :E(Gxgx + O-ygy + 0,8+ z-xyj/xy + Tyz?/yz + szj/zx)
in terms of the stress components

UO :%{%(ze + Gyz + O_zz)_ZEV(GxGy + GYGZ + Gzax)+é(z-x§ * Z-yi T z-z>§):|

in terms of strain components

1
U, :E(ﬁe2 + 26(55 +g§ +822) +G(7fy +)/§Z +7/22X))

v'We observe that the derivative of U, with respect to any stress components is equal to the
corresponding strain component, and the reverse is true, i.e.,

oJ 0 (O-x ’ Gy ey Ty 1 i 2 _ 2_V ( 4 ) /6 Relations between 6 Strain and 6 Stress \
O, £ O y o,

an 2 E &= _[O-x - V(O-y + o, )] 7xy = —Z(VE+ 1) Txy
=—[o,-v(c,+0)] 7y =¥7yz

_ 2A(v+1)

1
\ 82 = E[O-z — V(O-x + O-y )] Vax E sz

o =53 S 7
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° v'"Modulus of Elasticity ‘E’ &, =E0'x G =
- | o, 2Av+1)
ra I n n e r ® engineering elastic constant vPoisson’s ratio v' £, =&, =—VE, =—V—-
1E vE
v o i . e
Modulus of elasticity in shear ‘G Yy G (1+ V)(l— 2V)

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'The Strain Energy Density under a general three dimensional stress system can be found in a

similar way, 1
UO :E(Gxgx + O-ygy + 0,8+ z-xyj/xy + Tyz?/yz + szj/zx)

in terms of the stress components

Uozl{é(a +0,°+ 0, )—ZEV(GG +GG+GG)+%(T —l—ry§+rzi)}

in terms of strain components

1
U, :E(ﬁe2 + ZG(gf +g§ +822) +G(7fy +)/§Z +7/22X))

v'We observe that the derivative of U, with respect to any stress components is equal to the

corresponding strain component, and the reverse is true, i.e., B A s o 6 G e G S
oJ,(e,, & y.) 1 o= VB, B o i --F
0\"x» Tyt Aixz/ =~ ) CAv)A-2v)  @+v) Y 2w+ 7Y

— =—(426+2G-2z,) L RS T
X -2 @) e

_ vE E E
(ﬂ'e+ 2Ge ) 62_(1+v)(1—2v)e+(1+v) |17, :m%x

_ ,e:<9x+gy+gZ
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Strain Energy

When a body is deformed by external forces, work is done by these forces.

The energy absorbed in the body due to this external work is called strain energy.

If the body behaves elastically, the strain energy can be recovered completely when the
body is returned to its unstrained state.

v'The Strain Energy Density under a general three dimensional stress system can be found in a
similar way, 1
UO :E(Gxgx + O-ygy + 0,8+ z-xyj/xy + Tyz?/yz + szj/zx)

in terms of the stress components

U,=—= {é(a +0,°+ 0, )—ZEV(GG +GG+GG)+%(T —l—ry§+rzi)}

in terms of strain components

1
U, :E(ﬁe2 + 26(55 +g§ +822) +G(7fy +)/§Z +7/22X))

v The total Strain Energy absorbed in an elastic body is found by the integral

U :Ujuodxdydz
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Principle of Virtual Work

v'Virtual Displacement
a particle which is acted upon by a system of forces, assume the particle is at rest

: the resultant of all the forces acting on it is zero
F.. Y F=F+F,+F,+F, #0
a

F Fy l
Y F=R+F,+F,=0 < - \:
O
3

F,

if we want to move this particle to a new position or to give it a
small displacement, additional force is required and the original
force system must be altered

F
1 now, we shall consider a “virtual displacement” , defined as an
F arbitrary displacement which does not affect the force system
ZF FR+F,+F=0 acting on the particle
/ 5r during the process of it each of the forces acting on the particle

remains constant in magnitude and direction

v'Virtual Work
the work done by the forces acting on the particle during a virtual displacement is called the virtual/

work : _the virtual work done is zero if the particle is in equilibrium, since the resultant force vanishes

(F,+F, +F,)e6r=0 (F,+F,+F,+F,,)edr£0

Innovative Ship Design - Elasticity
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Principle of Virtual Work

v'Virtual Displacement

a particle which is acted upon by a system of forces, assume the particle is at rest
: the resultant of all the forces acting on it is zero

F
F,

Y F=FR+F,+F,=0 «
F3

=

Y F=F+F,+F,=0

Vs

3

a "virtual displacement”, defined as an arbitrary
displacement which does not affect the force
system acting on the particle

during the process of it each of the forces acting
on the particle remains constant in magnitude and
direction

Innovative Ship Design - Elasticity

v'Virtual Work

the work done by the forces acting on the particle during a

virtual displacement is called the virtual work :

the virtual work done is zero if the particle is in equilibrium,

since the resultant force vanishes

(F,+F,+F,)esr=0

it is also evident that

if the virtual work vanishes, the force system acting on the

article must be in equilibrium

ﬂ\ the case of single rigid particle, it is easy to write the equilibriumx

does not contribute much to the problem.

equations governing the forces, and it seems that the virtual work

For more complicated problems, however, it is sometimes

more convenient to require the virtual work corresponding to

solve the equilibrium equations

a certain virtual displacement to vanish than to write down and

/

E:"'% 2 Seoul
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Principle of Virtual Work

v'Virtual Displacement / Strain Field
in discussing the principle of virtual work for an elastic body, we must introduce a virtual
displacement field and virtual strain filed

au=d(X,Y,2), W=dN(XY,2), Ww=3W(X,Y,Z)

o¢, =0e,(X,Y,2), d¢, = d¢,(X,Y,2), 6¢, = 0¢,(X, Y, 2),
57/xy — 57/xy(x’ y’ Z)’ 57/yz = é‘}/yz (X’ y’ Z)’ 57/zx — 57/zx(xi y’ Z)

all of which take place after the body has reached its equilibrium configuration

We define the virtual strain components in a manner analogous to the definition of real
strain components

ou 0 0 0
oe, =0| — |=—(du), og, =—(0V), o¢, =—(oW),
5o 2Ly, a5, = 20, 35, = (0w

0 _0 o _0 o
(5u)+&(§v), Oy, = & (ow) + P (0V), Oy, = (ou) + E (ow)

_8
6y ox ) oy

”“b Seoul
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The commutative properties of the 6-process

The modified function f(x)
can be written making use of
the variable parameter &

f(x) = f(X)+ed(X)
Sy = f(x)— f(x)=ed(x)

=100

£(x)

*The derivative of the variation

d S— d , =
ol ——[ FOO— 1) | =—[2¢(0]=2¢' (%)
_ d
*The variation of the derivative . &53/ = 5& y

5% y=| T00-1'(x) |=(F'()+e¢) - F/(x) = 4'(X)

Innovatlve Shlp Design - Elasticity
R 4 e —

Lanczos C., The Variational Mechanics, Fourth Edition, Dover, 1970, p56-57
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Virtual Work in Elastic Body

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Consider an elastic body subjected to a force system causing actual displacement U,V, W
then let the body be subjected to a virtual displacement field with components Su, Sv, ow

in order to determine the virtual strain energy, we first consider the virtual work done by O,

< dx >

we are not concerned with the work done while the actual

[ 1 displacements occur; we assume that U,V and W occur first and

| | following this we imagine that the virtual displacement components

| | are applied

O, < — o
5 _: | 5 recall “all of which take place after the body has reached its equilibrium

configuration”

I I

: J

A —> o ke sus M ax

OX

o =53 S 7
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Virtual Work in Elastic Body

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Consider an elastic body subjected to a force system causing actual displacement U,V, W
then let the body be subjected to a virtual displacement field with components Su, ov,ow

&

dx

7|

i
o, 4
I

we are not concerned with the work done while the actual displacements occur; we
g assume that U,V and W occur first and following this we imagine that the virtual
| displacement components are applied

> o

| the virtual work done by O, is therefore,

S >l

<

léé‘u+@dx

x o 5u+a(;ﬁdx dydz-o (Su)dydz
X

X

=0, gou dxdy dz
OX
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Virtual Work in Elastic Body

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Consider an elastic body subjected to a force system causing actual displacement U,V, W
then let the body be subjected to a virtual displacement field with components Su, ov,ow

< dx—> we are not concerned with the work done while the actual displacements occur; we
r g assume that U,V and W occur first and following this we imagine that the virtual
| | displacement components are applied
o, <|—| ﬁ o, a§u
! | the virtual work done by O, is therefore, o @— dxdy dz
’ X
a-l ke ol ks Py
o the virtual work done per unit volume oU,
oou
U, =0, —
OX
ou
=0,0— =0, 08,
OX
. oU, =0,0¢,

o =53 S 7

KR s ENSDAL
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/The Strain Energy Density

Virtual Work in Elastic Body e A T

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Consider an elastic body subjected to a force system causing actual displacement U,V, W
then let the body be subjected to a virtual displacement field with components Su, ov,ow

< dx
~ oou
| 'i the virtual work done by 0, is o, a—dxdy dz
X
0'X<|—| I% o,
| | the virtual work done per unit volume oU,
a-sl e > Iéé‘u+—dx o, =o,0¢,

under a general stress condition it can be shown that the virtual strain energy is given by

oJ,=0,0¢, + o 55y +0,08, + Ty 57/Xy +7,, 5yyz +7,0V,

the total virtual strain energy

U = [[[ou, dxdydz

the factor Y2 is not included since stresses are constant
during the virtual displacement

1
U, (0'X gt o8, + 0,6+ T7ytT,7,+ Ty V)

Innovative Ship Design - Elasticity
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v'The Strain Energy Density

Virtual Work in Elastic Body o os s

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Consider an elastic body subjected to a force system causing actual displacement U,V, W
then let the body be subjected to a virtual displacement field with components Su, ov,ow

< dx
i oou
i L the virtual work done by O, is o ——dxdy dz
1 I OX
N P X the virtual work done per unit volume oU,
a-sl e > kanaa%’dx o, =o,0¢,

under a general stress condition it can be shown that the virtual strain energy is given by

oJ,=0,0¢, + o 55y +0,08, + Ty 57/Xy +7,, 5yyz +7,0V,
the total virtual strain energy

oU = j ” (GX o¢,+0o,06,+0,06,+7,,0y, +7,00, +7,00, ) dx dy dz
\Y

Innovative Ship Design - Elasticity

o =53 S 7
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Virtual Work in Elastic Body

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = H_[ (O'X 0t +0,06,+0,06,+7,,0y, +7,07, +7,00, ) dx dy dz
\

next, consider the virtual work done by the external work

The virtual work done by the surface forces is J (T,”du +Ty“§v+TZ”&N) dA
A

dA is an elemental surface area and the
integration is taken over the complete

boundary surface of the body recall,
Again, the factor of %2 is not present (DU L)
because the surface force are constant y
during the virtual displacement u _ .
? P T'< X =lo, +mz,, +n7,

T” Y =
y < Y=l +mo, +nz,

u 7 _
T < Z=Iz, +mz,No,

Specified Field

2 Seoul
National Advanced Sh/p Desi fgn Automation Lab, 83/183
Uniyv. http.//asdal.snu.ac.
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Virtual Work in Elastic Body ety

T, < Z=lr, +mz,no,

Specified Field

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = H_[ (O'X 0t +0,06,+0,06,+7,,0y, +7,07, +7,00, ) dx dy dz
\

Consider next consider the virtual work done by the external work

The virtual work done by the surface forces is J (T,”du +Ty“§v+TZ”&N) dA
A

dA is an elemental surface area and the integration is taken over the complete boundary surface of the body

Again, the factor of ¥ is not present because the surface force are constant during the virtual displacement
The virtual work done by the body forces is L (F ou+ Fyﬁv +F, ow) dVv

The virtual work done by the external forces

O = [ (T, Gu+T,"6u+T," w)dA+ [ (F,du-+F, 6 +F,dw)dA

Innovatlve Shlp Design - Elasticity
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Virtual Work in Elastic Body P

T, < Z=lr, +mz,no,

v'Virtual Work ;

OW : the virtual work done by the external (surface and body) forces
oW = (T u+T  6v+T," w)dA+ [ (F,du+F, o+ F,dw)dA
A Vv

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = ” _[ (0,08, +0,08,+0,08,+ 7,67, +7,,07,, + 7,07, ) dxdy dz
Y

= o,0¢, +0,08,+0,08, +71,,07,, +7,01, +7,07, |dxdydz
J yo oy y Yy y y

= I(ax og, + o, 55y +0,08, + Ty 57/Xy +7,, 57/yz +7,,07,, ) dVv
\Y

8 = | {JX%(au)my %(aw) o %(&v) ‘o, {%(5u)+%(5v)}+rﬂ E(&H%(&w)}fzx [g(éuh%(éw)}}dv

[o, 9 (su)dv
v OX

Innovatlve Shlp Design - Elasticity _
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Virtual Work in Elastic Body ety <

T/ < Z=l, +mz,no,
v'Virtual Work :
OW : the virtual work done by the external (surface and body) forces
O = [ (T 6u+T, 6 +T, ow)dA+ [ (Féu+F, év+F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = IH (0,08, +0,08,+0,08,+ 7,67, +7,,07,, + 7,07, ) dxdy dz
Y

oU = | {GX%(éuHay%(&vHaz %(5W)+rXy {%(5U)+%(5V)}+Tyz |:§(5V)+%(5W)}+TZX [%(5u)+§(5w)}} dv

V]

dx

|
o, 4
|
P léciH—dx

where, xz(y, z) and xl(y, z) are the equations of the right and

Oy

o o
let M = Vf axa(éu)dv = Vj | axa(éu)dxdydz

—_— o —

integrating by part
W=l ese=]]|
Vv

thus it may be written as we have dde = A,ux on X
M = jgxé‘u m dydz = —A/jx on X,

2 Seoul
National Advanced Sh/p Desi fgn Automation Lab, 86183
Uniyv. http.//asdal.snu.ac.
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[ ] [ ] [ ) . y \Y Normal to surface
Virtual Work in Elastic Bod R :
y Tf<vV= Iz, +mo, +nz,
T, < Z=lr, +mz,no,
[o) X

v'Virtual Work 2
OW : the virtual work done by the external (surface and body) forces
oW = (T u+T  6v+T," w)dA+ [ (F,du+F, o+ F,dw)dA
A Vv

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = ” _[ (0,08, +0,08,+0,08,+ 7,67, +7,,07,, + 7,07, ) dxdy dz
Y

oU = {GX%(5U)+Gy%(5V)+GZ %(5W)+rXy {%(5U)+%(5V)}+Tyz |:§(5V)+%(5W)}+TZX [%(5u)+%(5w)}} dv

0o, Y
OX

M = [0, 2 (su)aV = [ 0,0 s dA- [[[ 60
\% 8X A \Y

oU = I[(axyx +7, 4, +7, 14,)0U+ (Gy,uy +T M+ T, U)oV +(o,u, +7, 4, +7, 4,) OW]dA
A

0 0 0 0 1%}
—J g + L +aTZX ou+ Oy Pl | Oy OV + do; + L +(%ZX ow |dV
Vi ox oy

OX 0z

0z oy  OX

=)
FEhsY, Seoul SDAL
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Virtual Work in Elastic Body ety <

T, < Z=lr, +mz,no,
o

Specified Field

v'Virtual Work
OW : the virtual work done by the external (surface and body) forces
oW = (T u+T  6v+T," w)dA+ [ (F,du+F, o+ F,dw)dA
A Vv

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = ” _[ (0,08, +0,08,+0,08,+ 7,67, +7,,07,, + 7,07, ) dxdy dz
Y

8U = ([(o, , + T Myt T i) oU+ (o, + T 4 +T, 1,) N+ (0,0, + 7, 1, + 7, 4,) OW]A

A
3 0 0 0 or or
— 80X+ Txy+8fZX ou + Gy+ Txy+ Z 16V + 8aZ+ yquaTZX ow |dV
VIl ox oy 0z oy OX 0z 0z oy OX
aO-x aTXV asz
Txﬂzo-xﬂx+rxyﬂy+z-zxﬂz OX " 6y " 0z +FX:O

since, T/=o,u+rym+r,u, and 99y 07y 07, 4
y

“o_
Tz - O-zluz + z-yz luy +sz lux

M = (T ou+T, v+,  dwldA+ [ (Fou+ F, 6+ F,dw)dv

=)
FEhsY, Seoul SDAL
@ National Advanced Ship Desl/éqn Automation Lab, 88/183
d
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Virtual Work in Elastic Body ety <

T, < Z=lr, +mz,no,
o

Specified Field

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces

O = [ (T 6u+T, 6 +T, ow)dA+ [ (Féu+F, év+F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = ” _[ (0,08, +0,08,+0,08,+ 7,67, +7,,07,, + 7,07, ) dxdy dz
Y

8U = ([(o, , + T Myt T i) oU+ (o, + T 4 +T, 1,) N+ (0,0, + 7, 1, + 7, 4,) OW]A

A

. 0 0 0 0 0
— 00 + i + 0Ty ou + ! + i + i OV + o, + Ty + Oy ow |dV
VIl ox oy 0z oy OX 0z 0z oy OX

M = [ (T ou+T, 6+ T," Gw)dA+ [ (F,u+ F, 6+ F,aw)av

if the displacement components satisfy the
equilibrium equations, the virtual strain energy is
™, equal to the virtual work done by external force

Innovative

o
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v'The Strain Energy

Virtual Work in Elastic Body vl o e nn wmses

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces
oW = (T u+T  6v+T," w)dA+ [ (F,du+F, o+ F,dw)dA
A Vv

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = IH (0,08, +0,08,+0,08,+ 7,67, +7,,07,, + 7,07, ) dxdy dz
Y

= j[(O'X o + Ty My + T, pt,) U+ (O pty + T, g1, + T, 11,) OV + (0, 40, + 7, 1, + 7, 4,) SW]DA
if the displacement components satisfy the

oJ = J‘A (Txﬂ ou —I—Tyﬂ N —I—Tz'u &N)dA-I—L (FX o + Fy N+ Fz &N)dv equilibrium equations, the virtual strain energy

is equal to the virtual work done by external
force

Since the external forces are unchanged during the virtual displacement and the limits of integration are
constant, the operator & may be placed before the integral signs

SU = 5HA(TX”U +T VAT w)dA+ [ (Fu+Fv+ sz)dv}

=6W , where W = [ (T u+Tv+T, w)dA+[ (F.u+F,v+F,w)dv

~oU -oW =0

Innovatlve Shlp Design - Elasticity
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v'The Strain Energy

Virtual Work in Elastic Body vl o e nn wmses

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces
oW = (T u+T  6v+T," w)dA+ [ (F,du+F, o+ F,dw)dA
A Vv

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = ” _[ (0,08, +0,08,+0,08,+ 7,67, +7,,07,, + 7,07, ) dxdy dz
Y

SU—oW =0, W = [ (T/u+T, v+T, w)dA+ | (Fu+Fv+Fw)dv

olI=0
Defining [[=U —\W called the potential energy of the body

n!’:
C:.'éwhat’s this supposed to mean?

2 Seoul
‘l'-ﬁ National
Sea Univ.
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v'The Strain Energy

Virtual Work in Elastic Body vl o e nn wmses

v'Virtual Work
OW : the virtual work done by the external (surface and body) forces
oW = (T, u+T  6v+T," w)dA+ [ (F,du+F, o+ F,dw)dA
A Vv

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = Iﬂv (ax O¢,+0,06,+ 0,06, +7,,0y,, + 7,0y, +T, 5yzx)dx dydz

cooll = 5(U —W) =0 .Defining TI=U —W called the potential energy of the body

T
(i’}what’s this supposed to mean? 1
MU -W where U . = EIIIV (O'X EyTOLE,+0,6+T Vg 7,7, T 7y yzx)dx dydz
@ @ @ 5U5train = 5'[ij (GX gX + Gy gy + GZ gZ + TXy j/Xy + TyZ j/yZ + TZX 72X)dx dy dZ
H=Yaran =W where W= (Tru+Tv+T, w)dA+[ (Fu+Fv+Fw)dA
Q @ o A X y z v X y 7
1 1
IT=Ug.,—2W,, W, = EjA(TXﬂu +Ty”v+TZ”W)dA+§IV(FXu +F,v+F,w)dA
g ® 1
. @. W, =—W
Il = Ustrain —-2U strain i 2
o energy conservation
Sl = —U Sia 3) Wext = Ustrain

Innovative Ship Design - Elasticity
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v'The Strain Energy

Virtual Work in Elastic Body vl o e nn wmses

., "l =0(U —-W)=0 ,pefining [T=U —W called the potential energy of the body
iwhat's this supposed to mean?

1
H — U _W ,WhereUstrain = EJ.J. V(O-xgx +Gy8y + 0,¢, + Txyyxy +Tyz 7yz +Tz>< 7/zx)dXdydz
0 @ @ 5Ustrain = 5““““‘\/ (O-X gX + O-y gy + O-Z gl + TXy 7xy + Tyz }/yZ + TZX yZX)dXdde
1_[:Ustrain -W W=l (TAu+T “v+T.“w)dA F F E w)dA
s Q where —IA( L U+Tv+T, W) +IV( U+ F v+ zW)
1 , 1
[M=Ug,, —2W,, W, = EIA(TX”U +T, V4T W)dA+§IV(FxU +F v+ FZW)dA
o 3 1
. @.'.Wex ==W
IT= Ustrain -2U strain ‘2
o energy conservation
. _ W.=U.__.
Il = —U il ® ext strain

*c.f.)

& Energy Conservation

o Total Potential Energy @ o - %[z; Tds +_ i wb v
M=~ [e,0,dV - [u;bdV - [uTds O N
= — e — f = u :
i P | e 1 1 oo, .
24 . . work done by external forces _ ;I”.-I.ﬂrs _T.[”n "3_-. T
=l[u,}'la'5+lic” LAV —luccrn ds |
2 Wext = Ustrain same 2 E: ' l EJ;I 2 :
1= U strain ext 1 1.8 |,. 1. |
® = —[uTdS+—[—Lo,dV ——|?.!Td5 |
means Utrain 25 2y éx, |
_ strain energy stored in elastic bod 2 |
IT= Ustrain —-2U strain % Y = l [Lj_id-r'g..ﬁ'rf'r = l [f g,dl =1l |
2yex, 2 ’ |
~I=-U strain @ 3
Inrlgvatlve Ship Design - Elasticity |
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Virtual Work and Principle of Potential Energy

v'Virtual Work

OW : the virtual work done by the external (surface and body) forces
oW = (T u+T  6v+T," w)dA+ [ (F,du+F, o+ F,dw)dA
A Vv

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

oU = ”_[ (0,08, + 0,88, +0,08,+ 7,87, +7,,7,, + 7,67, ) dxdy dz
Y

oU = oW

S =5U-W)=0

this implies that
at the equilibrium configuration of a body, the potential energy assumes a stationary value

The principle of potential energy :

Of all the displacement distribution satisfying the conditions of continuity and the prescribed
displacement boundary conditions,

the one which actually takes place ( or which satisfies the equilibrium equations) is the one which
makes the potential energy assume a stationary(minimum) value)

Innovative Ship Design - Elasticity
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Discussion : Energy

internal force and external force*

Newton’s third law asserts that if body A exert a force F on body 5,
then body B exerts the force -F on body A.
This law signifies that forces may be mated, ‘action’ and ‘reaction’

The reaction of a given force Fis understood to act on the body
that cause or exert force F~.
if a force F acts on a mechanical system

its reaction -F acts on another part of the same system
or it acts on a body outside the system

in the first case, it is called an ‘internal force’
in the second case, it is called an ‘external force’

Accordingly, all the forces that act on a mechanical system
may be classified as internal or external

Hence the work W of all the forces that act on a mechanical system is separated in a sum

W =W, +W,
W

. is the work of the external forces and
W, is the work of the internal forces

Where

Innovative Ship Design - Elasticity _
* Langhar, H.L., “Energy Methods in Applied Mechanics”, John Wiley and Sons, 1962, p10-11
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Discussion : Energy

Law of Kinetic Energy*

W =W, +W,

Newton’s equation for a mass particleis F=m—, Vv

the infinitesimal work d\W that the force F performs on the particle

dW = Fedr

dW = (m oy
dt

)-(vdt )= mvedv

let v=vi

dw :i(imvzjdt
dt\ 2

1
since, by definition: the kinetic energy of the particle is T = EITIV2

S dW =dT

consequently, by integration, \\/ = AT

where, AT is the increment of kinetic energy that result from work W

Innovative Ship Design - Elasticity _
* Langhar, H.L., “Energy Methods in Applied Mechanics”, John Wiley and Sons, 1962, p10-11
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. : W =W, +W,
Discussion : Energy

Law of Kinetic Energy*

W = AT
where, AT is the increment of kinetic energy that result from work W

This conclusion may be generalized immediately to apply to all finite mechanical systems.
The kinetic energy of any mechanical system is defined as
the sum of the kinetic energies of its particles.
Consequently, by summing the equation \W = AT over all the particles of a system,
we obtain the following conclusion :
: W =W, +W,

The work of all the forces (internal and external) that act on a mechanical system equals
the increase of kinetic energy of the system

This theorem is a modern statement of Leibniz's law of vis viva ;
it is called the ‘law of kinetic energy’

W, +W, = AT

Innovative Ship Design - Elasticity
QT Seoul
* Langhar, H.L., “Energy Methods in Applied Mechanics”, John Wiley and Sons, 1962, p10-11 %ﬁ@Naﬁona/ %,B,é,lgh,p Design Automation Lab. 97/183
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Discussion : Energy

The first law of thermodynamics*

The work that is performed on a mechanical system by external forces plus the heat
that flows into the system from the outside equals the increase of kinetic energy plus
the increase of internal energy

We + Q = AT + AU W, :the work performed on the system by external forces
,Q :the heat flows into the system

,AT : the increase of kinetic energy
,AU : the increase of internal energy

and W, +W. = AT Where
W, is the work of the external forces and
W, is the work of the internal forces

~ W =Q-AU

if the system is adiabatic ,Q =0

S W =-AU

Innovative Ship Design - Elasticity
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The first law of thermodynamics : We +Q=AT + AU

DiSCUSSion : Energy Law of Kinetic Energy : \|\/ :We +Wi

The first law of thermodynamics applied to a deformation process*

If R is any region within a deformable body and S is the surface enclosing region R,
the external forces acting on the material in R consists of the tractive forces due to stresses on S and
the body forces acting on material R.

The work that these forces perform when the virtual displacement is imposed is denoted by 5W, .

It will be supposed that the equilibrium conditions prevail during the displacement,
and the kinetic energy is zero.

Then, by the first law of thermodynamics

_ where OU is the increase of internal energy in R and
oW, =oU -Q 9y

Q is the heat that flows into R while the virtual
displacement is being performed

if the deformation is adiabatic, W, = oU
since W. = —-AU oW, -oU =0
oW, + oW, =0 '_
S OW =0  what this means? {ﬁ’?

Innovative Ship Design - Elasticity
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Illustrative Problem

Uniform Loaded String : the application of the principle of potential energy

- initially under a large tensile force T

- uniform transverse load (

- assume that the application of ( does not change the magnitude of applied force T
- assume that body force is neglected

Innovative Ship Design - Elasticity
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Illustrative Problem

Uniform Loaded String :

the application of the principle of potential energy
- initially under a large tensile force S
- uniform transverse load (

OW : the virtual work done by the external (surface and body) forces
oW =] (T u+T, Gu+T," w)dA+ [ (F ou+F, 0 +F,dw)dA
A v

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = J-.U(O-X 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

S =6U-W)=0

- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @

IT= Ustrain -W
T T ‘e

\-4%( ‘4%( = Ustrain - 2\Next
I | ~ o @
I | I = Ustrain -2u strain
v
Considering the stretched string under tension T and ( = O as the reference state ~TI=-U__

[I=U-W

since the surface force per unit length is 0 and there are no body force

W = _[A(TX“U +Ty”v+Tz“w)dA =_[O|(qw)dx

SDAL

Advanced Ship Desl/éqn Automation Lab.
http.//asdal.snu.ac.Kr
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OW : the virtual work done by the external (surface and body) forces

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Uniform Loaded String :

the application of the principle of potential energy U :IV”(UX&X”yé‘gyMZ&gZ”Wgy*y”ﬂ&ﬂHzxgyz*)d’(dydz

- ini'FiaIIy under a large tensile force S - Ol = 5(U —W) -0
- uniform transverse load (
- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
IT= Ustrain -W
T T ‘e
\-4%( ‘4%( = Ustrain - 2\Next
| | | | o
I | I Z\l I = Ustrain -2u strain
v
Considering the stretched string under tension T and ( = O as the reference state ~TI=-U__

[I=Uu-w W =_[(:(qw)dx

U : strain energy

in order to evaluate U we must determine the change in length of the string caused by the
transverse load (

T

ax

=)
FEhsY, Seoul SDAL
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OW : the virtual work done by the external (surface and body) forces
oW =] (T u+T, Gu+T," w)dA+ [ (F ou+F, 0 +F,dw)dA
A v

Illustrative Problem

Uniform Loaded String :
the application of the principle of potential energy

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = J-.U(O-X 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

- initially under a large tensile force S - Ol = 5(U —W) -0
- uniform transverse load ( =
- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
IT= Ustrain -W
v @
T T —‘y—v
\-4%( ‘4%( v = Ustrain - 2\Next
| | | | ¢ o
I | I Z\l = Ustrain -2u strain
v
Considering the stretched string under tension T and ( = O as the reference state ~TI=-U__
| T e T
[[=U-W ,W:IO(qw)dx i E |
. T € l dx i dw = d—Wd
U : strain energy ~—~— T ,K dx
ds —
T

ds —dx :the elongation of the element due to the application of {

T - (ds —dx): the internal work done by T on the element

notice that no facto of % is introduced, since T is constant during the displacement

=)
FEhsY, Seoul SDAL
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: the virtual work done by the external (surface and body) forces

oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

oW

Illustrative Problem

Uniform Loaded String :
the application of the principle of potential energy

- initially under a large tensile force S Sl = 5(U —W) 0
- uniform transverse load (] -

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = J-.U(O-X 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
1= Ustrain -W
e @
T T W
‘4% ‘4% v = Ustrain - 2\Next
| | | | ‘o
f I | ZV = Ustrain -2u strain
o
Considering the stretched string under tension T and ( = O as the reference state ~TI=-U__
| T e T
[T=U-W ,Wz_[o(qw)dx i o |
' dw
. | | dw=——d
U : strain energy T&Q'““QX ————— "
ds
.
. recall, Taylor Series
T - (ds—dx): the internal work done by T on the element (M0 = T )+ 00 £ ()N .
2
ds =/ dx’ + dw? = dxy 1+ (dw/ d)
2 2 B 11 1),
Iet,z=(d—wj then, 1+(d—wj =J1+z {0)=1 f(Z)—1+EZ+§(—Z)Z +-e-
& & @ -lasn L -
let, f (z) =v1+z 2 2-0 f(z)zl+=z

Innovatlve Shlp Design - Elasticity
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Illustrative Problem

Uniform Loaded String :

the application of the principle of potential energy
- initially under a large tensile force S

the virtual work done by the external (surface and body) forces

oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

oW :

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

- J-.U(O-X 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v
soll=0U-W)=0

- uniform transverse load (

- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
IT= Ustrain -W
T T ‘e
‘4% ‘4% = Ustrain - 2\Next
| | | | o
I | I ZV I = Ustrain -2u strain
v
Considering the stretched string under tension T and ( = O as the reference state M=-U,.,,
|
[T=U-W ,W:J’ (qw) dx il i =
g | : dw =W
: strain energy T W=

U

T - (ds —dx): the internal work done by T on the element

ds =[x+ dw? = dx 1+ (dw/ dx)’

 ds = dxy 1+ (dw/ dx)’ = dx

Innovatlve Shlp Design - Elasticity

recall, Taylor Series
fX+A) = T(xX)+ (X )Ax+—f "(X)AXE +.

Maclaurin Series

f()=1(0)+ F'Ox+2 Lty
2 2
let, z = Lo then, |1+ g, =v1+2
dx dx
1
f(z2)=vi+z _ (@ 51+§Z
2 Seoul . .
i@f@ZZf’;’”"’@f;g;%i%ﬂ;'ﬁuz?ﬂﬂA“’M“’" Lap, 105/183



Illustrative Problem

Uniform Loaded String :

the application of the principle of potential energy
- initially under a large tensile force S

OW : the virtual work done by the external (surface and body) forces
oW =] (T u+T, Gu+T," w)dA+ [ (F ou+F, 0 +F,dw)dA
A v

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

- J-.U(O-X 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v
soll=0U-W)=0

- uniform transverse load (

- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
IT= Ustrain -W
T T ‘e
\-4%( ‘4%( = Ustrain - 2\Next
| | | | o
I | I Z\l = Ustrain -2u strain
v
Considering the stretched string under tension T and ( = O as the reference state ~TI=-U__
| T e T
[M=U-W W= (qw)dx F——
' dw
. | | dw=——d
U : strain energy Tﬁﬁ'““@( ————— Y
ds o
T -(ds —dx): the internal work done by T on the element . _ o (,, 1 dw
) 2 dx
1(dw
T-(ds—dx)=T- dx|1+=| — | |[—dX
2\ dx
@;Z%na/ Asdgéilgh/p Design Automation Lab, 106/183
Uniyv. http.y/asda/.snu.acl??




Illustrative Problem

Uniform Loaded String :

the application of the principle of potential energy
- initially under a large tensile force S
- uniform transverse load (

the virtual work done by the external (surface and body) forces

oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

oW :

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

- J-.U(O-X 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v
soll=0U-W)=0

- assume that the application of  does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
IT= Ustrain -W
T T ‘0
\-4%( ‘4%( IT= Ustrain - 2\Next
| | , | s ®
' I ' Z\l IT= Ustrain -2U strain
o
Considering the stretched string under tension T and ( = O as the reference state IT=-U.m
| T €— T
[T=U-W ,W:IO(qw)dx i o |
|
| | dw=2"4
U : strain energy Tﬁﬁ'““@( ————— T
ds
.
T -(ds—dx): the internal work done by T on the element ds = dx[ 1 de
dx

dw
dx

jdx

T.(ds— d)—z(

Innovative Ship Design - Elasticity
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Illustrative Problem

Uniform Loaded String :

the application of the principle of potential energy
- initially under a large tensile force S
- uniform transverse load (

oW

: the virtual work done by the external (surface and body) forces

oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = .U.[(UX 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

S =6U-W)=0

- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @

IT= Ustrain -W
T T ‘e

\-4%( ‘4%( = Ustrain - 2\Next
| | | | o
I | I ZV I = Ustrain -2u strain
v
Considering the stretched string under tension T and q= O as the reference state ~TI=-U__

| T o (dw)’
—U-W W= d _T(aw
I [ (aw)dx U zjo(dxj dx

”“b Seoul

National @ Advanced Sh/p Desi fgn Automation Lab, 108/183

Uniyv. http.//asdal.snu.ac.



OW : the virtual work done by the external (surface and body) forces

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Uniform Loaded String :

the application of the principle of potential energy U :IV”(UX&X”yé‘gy”Z&gZ”Wgy*y”ﬂ&ﬂHzxgyz*)d’(dydz

- initially under a large tensile force S - Ol = 5(U —W) -0
- uniform transverse load = _ —
- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
IT= Ustrain -W
T T ‘e
‘4% ‘4% = Ustrain - 2\Next
| | | | ‘o
f I | Z I = Ustrain -2u strain
\
v
Considering the stretched strlng under tension T and (] = O as the reference state ~TI=-U__
[1=U-W [1= _[ ( j ax — _[ qw) dx
I dw _( dw I
variation of [1: &11 :Tj 5 dx —q j Swdx
0 dx \ dx 0
L dw _( dw I dw( dow eal d d
Tj o) dX=TJ dx ”d_éy:gd_y
0 dx \ dx 0 dx \ dx X X

Innovatlve Shlp Design - Elasticity
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OW : the virtual work done by the external (surface and body) forces

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Uniform Loaded String :

the application of the principle of potential energy U :IV”(UX&X”yé‘gyMZ&Z+Txy57*y”v257ﬂHzxgyz*)d)(dydz

- initially under a large tensile force S - Ol = 5(U —W) -0
- uniform transverse load = _ —
- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
IT= Ustrain -W
T T ‘e
\-4%( ‘4%( = Ustrain - 2\Next
| | | | ‘o
f I | ZV I = Ustrain -2u strain
v
Considering the stretched strlng under tension T and (] = O as the reference state ~TI=-U__
[1=U-W [1= _[ ( j ax — _[ qw) dx
I dw _( dw I
variation of [[: &S[[=T j 5 dx —q j Swdx
0 dx \ dx 0
integrating by part
dw dSw dw d*w
T[ ———dx=|T—0ow| -T j 5
0 dx dx dx dx?
I d 2W
T |, ow——-dx since oW=0at x=0and x=I

2 Seoul
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OW : the virtual work done by the external (surface and body) forces

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Uniform Loaded String :

the application of the principle of potential energy U :IV”(UX&X”yé‘gyMZ&Z+Txy57*y”v257ﬂHzxgyz*)d)(dydz

- initially under a large tensile force S - Ol = 5(U —W) -0
- uniform transverse load ( =
- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
1= Ustrain -W
T T ‘e
\-4%( ‘4%( = Ustrain - 2\Next
| | | | o
I | I ZV I = Ustrain -2u strain
v
Considering the stretched string under tension T and (] = O as the reference state ~TI=-U__
T ot (dw)’
[1=U-W [1=— ax — _[ qw) dx
290 dx
I dw _( dw I
variationof [[: O[[=T j o) dx — qj owdx
0 dx \ dx 0
2 l dw I dw( dow
| W | dx=T (—) dx
5H:—TI OW—— dx—qj'oéwdx "o & dx ( ) I dx | dx
X 2
T d_w_d§wd —Td—Wéw T_[ 5wd de
0 dx dx dx dx?
| 2W
=-T| swd 7 X

2 Seoul
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oW

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

: the virtual work done by the external (surface and body) forces

Uniform Loaded String :

the application of the principle of potential energy U :IV”(UX&X”yé‘gyMZ&gZ”Wgy*y”ﬂ&ﬂHzxgyz*)d’(dydz

- initially under a large tensile force S - Ol = 5(U —W) -0
- uniform transverse load ( =
- assume that the application of (J does not change the magnitude of application force Im=uU-w
- assume that body force is neglected g @
1= Ustrain -W
T ‘e
\-4%( = Ustrain - 2\Next
I o @
I | = Ustrain -2u strain
Y
T ~TI=-U

strain

!
variationof [[: Oll=- Io owdx
from Oll=0 —J. owdx =0
recall, differential equation
since OW is arbitrary d 2w d (_ dw
_ T2 0
T dx2 +q=0 dx( dX)Jr'Da)WJrq

Innovative Ship Design - Elasticity
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oW

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

: the virtual work done by the external (surface and body) forces

Uniform Loaded String :

the application of the principle of potential energy L :IVH(UX5€X+‘7v5‘9v+Gz5gz”xy57xv”yz57yz”zx57zx)dXdde
- initially under a large tensile force S Sl = 5(U —W) 0
- uniform transverse load (] -

- assume that the application of (J does not change the magnitude of application force
- assume that body force is neglected

W
3L (G o Lame
d3w
dx?

T

+0=0

recall,

The principle of potential energy :

Of all the displacement distribution satisfying the conditions of continuity and the prescribed
displacement boundary conditions,

the one which actually takes place ( or which satisfies the equilibrium equations) is the one which
makes the potential energy assume a stationary(minimum) value)

We shall now demonstrate that this stationary value is a minimum

In order to prove this, we shall show the quantity

AIT =TI(w+Aw) —TII(w) is always positive

Innovatlve Shlp Design - Elasticity
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oW

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

: the virtual work done by the external (surface and body) forces

Uniform Loaded String :

the application of the principle of potential energy U :IV”(UX&X”yé‘gy”Z&gZ”Wgy*y”ﬂ&ﬂHzxgyz*)d’(dydz

- initially under a large tensile force S - Ol = 5(U —W) -0
- uniform transverse load ( =
- assume that the application of (J does not change the magnitude of application force
- assume that body force is neglected — (_W) dx
d
T T
ey Ay TEt -0
| dx

| | ! Z ! '

We shall now demonstrate that this stationary value is a minimum
In order to prove this, we shall show the quantity AIT =T1(w+ Aw)—-TII(w) is always positive

AIT =TI(w+ Aw) —TT(w) >0
where Aw=Aw(Xx) ,Aw(0 =5)0,Aw(l)=0

means that
if the string is displaced by AW from its equilibrium position
the potential energy is increased

Innovatlve Shlp Design - Elasticity
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Illustrative Problem

Uniform Loaded String :

the application of the principle of potential energy

- initially under a large tensile force S
- uniform transverse load (

- assume that body force is neglected

OW : the virtual work done by the external (surface and body) forces
oW =] (T u+T, Gu+T," w)dA+ [ (F ou+F, 0 +F,dw)dA
A v

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = .U.[(UX 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

S =6U-W)=0

- assume that the application of (J does not change the magnitude of application force dw
v g e

T T

T T

W
T
| dX2

+0=0

We shall now demonstrate that this stationary value is a minimum

In order to prove this, we shall show the quantity AIT=TI(w+ Aw)—TII(w) is always positive

AIT =TI(w+ Aw) —TT(w) >0
where Aw=Aw(X) ,Aw(0 =)0,Aw(l)=0

AIT =TT(w+ Aw) —TT(w)

_ III d(WdJ;AW)) dx—J‘(:(q(w+Aw))dx

ol dx dx

Innovatlve Shlp Design - Elasticity

]

means that
if the string is displaced by AW from its equilibrium position
the potential energy is increased

2 2
- IJ' d—W+Mﬂj dx—'[ol(qw+qu)dx - %J‘OI (d_wj dx — Ol(qw)dx
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Illustrative Problem

Uniform Loaded String :

the application of the principle of potential energy

- initially under a large tensile force S
- uniform transverse load (

- assume that body force is neglected

OW : the virtual work done by the external (surface and body) forces
oW =] (T u+T, Gu+T," w)dA+ [ (F ou+F, 0 +F,dw)dA
A v

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = .U.[(UX 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

S =6U-W)=0

- assume that the application of (J does not change the magnitude of application force dw
v g e

T %ﬁv | T

W
T
| dX2

+0=0

We shall now demonstrate that this stationary value is a minimum

In order to prove this, we shall show the quantity AIT =IT(w+ Aw)—TT(w)

AIT =TI(w+ Aw) —TT(w) >0
where Aw=Aw(X) ,Aw(0 =)0,Aw(l)=0

AIT =TT(w+ Aw) —IT(w)

(T (dw+ dAw
dx  dx

i _I (dj

d \MAW+(dAw ?
dx dx dx

Elasticity

Innovatlve Shlp Design -

j dx—_[ol(qu)dx—j;(qw)d

is always positive

means that
if the string is displaced by AW from its equilibrium position
the potential energy is increased

jdx '[ (qw+gAw)dx (- Ijl(iwj dx — j qw)d

0

2
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Illustrative Problem

Uniform Loaded String :

the application of the principle of potential energy

- initially under a large tensile force S
- uniform transverse load (

- assume that body force is neglected

OW : the virtual work done by the external (surface and body) forces
oW =] (T u+T, Gu+T," w)dA+ [ (F ou+F, 0 +F,dw)dA
A v

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = .U.[(UX 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

S =6U-W)=0

- assume that the application of (J does not change the magnitude of application force dw
v g e

T %ﬁv | T

T W

+0=0
| dX2 1

We shall now demonstrate that this stationary value is a minimum

In order to prove this, we shall show the quantity AIT =IT(w+ Aw)—TT(w)

AIT =TI(w+ Aw) —TT(w) >0
where Aw=Aw(X) ,Aw(0 =)0,Aw(l)=0

AIT =TT(w+ Aw) —TT(w)

i _I {dxvf
[11f

Innovatlve Shlp Design -

dx dx dx

d wWAw (dAW ¢
dx dx dx

Elasticity

»d W'AWJrEdAWT}dx—L:(qu)dx—J'(:(qw)dx —IL:(MJZJF IquX

}dx—j(j(qu)dx

is always positive

means that
if the string is displaced by AW from its equilibrium position
the potential energy is increased
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OW : the virtual work done by the external (surface and body) forces

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Uniform Loaded String :

the application of the principle of potential energy U :IV”(UX&X”yé‘gyMZ&Z+Txy57*y”v257ﬂHzxgyz*)d)(dydz

- initially under a large tensile force S - Ol = 5(U —W) -0
- uniform transverse load ( =
- assume that the application of (J does not change the magnitude of application force
- assume that body force is neglected W — _J' (dwj
T T
ey Ay TEt -0
| dx

| | ! Z ! '

We shall now demonstrate that this stationary value is a minimum
In order to prove this, we shall show the quantity AIT=TI(w+ Aw)—TII(w) is always positive

AT =TT(w+ Aw) —-IT(w) >0 means that
( ) W) if the string is displaced by AW from its equilibrium position

where Aw = AW(X) ,AW(O Z)O, AW(|) = 0 | the potential energy is increased

2
AIT=T Id—wﬂdx+1f(dﬂj dx—q.[lAvvdx
0 dx dx 270\ dx 0

j——d — T Aw 7 —j AW

integrating by part | 4\ dAw dv I o d2w
0 dx dx dx ‘ 0
since AW=0 at x=0and x=1

All =

—j [dAWj dx—qj(:Awdx

Innovatlve Shlp Design - Elasticity
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OW : the virtual work done by the external (surface and body) forces

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Uniform Loaded String :

the application of the principle of potential energy U :IV”(UX&X”yé‘gyMZ&Z+Txy57*y”v257ﬂHzxgyz*)d)(dydz

- initially under a large tensile force S - Ol = 5(U —W) -0
- uniform transverse load ( =
- assume that the application of (J does not change the magnitude of application force
- assume that body force is neglected W — _J' (dwj
T T
ey Ay TEt -0
| dx

| | ! Z ! '

We shall now demonstrate that this stationary value is a minimum
In order to prove this, we shall show the quantity AIT=TI(w+ Aw)—TII(w) is always positive

AT =TT(w+ Aw) —-IT(w) >0 means that
( ) W) if the string is displaced by AW from its equilibrium position

where Aw = AW(X) ,AW(O Z)O, AW(|) = 0 | the potential energy is increased

All =

—I (dAW dx—qL:Awdx

2 2 )
AlIl = _J" AW(T dw ]dXJrI I(M) dx because of equilibrium condition Td_\;v+q -0
0 dX2 2 J0( dx dx

T ¢ dAW ?
=51, (Wj o

Innovatlve Shlp Design - Elast|C|ty
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Illustrative Problem

Uniform Loaded String :

the application of the principle of potential energy

- initially under a large tensile force S
- uniform transverse load (

- assume that the application of (J does not change the magnitude of application force

- assume that body force is neglected

T T

T T

oW

: the virtual work done by the external (surface and body) forces

oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = .U.[(UX 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

S =6U-W)=0

T ¢t (dw
T o e
W
L
| dX2

+0=0

We shall now demonstrate that this stationary value is a minimum

In order to prove this, we shall show the quantity AIT=TI(w+ Aw)—TII(w) is always positive

AIT =TI(w+ Aw) —TT(w) >0
where Aw=Aw(X) ,Aw(0 =)0,Aw(l)=0

All = —J- (dAWj since the integral cannot be negative Al >0

means that
if the string is displaced by AW from its equilibrium position
the potential energy is increased

dAw

the integral vanishes only in the exceptional case when, =0

dx

which only occurs at the equilibrium position

thus we have demonstrated the theorem of minimum potential energy

Innovatlve Shlp Design - Elasticity
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Illustrative Problem

Simply supported beam :

the application of the principle of potential energy

normal stress : 0, =

vy

Innovative Ship Design - Elasticity
el - v -

OW : the virtual work done by the external (surface and body) forces

oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = J-.U(O-X 9, toy 6‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

S =6U-W)=0

uniformly distributed load Y
constant cross section
only consider the strain energy due to pure bending due to o,

Iy

bending moment : M
moment of inertia of the cross section with respect to the Y axis : |

X

recall, .~ Green Function

/ \ :

solution of D.E. i solution of Integral ion = IIIzzzzzzzzzziiizz .
”””””””””””””” | Approximation :

1 -Galerkin /Collocation /Least Square !

Differential Equation
Ex)

multiplyd'y and integrate

integrating by part
and two end conditions

Y | then the differential
J' d dy 2 o L .
— | T 2« y+p ydx equation is obtained by
ol dx\  dx the Euler equation
0(0F )| OF
1 d dy 1 B 1 B f[iyj -2 =0
L&(T&] x+J0pw y§ydx+-[0p5ydx70 ox\ oy oy

2 dx d o

Variational Method

i

: ' “Lpuryrs py T BY
Epwzy2+ —I{ﬂ) }dx{Td—iéy} =0 et =2 p0y - by Z(dxj

1 T(dyY
Epwzy2 + py——(—y) }dx:o -

2\ dx

this example

o
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OW : the virtual work done by the external (surface and body) forces

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Simply syppprted beam 5 . U = [[[ (0,88, + 0,88, + 0,88, + 7y 67 + 7,67, + 7,57, ) dx ly dz
the application of the prnaaple of potential energy v
- uniformly distributed load ol = §(U _W) =0
- constant cross section
- only consider the strain energy due to pure bending due to o,

M
- normal stress : 0, =——
Iy
- bending moment : M
- moment of inertia of the cross section with respect to the Y axis : |
: : : d*w
According to the Bernoulli-Euler law in beam theory M = El >
dx
recall
’ de 1
p-dd=ds —=— F(X)dx
ds p W[
dF-con=gtoa | .00 M ot [N oy
dM =-yodA Bl p T "
@ Assume that dx
_dy EIIAL=
ds ~ dx, Hztan(e)—& f(x): 2XEOHS
. do _d%y d’ M || dv dMm d*
as e e = | Y Moyl m1 8
dx*  El|| * : dx

e Seoul S D A L
) ¢ National Advanced Ship Desl/éqn Automation Lab, 122/183
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oW

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Simply syppprted beam 5 . U = [[[ (088, + 0,82, + 0,08, + 7, 67, +7,,67,, + 7, 67,, ) dxdly dz
the application of the pruaaple of potential energy v
- uniformly distributed load Ol = 5(U _W) =0
- constant cross section
- only consider the strain energy due to pure bending due to o,

: the virtual work done by the external (surface and body) forces

M
- normal stress : 0, =——
11y
- bending moment : M
- moment of inertia of the cross section with respect to the Y axis : |

d?w
dx?

According to the Bernoulli-Euler law in beam theory M = E|

The strain energy per unit volume,
(the strain energy density)

recall,

The strain energy per unit volume,
(the strain energy density)

2 Seoul
National Advanced Sh/p Desi fgn Automation Lab, 123/183
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Illustrative Problem

Simply supported beam :
the application of the prilaciple of potential energy

- uniformly distributed load

oW

: the virtual work done by the external (surface and body) forces

oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = J-.”.(O-X 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57/2X)d)( dy dz
v

S =6U-W)=0

- constant cross section

- only consider the strain energy due to pure bending due to o,

M
- normal stress : 0, =m

- bending moment : M

- moment of inertia of the cross section with respect to the Y axis :

oy

According to the Bernoulli-Euler law in beam theory M = E|

The strain energy per unit volume, E

(the strain energy density) 0"

The total Strain Energy absorbed in the beam

U= HIU dx dydz m

Innovative Ship Design - Elasticity

d 2W <section view> X
2 dx®
d’w ¥ y
dX2 Vo222 Neutral
y Axis
dy - dy
2dxdydz
since I yzdde = |
d2w)’
- | g dx
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Illustrative Problem

Simply supported beam :

the application of the prilaciple of potential energy

- uniformly distributed load
- constant cross section

- only consider the strain energy due to pure bending due to o,

OW : the virtual work done by the external (surface and body) forces
oW =] (T u+T, Gu+T," w)dA+ [ (F ou+F, 0 +F,dw)dA
A v

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = J-.U(O-X 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

S =6U-W)=0

M
- normal stress : 0, =——
11y
- bending moment : M
- moment of inertia of the cross section with respect to the Y axis : |

1=U-W o El d?w
Jo 2 | dx?

dx

el
,W — quX recall, uniform loaded string
0

1=

EL((d2w) |
J'07 I dx—_[oqwdx

d?w

El
H:J.(: 7

dx?

=)
FEhsY, Seoul SDAL
@ National Advanced Ship Desl/éqn Automation Lab, 125/183
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Illustrative Problem

Simply supported beam :
the application of the prilaciple of potential energy

- uniformly distributed load

OW : the virtual work done by the external (surface and body) forces
oW =] (T u+T, Gu+T," w)dA+ [ (F ou+F, 0 +F,dw)dA
A v

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

ou = J-.”.(O-X 9, toy 5‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57/2X)d)( dy dz
v

S =6U-W)=0

- constant cross section

- only consider the strain energy due to pure bending due to o,

M
- normal stress : 0, =——

11y
- bending moment : M

- moment of inertia of the cross section with respect to the Y axis :

oy

boundary condition

M= J' El d W i q integrating by part simple support :
—Jw [aX 2 2 2
'd\;\’diwdx ?j\g’:Oatx:Oandx:l
0 dx* dx X
variation of []: |
) 5 1d?w d?6w d*w dow _'d ‘W dow
| = _— —dx
ol = —j 2(3 \;V dd52W —I qowdx i Yo dx® dx’ dx* dx | “odx’ dx
X X 0
Id w dow
integrating by part =) aF ax ——dx
(1 d*w d?sw | A
Al=El| ———= dx—joq5wdx _ | diw jd Sl
I dX dX dX4 ) 0 dX
el d4 | d .
oll = El owdx — J qowdx Ll . Since
Jo gx* ~Jo gy Sw=0at x=0and x=I

Elasticity

Innovative Ship Design -
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oW

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Simply supported beam : . 3U = [[[ (0,0, +0, e, + 0,86, + 1,57y + 7,57y, + 7,57, )k y oz
the application of the pruaaple of potential energy v
“oll=0U-W)=0

- uniformly distributed load

: the virtual work done by the external (surface and body) forces

- constant cross section
- only consider the strain energy due to pure bending due to o,

M
- normal stress : 0, =——
11y
- bending moment : M
- moment of inertia of the cross section with respect to the Y axis : |

EI dw dx

m=[|=
variation of H :

owdx

d4
from Oll=0 J.(: owdx =0

since OW is arbitrary d*w

Innovative Ship Design - Elasticity
 — -
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OW : the virtual work done by the external (surface and body) forces

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Simply syppprted beam 5 . U = [[[ (0,88, + 0,88, + 0,88, + 7y 67 + 7,67, + 7,57, ) dx ly dz
the application of the pruaaple of potential energy v
- uniformly distributed load ol = §(U _W) =0
- constant cross section
- only consider the strain energy due to pure bending due to o,

M
- normal stress : 0, =——
11y
- bending moment : M
- moment of inertia of the cross section with respect to the Y axis : |
4 4
d*w d*w

— |owdX from Ol1=0 since OW is arbitrary |El —-q=0

dx* dx

an:jo' El

AN HA, X 25t 2002 , 222 ( Timoshenko S., Young D.H., Elements of strength of materials, 5" edition, Van Nostrand, 1968)

B.M. =:(Ip y € o check :cl\g; dM M= J.AdM relation btw V, M, f(x) }
O, d2 M -V + f(x)dx+(V +dV)=0
M Sy O " L
X W, <:__i$__> — Y - comp. dXZ EI Hfix)fx/z S dx ) ‘
or @ AN M (M +dM ) +Vax— f (e
X - oydA S -
V i Yy d2y M V) Msaf | v
y O + P = | tension 2 137 _%-7 4
y . . ‘& El —-=f(X)
M | match |
|
all sign convention is same modify
except y-axis in opposite direction considering the
curvature

Innovative Ship Design - Elasticity
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oW

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

Simply syppprted beam 5 . U = [[[ (088, + 0,82, + 0,08, + 7, 67, +7,,67,, + 7, 67,, ) dxdly dz
the application of the pruaaple of potential energy v
- uniformly distributed load Ol = §(U _W) =0
- constant cross section
- only consider the strain energy due to pure bending due to o,

: the virtual work done by the external (surface and body) forces

M
- normal stress : 0, =——

11y
- bending moment : M
- moment of inertia of the cross section with respect to the Y axis : |

4 4
1| _. d*w d*w
ol = .[o E OwWdx from OlI=0 since OW is arbitrary |El —-q=0

dx dx

The condition d1=0 |eads directly to
the governing equilibrium equation in
terms of displacement

o, -V + f(x)dx+(V +dV)=0
dv
ba M ==
X | M —(M+dM )+ Ve f (xhae %o
dM
‘ ') ’ 2W=V(X)
]g s d’
y v @ ; B2~ f(x)
v -« dx
Innovative Ship Design - Elasticity all sign convention is same except y-axis in opposite direction
e e = a4 - —— TN i seoul /SNCNAI

oMM HA | M 2Bt 20024 225 ( Timoshenko S., Young D.H., Elements of strength of materials, 5t" edition, Van Nostrand, 1968) Automation Lab. 129/183



oW

II I u Strative Problem oW = (1T Gu+T, sw)dA+ [ (F,du+F, o+ F,ow)dA

OU : the virtual strain energy
or the strain energy absorbed in the body during a virtual displacement

: the virtual work done by the external (surface and body) forces

Simply supported beam :
the application of the prilaciple of potential energy

- uniformly distributed load

ou = J-.U(O-X 9, toy 6‘93/ +0,0¢, T Ty 57xy Ty, 57yz + 7, 57zx)dx dy dz
v

ST =5U-W)=0

- constant cross section
- only consider the strain energy due to pure bending due to o,

M
- normal stress : 0, =——

I/y
- bending moment : M
- moment of inertia of the cross section with respect to the Y axis : |

) 4
! d*w 4w
Ol = .[o E 7 owdx from OIl=0 since SW is arbitrary |El o~ —q=0

" X

If it is difficult to find a solution for the equilibrium equations, we can find an approximate solution which satisfies the equation oll=0

approximation method

0-2 -V + f(x)dx+(V +dV)=0
M X av
b N ~ =0 = f(x)

Hf dx -, N dx

N M — (M +dM )+ Ve — f()Od-xl %=0

N
N
xlug M + i :—N(x
PRd dx
- ‘ = f(x)

o

W% SEOL'I/ S D

Y, i Nal:/ana/ Advanced Sh/p Desi kqn Automation Lab. 130/183
= Univ. http.//asdal.snu.ac.
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CALCULUS OF VARIATION

- EQUATION OF EULER-LAGRANGE
- HAMILTON'S PRINCIPLE




Calculus of Variation

- Mechanical System?| 25 WA Q&

Newton’s 2" |law

F=mr HZES(0] 22 0l= Mechanical System9]
. —— Kinetic energy(T)Q} Potential energy(V)2| X10l(L)&
5 D’Alembert’s Principle > Equation of Euler-Lagrange0fl (H2!E X 2|6tH
Virtual work Mechanical System?| 25 WHASE S8 = UAS

N
oW => (F—mi;)-6r, =0
i=1

Hamilton’s Principle D
e - Mechanical System(fl 7l X|= &2 HEHA

- System@| XJ| &E{Q HF &EH= HOAE UAS

o E Ldt=0 define: L =T =V  (T: Kinetic energy, V: Potential energy)

ﬁ <—— Equation of Euler-Lagrange D

oq dtoq

Innovative Ship Design - Elasticity
 — -
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O] S HIX{ Al O HZE=H0| 22 0l= Mechanical System©)]
II—I II-(Pend u I u m)— O OO TT E Kinetic energy(T)Q} Potential energy(V)©l XI10l(L)E
_ 01' Al Equation of Euler-Lagrange(fl (HYF X 2|0IH

Mechanical System®| 2T WHAS g8 =

alo

define: L=T -V

T =%mr2:%mr292, V =mg(l —1cos6)

X, =1c0s@-0
v ) y,=1sing-6
Vg =17 =EEE0 = Pop i =%+ Y2 =1%07 cos® 0 +1°0° sin” 0 =170
X, = rsing X 1 :
L=T-V :Emlzéi2 —mg(l-lcos@)---- ®
T
oL d oL ; —mglsm@——tml 0=0
oq dtog —mglsin@—ml?0 =0
(2.9=20)
—gsing—16 = O

Cijs® seou DAL
[, ¢ Nationai @%ivan ed S/ pD kq n Automation 1ab, 133/183
S Univ. http.//asdal.si



Virtual work and D'Alembert’s Principle

X
 ENIE 014 Ml 92 SXOI0T JHE of
F=F+F,=0 S0 mzon 9E 20 8 ¥E GEl B
g10] pt=i0] 00|22 EHIE HXI0H US| _F.
erE v - OWEIR
=F -or+F,-or
=0

t3a&9] Ad

m‘Seou/
Nt nal ac pDkthomat n Lab.
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Virtual work and D'Alembert’s Principle

SEXNIY DR S0 DI Q= HEHI,y)0IM
STieo . ENIS HiRIE0e
F+F+F-mri=0
O &

= M0l 215 ol2101 HEH(— m'r')0| JHHH M

210] srE2 00|11, E20IX] B

D’Alembert’s Principle

SX WY AE0l IO §EIE XS

F=F+F,=0
oW = (K +F, + F, —mfi)or
F=F+F +FK=mr 5
o2 s =(F-mi)-or=0
OH A
- 21 IIBEQ Z2 SHOI JHHXI S il 2Lt QI WAHO| Bt JHA (virtual work)Q] E &2
- ENI0 Fet= ""OI JIUHI1M mQ| EE& JIXl ENIJI ! 00ILt.
AT 258 S | .
OW = (F-mi)dr = 7 ‘
Ir!p_qyative Shlp Design - Elasticity Q
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N
oW = Z (Fi — m'r'i) . 5ri =0 <:| From D’Alembert’s principle

Fem e —————
| .t2 N

= F-or. dI:

Ji <
R T D

:t2 N i t, t,
:L Zl:Fiﬁri dti= |, 5Udt:—t1

—————————————

S|

Hamilton’s Principle (1/3) e

HI

Jf

X)g()dx = F()g(x) - | f(x)g'(x)dx

=(H2)AUZ)- | (=2 )01=)ox

'______________.

2
=
o
g OID

ork function, V: Potential energy

> mi, -i(&i Jdt (o= 2 Hg)

AAHIO| 7| EHQt OHXI%} SEH=E HOl
EIOi A2, HE0 2IoH tl1SiHSIII 9&'.:

’”‘Seou/
Nt nal ac pDkthomat n Lab.

Ol= (P 0] E¥=H0Ict™ U = -vI| AESHL.
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Hamilton’s Principle (2/3)

oW =ZN:(Fi —mi’.)-or, =

oS 11 2E 2JJIII X =ots

t2 oo
. SW dt =. Z(F. —mft)-or dt
:','t"N"""" Ce N
::.tl ZF T, dl: J'tl Zmr T, dt.
________ - d=
=—0 t th+5 t T dt
tﬂmm_g,am,g """ -
:j ZFI 5r dt:_ oUdt=—| oVt ; U: Work functl(or)l V: Potential energy
| i=1 |

—————————————

ijtZZmr or. dt.— j Zmr — 5r dt——j Zmr ¢ dt_—jt Zm S(F -r)dt

l__J_l _________ i=1
wo(f 1) =(0F) T+, - (§r) 21, - (o1;)

utomation Lab. 137/183



Hamilton’s Principle (3/3)

N
SW =Z(Fi —mi)-or, =0
AHE 11 BH ZJJIII ME0I™

t
L éWdtz.l Z(F mi:)- S, dt

&1l (Equation of Euler-Lagrange)

/-Given: | = _[: F(y,Yy’, x)dx

f(a)=a, f(b)=2

Find: M& 1)} stationary valueg %

~

=
=

)

- FO| X2 3to| HotE(51)0] 00| EIES
y=1 (0 A0H0} &
oF doF

8y_dx8y'_

Ol=

. ZF .S, dt — J't Zmr ST, dt

i=1

:—5tth+5t T dt
=5[*T-Vdt=0
1 L=T

=5[*Ldt=0

.tl

V: Potential energy

Potential energy®} Kinetic energy®| X0
LO| MM B stationary value)t EHLI.

Innovative Shi Des

XJ| MEHQt XI= MEHIF MO/ J= Mechanical System©]

|= LOI2t S 2|0

(101 EHEZ0) HOIEE 00 i)

———

_V clal A9| O™ T: Kinetic energy



The Calculus of Variation

- Equation of Euler-Lagrange (1/6) 5J'b|:(x)dxzjb5|:(x)dx

The stationary value of a definite integral treated by the calculus of variation

*Given: | = _[: F(y’ y" X)dX
where y=f(x), f(a)=a, f(b)=p

*Find: M & |} stationary valueg LAEE Ol= y =1 (x)

K2 19| HBIE(51/:)01 001 KIS Ot= ZAHE WHFOL= y=1(x) IL HE 17}
stationary valueS 2T E 3iC}.

Innovative Ship Design - Elasticity
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The Calculus of Variation (iven: | =LbF(y, y', X)dx A
- Equation of Euler-Lagrange (2/6) f(a)=a, f(b)=2
*Find: H& 17} stationary valueg& ZT 5
: QIEy=f(x) )

oy =f(x)J} | I} stationary valueE Z'TE Ol= St5=cl JIASHTL.

« yO| HE (variation) syE 112{8tC}.

y Pe Y= T(X) y

a b X X
The given function: Y = f (X) tH

MO

oy :

) — oy = f(x)-f(x)=ep(x)
The modified function:  f (X) =  (X) + £@(X) -parameter ¢ 0] ZHASH0 W2 00

» @(x) : arbitrary new function, continuous and differentiable. &2 MI(infinitesimal change), 29]

O| Utsto = A (virtual change)

140/183



e

Given: | =

The Calculus of Variation
- Equation of Euler-Lagrange (3/6)

QIEy=f(x)

LbF(y, y', X)dx
f@=a, f(b)=p

Find: & |J} stationary valueS

\

NEE

)

oy : FOHE Sy
HEOZ I AH

21

r

vanced Ship Desl/éqn Automation Lab. 141/183
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Given: | =
a

- Equation of Euler-Lagrange (4/6) f(a)=a, f(b)=2

*Find: H& 17} stationary valueg& ZT 5
y = f(x) oy = &p(X) o=y =70 y
() = f(X)+ep(x) ¢(a)=¢(b)=0

The Calculus of Variation ¢ ij(y, y', X)dx A

B+ FO BE oF

OF(y, Y, X)=F(y+eg,y +e¢',X)—F(y,Y', X)

@ Taylor series expansion 0|2

Innovative Ship Design - Elastjcit{)\
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The Calculus of Variation

- Equation of Euler-Lagrange (5/6)

Bt F O] KB oF: 5F(y’y"x):8(ﬁy¢

L AHAZ I BRI & 2
(=2
=

HE0.

HE | O] ME 5

e

*Given: | =_[:F(y, y', X)dx h
f(a)=a, T(b)=4

Find: M Z 1J} stationary value

NEE

)

¢j \OtEy=1(9

2H=0

5|_5j Fdx = j(SFdx gj (%Fqua': ¢’)dx

8y!

[ £'00g09dx=F()g() -] f(x)g'(x)dx

EEVED

-(™M2)au=)-
sz N22 012010l 72
b
b OF oF b d
[, ooddx=| 26|~
a 5y a dx 5y

Ad dShD
avanced s Design

aqujdX
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The Calculus of Variation
- Equation of Euler-Lagrange (6/6)

J)|
I'-III
[
10

sl oF
2 j [8y dx oy’ }de /-Given: I =LbF(y, y', X)dx )

W3t (51)01 001 EIEE Ot y = (\)S 2H0H0F 2 fa)=a, f(b)=2
Find: & |} stationary valueE LTS

\OH= y=1(9 Y,

19|
19|

_|>I

I'-III

ot ja(@y dx@ijx 0

- B4 o(x)= 2010 BH0|DE, 9 A0] 2 00| £17] IOHAIS TS 919] A10] 00] EI01OF BHCL

OF d oF XM |J} stationary valueE ZHH| O}
' — = c 2Q3sE2Xd
oy dx oy’

o 2t M Z 1D} stationary valueg& #EE Ol y=f ()= § UIE2EAIE OE0l= 800
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(&) 22| o|& 9 _ 1%, 99 =g

dx
di(f(X)g(X))=|lm f(X+h)g(X+h)— f(X)g(X)
X h—0 h
_lim f(x+h)g(x+h)—f(x)g(x+h)+ f(x)g(x+h)—f(x)g(x)
h—0 h
_lim f (x+h)g(x+h)—f(x)g(x+h)+ f(x)g(x+h)—f(x)g(x)
h—0 h
_ i A ) g(x+h) = £ () g (x+ h)j+{f (g (x+h) - f () g(x)]
h—0 h
_ L'Eg f(x+h)g(x+hr)]— f(x)g(x+h) +|h'f(] f(x)g(x+hr)]— f(x)g(x)

— 1im D= T g 54y 1 1im 1. LELD =900

h—>0 h h
= T'(x)g(x)+ F()g'(x)

Innovatlve Shlp Design - Elasticity
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(1) B2 HE

(F()9(0) = F'(X)g(x)+ f (x)g'(x)

Integral with respect to x

J (f00g00)dx=] F'(0g(adx+ [ T()g'(xdx
F)9() = F/(0g(dx+ [ f(x)g'(x)dx

fF)90) - FO)g'(dx=[ F/(x)g(x)dx

J F099(dx = F(x)g(x) - | f(x)g'(x)dx
- (M AUHE)- [ ("ENOIR )
j u'vdx = uv—_f uv'dx,  (where u= f(x), v=g(x))

O

2T JId0lE =M X8+, a4, U

"__r!‘ ’

1, 288

—_— e



The commutative properties of the J-process (1)

y=f(x)
_ f(x)=f
' 5 ¥="1(x y ﬁ (X) +£9(X)
f(x) oy = f(x)— f(x)=ep(x)
ﬂ(
a b X X X+dx X

*The derivative of the variation

d — d ,
o "L T W] =G~y o
d d
*The variation of the derivative e & 5y B 5& y
d f QL T (0l 812}
2012712 1ol

S—y=|f'(X)-f (x =(y’ +g¢)

Innovatl hlp Design - Elasticity
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= f(X)

The commutative properties of the J-process (2) T(x) = f(x) T ep(X)
d d
S—O0Y=0—
dx A dx 4
The variation of a definite integral y
*The given integrand: F (X) - (X)
*The modified integrand: F (X) = F(x)+6F(x)
*The variation of a definite integral
b b— b
5L F (x)dx :L F(x)dx—ja F (x)dx
b X

= [[[FO0-F(x]d x [  5F(x)d x

» jb F (X)dx = jabaF(x)dx

The J-process reveals two characteristic properties:
(a) Variation and differentiation are permutable processes.
(b) Variation and integration are permutable processes.

Innovative Ship Design - Elasticity /‘
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Fourier Series(2)
: Sturm-Liouville Problem

Naval Architecture & Ocean Engineering
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MR e NSDAL
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SV ’ http.//asdal.snu.ac.kr
. - 'I.‘.'




Sturm-Liouville Problem

"Review
Linear Equations General solutions
V+ay=0 yzcle_ax
V' +a’y=0 a>0 y = C, COSaX +C, SIn axX
y'~a’y=0 a>0 Y =G A e Or e e menar
y = C, Cosh ax + C, SINh @X)< when Xis a finite
Cauchy-Euler Equation General solutions X > () neenel

X2y +xy' —a’y=0 a>0 [y=cX“+C,Xx*, a0
y=c,+C,InXx, =0

Linear Equations

Innovatlve Shlp Design - Elasticity
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Sturm-Liouville Problem

=Review

Parametric Bessel equationy =( General solutions X > ()
XY+ Yy +a’x’y=0 y =c¢,J, (ax) +c,Y, (ax)
Legendre’s equation Particular solutions are
nN=012. .. polynomials

A-x7)y"=2xy'+n(n+1)y=0  y=p (x)=1,
y=R(x) =X
y=P,(0 = (3 -1)

Innovatlve Shlp Design - Elasticity
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Sturm-Liouville Problem

»Eigenvalues and Eigenfunctions

Recall example 2 of section 3.9
y+Ay=0, y(0)=0, y(L)=0
When A >0 (Caselll)

Then roots of auxiliary equation is

- _ 2
Write A=a°, a >0 m=ia, m =-ia

y = C, COSaX + C, SIn aX

y(0)=0 = ¢, =0 Eigenvalues
— =

= n
y(L):O C2:O or aL:nﬂ', @ZZ(T”)Z

Eigenfunctions

(nontrivial solution) Yn = C;

Innovatlve Shlp Design - Elasticity
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Sturm-Liouville Problem

»Eigenvalues and Eigenfunctions

y'+1y=0, y(0)=0, y(L)=0 Eigenvalues
_ 2 g
= U, ( L )

Eigenfunctions
Yo =C;

It /s important to recognize the set of functions generated by this B.V.P

the orthogonal set of functions on the interval (0,L) used as the basis

for the Fourier sine series

y"+Ay =0, y'(0)=0, y'(L)=0—— the Fourier cosine series

Innovatlve Shlp Design - Elasticity
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Sturm-Liouville Problem

are, respectively, 4,=qa,” =n’z’/L*, n=012,---

% E?(ample 1 - y=ccos(nzx/L), ¢, #0. 4, =0is an
Elgenvalues and . eigenvalue for this BVP and y=1is

Ei f # . the corresponding eigenfunction.
igentunctions . The latter comes from solving y"=0

. subject to the same boundary
It is left as an exercise to show, by : conditions y'(0)=0, y'(L)=0. Note

considering the three possible - also that y=1 can be incorporated
cases for the parameter A (zero, .~ into the family y=cos(n/L) by
negative, or positive; that is, . permitting n=0. The set {cos(nzx/L)},
A=0, A=-a’<0, >0, and i=a’>0, @>0) | n=0123 is orthogonal on the
that the eigenvalues and - interval [O,L].

eigenfunctions for the boundary-
value problem

y'+Ay=0, y'(0)=0, y(L)=0

Innovative Ship Design - Elasticity
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Sturm-Liouville Problem

“Regular Sturm-Liouville Problem B.V.P ) rz’aclll\r/,a:ued furctions
d ' | continuous on an interval [a,b]
Solve : —[r(x)Y']+[a(x) +Ap(x)]y=0 | |
dx r(x)>0, p(x)>0
Subject to: Aiy(a) n Blyr(a) ~0 for every X in the interval [a,b]
; . A,B,  are not both zero
Ay(b)+B,y'(b) =0

A, B
\_ ) A,, B, are not both zero

Special case

p(x)=1,9(x) =0,r(x) =1

A =1B=0A=1B,=0,a=0,b=L
By +1y=0, y(0)=0, y(L)=0
A =0B=1A=0B,=1,a=0b=L
»Yy' +1y=0, y'(0)=0, y'(L)=0

Innovative Ship Design - Elasticity
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Sturm-Liouville Problem

~ . p,q,r,r’

; real-valued functions
. continuous on an interval [3,D]

r(x)>0, p(x)>0
i for every X in the interval [a,b]

(Regular Sturm-Liouville Problem B.V.P
d :
Solve : &[r(x)y 1+[a(x) +Ap(x)]y =0

Subject to: Ay(a)+B,y'(a)=0
’ A1 B, are not both zero
Ay(b)+B,y'(b)=0 . ' A,B, are not both zero

“Homogeneous”

Homogeneous D.E.+
Homogeneous B/C

Nonhomogeneous B/C

Avy(a)+B,y'(a) =C,,C, : nonzero

Innovatlve Shlp Design - Elasticity

'°"- ”“‘Seou/
Ad dShpD esign Automation Lab. 156/183
http: // sdal.sni




12.5 Sturm-Liouville Problem

N | P

' real-valued functions
. continuous on an interval [3,D]

r(x)>0, p(x)>0
. for every X in the interval [a,b]

(Regular Sturm-Liouville Problem B.V.P
d :
Solve : &[r(x)y 1+[a(x) +Ap(x)]y =0

Subject to: Ay(a)+B,y'(a)=0 :
’ A, B are not both zero
Azy(b) +B,Yy (b)=0 A,,B,  are not both zero

“trivial solution is not our interest”

Homogeneous B.V.P always
possesses the trivial solution y =(

Innovative Ship Design - Elasticity
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Sturm-Liouville Problem

Theorem 12.3 Properties of the Regular Sturm-Liouville Problem \

(@) There exist an infinite number of real eigenvalues that can be arranged in increasing

orderﬂ1<ﬂvz<ﬂ«3<“‘<ﬂvn <“‘2«n_)oosuchthat N—> 0 as

(b) For each eigenvalues there is only one eigenfunction (except for nonzero constant
multiples)

(c) Eigenfunctions corresponding to different eigenvalues are linearly independent

(d) The set of eigenfunctions corresponding to the set of eigenvalues is orthogonal with

respect to the weight function p(X) on interval [a, b]

NG _/

Solve : %[r(x)y’] +[g(x)+Ap(X)]y =0

Subject to: Ay(a)+B,y'(a)=0
Ay(b)+B,y'(b)=0

’”b Seoul
Nat ional Ad vance dShp Des kqn Automation Lab, 158/183
Uniyv. http.//asdal.snu.ac.
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(d) The set of eigenfunctions corresponding to the set of
eigenvalues is orthogonal with respect to the weight

Sturm-Liouville Problem o v oninenaifan)
prootof @ [ P(X)Y (X)Y, ()X =0, 7, %7,
S0V, 1 800+ 4, POOTY, =00
SOV 1+1A00 + 4, PNy, =0++(2)
@)%Yy~ (@)%Y Yo ATOIYa1= Yo TV, + Gy = 2,) POY, Y =0

G = 2a)POOY, Yo = Yy S AT OOYa 1= Yo Y,

— yn [r(X) ym] + [r(X) ym] yr o ym [r(X) yn] —[r(X) yn] ym
dx dx dx dx
r(x)y,Yn —r(X)y Y

%(yn[r(x)y;:) ([ (0Y, )

Innovative Ship Design - Elasticity
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(d) The set of eigenfunctions corresponding to the set of

eigenvalues is orthogonal with respect to the weight

Sturm-Liouville Problem  fncion pt0 on intervifa b

prootof @ [ P(X)Y (X)Y, ()X =0, 7, %7,

S AU CNAIERTCALENA)

(4 = 4n) j POV, X = [ ( yn[r(x)ym])—di(ym[r(x) yn])j
=Y, (O)[rM)y, (0)]-y,(@)r@)y, @)l
—(y, O)[r(d)y: (d)]-v, (@)Ir(@)y;.(a)])
=r(b)[y, (b)y, () -y, (b)y, ()]
—r(@)y,@y,@)-y,@y; ()]

Boundary Condition / Alym (a) I Blyr,n (a) _ O o (3)

Ay(@)+By'(a)=0 <= Ay,(@)+By,(a)=0---(4)

Ay(b)+B,y'(b)=0 i Ay, (b)+ Bzyﬁn(b) =0---(5)

Integrating (i -2 )p(x)ynym =

Innovatlve Shlp Design - Elasticity
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(d) The set of eigenfunctions corresponding to the set of
eigenvalues is orthogonal with respect to the weight

Sturm-Liouville Problem  fncion pt0 on intervifa b

prootof @ [ P(X)Y (X)Y, ()X =0, 7, %7,

(4 = 4n) Ib P, YndX =r(b)[Yn (b)Y, (b) =y (B) yr ()]
—r(@)[yn(@)y.(@) - yn(@)y,(a)]

Boundary Condition

AYn(@)+B,y,(a)=0---(3) {ym(a) y;n(a)}{ﬂ_{o}
AY,(a)+B,y,(a)=0--(4) y.(a) y.(@) B, | |0

As A, B, are not both zero
a) Yy.(a
de{ym( ) Yn(a)

v, v, (a)} = ¥, (@)Y, (a)- vy (@)y, (@) =0

mati

Advanced Ship Desl/éqn Auto
http.//asdal.snu.ac.Kr
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(d) The set of eigenfunctions corresponding to the set of
eigenvalues is orthogonal with respect to the weight

Sturm-Liouville Problem  fncion pt0 on intervifa b

prootof @ [ P(X)Y (X)Y, ()X =0, 7, %7,

(4 = 4n) Ib P, YndX =r(b)[Yn (b)Y, (b) =y (B) yr ()]
—r(@)[yn(@)y.(@) - yn(@)y,(a)]

Boundary Condition

AYn (D) + B,y (0)=0---(5) {ym(b) y{n(b)}{Aﬂ{o}
A.Y,(b)+B,y.(b) =0---(6) y.(b) yi(b)|B,| |0

As A,, B, are not both zero

V() i (0)
d — ’ ! _
e{ () v (b)} Yo (0)Y; (B) = Vi (), (0) = 0

Innovative Shi Design - Elasticity
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(d) The set of eigenfunctions corresponding to the set of
eigenvalues is orthogonal with respect to the weight

Sturm-Liouville Problem  fncion pt0 on intervifa b

prootof @ [ P(X)Y (X)Y, ()X =0, 7, %7,

Zero

(o= 2) [ POOY, YaX = (D)LY, (B)Y, CEROVAG)
—r(@)[y, @)y, @) Ay, @)y, ()]
Ya(@)y,(@)-yn(a)y,(a)=0
Y (0)Yr (0) =y, (b)Y, (b) =0

b
s (A, —/Im)_[a p(X)y, Yy, dx=0

jb P(X)YaYndX =0, 4, # 4,

Advanced Ship Desl/éqn Automation Lab. 163/183
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(d) The set of eigenfunctions corresponding to the set of
eigenvalues is orthogonal with respect to the weight

Sturm-Liouville Problem  fncion pt0 on intervifa b

proatof @ [ P(X)Y, (X) Y, ()X =0, 7, %7,

Zero

(o =), POOY, Y = FO)T ()Y, (OY - ¥ ()Y ()]
~1(@)yn @)y, (@)Y @)y, @]

From Boundary Condition:
Ym(@)Yr (@)= Yn(@)y,(a) =0
Ym (0) Y5 (0) = y5, (D) Y, (D) =0

b
s (A, —/Im)_[a p(X)y, Yy, dx=0

Orthogonal relation
_[: P(X)Y,Ydx=0, A, =4,

Innovative Ship Design - Elasticity
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Sturm-Liouville Problem

The second boundary condition

|ZI Example 2 y(1)+Yy'(1) =0 is satisfied if
A Regular Sturm- I o )
. “ . C,SIna+c,acosa =c,(Sina+acosa) =0
Liouville Problem . )
S| T [ A e . Choosing .Cz #0, we see that the
ove y- Iast equation is equivalent to tana = -«
problem |

The eigenvalues of problem are

; , then 4, =c,, where a,,n=123,, are
y'+2y=0, y(0)=0, yB)+y(@)=0. . the consecutive positive roots o, ;.2
- of tana=—«

A=0 and 1=-a’<0, where a >0,

the trivial solution y=0 y /] a a
A=a’>0, a>0, \7 37
. - 2./ 2

the general solution of y"+a’y=0
IS Yy =C, COSax+C,Sin ax

y(0)=c, =0 .. y=c,sinax y

Innovative Ship Design - Elasticity
 — -
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Sturm-Liouville Problem

M Example 2
A Regular Sturm-

Liouville Problem

Slove the boundary-value
problem

y'+Ay=0, y(0)=0, y@)+y'(1)=0.

A=0 and A=-a’<0, where a >0,
the trivial solution y=0

A=a’*>0, a>0,
the general solution of y"+a’y=0

IS Yy =C, COSax+C,Sin ax

y(0)=c, =0 .. y=c,sinax

Innovatlve Shlp Design - Elasticity

The second boundary condition

vy +y'(1) =0 is satisfied if
C,Sina+C,axcosa =c,(Sina+acosa) =0

. Choosing ¢, #0, we see that the

. last equation is equivalent to tana = -«

a, =2.0288, a, =4.9132, a,=7.9787, a, =11.0855,

and the corresponding solutions are
y, =Sin 2.0288x, Yy, =sin4.9132x, y, =sin7.9787x,
-y, =sin11.0855x

In general, the eigenfunctions of the
. problem are{sina,}, n=123,---

a
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Sturm-Liouville Problem

z EXample 2 =Regular Sturm-Liouville Problem B.V.P
f‘. Regh'la; Stll;ll‘m- Solve: ~_[r(x)y]+[a(9+ ()Y =0
Iouviiie rFroopiem . .
Slove the boundary-value Subject to: A1y(a)+Bly,(a)—o
problem Ay(b)+B,y'(b) =0
y'"+Ay=0, y(0)=0, yQO+y'()=0. < ))

In general, the eigenfunctions of the r(x)=1,q9(x)=0, p(x) =1
problem are{sina }, n=123,-- Ai —1 Bl 0, A2 _1 82 _q

Orthogonal relation
Regular Sturm-Liouville Problem

- o 1 b
{sina, }, n=123,.-- is an orthogonal set with — IL p(x) yn ymd)( — O’ ﬂ“n * ﬂ’m

respect to the weight function

p(X) — 1 on the interval [0,1].

Innovatlve Shlp Design - Elasticity
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Sturm-Liouville Problem N
. Regular Sturm-Liouville Problem Aly(a) +B y’(aj -0
—[F(X)y]+[Q(X)+/1p(X)]y 0 [a,b]  Aym)+B, y'(b) =0

_________________________________________________________________

(z ~2)[ p)Y, ymdx = (D)LY, (b)Y, (b) — Y,r (B) Y (B)]
Orthogonal relation — r(a)[ym (a) Y, (a) Y (a) yn (a)]

=]/n some circumstances, we can prove the orthogonality of the solutions
of i[Ir(><)y’]+[Q(><) +Ap(x)ly =0 without the necessity of specifying a
boundary condition at x=a and at x=b

2> Singular Sturm-Liouville Problem

Innovative Ship Design - Elasticity
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Sturm-Liouville Problem N
Regular Sturm-Liouville Problem Aly(a) +B y’(aj -0
—[F(X)y]+[Q(X)+/1p(X)]y 0 [a,b]  Aym)+B, y'(b) =0

_________________________________________________________________

(z ~2)[ p)Y, ymdx = (D)LY, (b)Y, (b) — Y,r (B) Y (B)]
Orthogonal relation — r(a)[ym (a) Y, (a) Y (a) yn (a)]

=Singular Sturm-Liouville Problem
if r a) —(0 then X=2a may be a singular and the equation

d_[r(x) yr] n [q(x) + /’Lp(x)]y — () maybecomeunboundedas X — a (a, b]
X

however

r(o)[y, D)y, () -y, [O)y,(0O)] - A{) [y, (@)y,(a)-y,(@)y;(a)]

_ dropped from the problem
Orthogonal relation hold on [a, b] “" :no boundary conditionat X = a

o =53 S 7
M 5 (Q)SDAL
) o National Advanced Ship Desl/éqn Automation Lab, 169/183
X Univ. http.//asdal.snu.ac.Kr
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Sturm-Liouville Problem N
Regular Sturm-Liouville Problem Aly(a) +B y’(aj -0
—[F(X)y]+[Q(X)+/1p(X)]y 0 [a,b]  Aym)+B, y'(b) =0

_________________________________________________________________

(z ~2)[ p)Y, ymdx = (D)LY, (b)Y, (b) — Y,r (B) Y (B)]
Orthogonal relation — r(a)[ym (a) Y, (a) Y (a) yn (a)]

=Singular Sturm-Liouville Problem
If I"(b) = O then ¥ = b may be a singular and the equation

%[I’(X)y’]-I-[Q(X)‘F/Ip(X)]y:O may become unbounded as X—)b ,[a,b)

however
Zero

r @T Y (0)Ya (0) = ¥, (D) Y, (0)] = r (@)[Y (8) Y, (@) = Y (@) Yr (2)]

dropped from the problem _
. no boundary condition at X = b »» Orthogonal relation hold on [a, b]

o =53 S 7
M 5 (Q)SDAL
) o National Advanced Ship Desl/éqn Automation Lab, 170/183
X Univ. http.//asdal.snu.ac.Kr
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Sturm-Liouville Problem

Legendre’s equation

di[r(x)y'] +[a(x) + Ap(x)]y=0 [aD] LX)y’ =21y +n(n+1)y =0
X
Orthogonal relation

Lb p(xX)y,y,dx=0, 4, #A4_

=Singular Sturm-Liouville Problem

example*) Legendre’s equation is a Sturm-Liouville equation

[(1—X2)y’I+iy:O o 1-x2)y"—2xy'+y=0 A=n(n+1)
r(x)

Since r(il) — (0 need no boundary conditions, but have a singular Sturm-Liouville problem

on the interval — ] < X <1 . We know that , the Legendre polynomials Pn (X) are solutions
of the problem for 1 = 0,1,2,(/1 =01-2,2- 3,)

Hence these are the eigenfunctions. They are orthogonal on the interval

fl Pm (X) P, (X)dx =0, (m=n)

Innovative Ship Design - Elasticity
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Sturm-Liouville Problem N
Regular Sturm-Liouville Problem Aly(a) +B y’(aj -0
—[F(X)y]+[Q(X)+/1p(X)]y 0 [a,b] A ym)+B, y'(b) =0

_________________________________________________________________

(z )] POX)Y,Yndx = r(b)[ym (b)Y, (b) = Yn (B) Y (0)]
Orthogonal relation — r(a)[ym (a) Y, (a) Y (a) yn (a)]

=Periodic Sturm-Liouville Problem

it r(a)=r(b) then

r(p)y;, (b)y,(®) -y, b))y, (O)]-r@)ly,(@)y,(@)-y,(@)y, (@]
=r(@)[(y,(0) Y, (0) = Y. (a)y, (@) + (Vn () Y () — Yo (D) i (0))]

~.Orthogonal relation hold on [a, b] with y(a) = y(b), y'(a) — y,(b)

Innovative Ship Design - Elasticity
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Sturm-Liouville Problem  ¢.-2)] p(y,y.dx

=Sturm-Liouville Problem =ir(b)[y, (b)y, () -y, b)y,b)] |
di[r(x) V1+[a(x) + p(x)]y =0 [a,b] =r@0Yn(2)y,(8) - yn(@)ya (@)l
X

*By assuming the solution (y) are bounded on the closed interval [a,b] , then

Orthogonal relation hold on.. [a,b]
b
_[a p(xX)y,y.dx=0, 4. =A_[a,b]

* Regular I'(X) #0 with boundary Condition: Al)/(a) + Bl)/'(a) =0
A,y(b)+B,y'(b)=0

e Singular r(a) — (0 without B/C at x=a Ay(b)+B,y'(b)=0

r(p)=0 without B/C at x=b Ay(a)+B,y'(a) =0

» Periodic r(a) =r(b) with y(a) = y(b), ¥'(2) = '(b)

Innovative Ship Design - Elasticity
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Sturm-Liouville Problem

=Self-Adjoint Form

. %[r(X)y’H[Q(X)Mp(X)ly -0

If the coefficient are continuous and a(X) #0 forall X in some interval, then
any second-order differential equation
a(x)y"+b(x)y"+(c(x)+Ad(x))y =0

can be recast into the so-called ‘self-adjoint form'.

Recall, ch. 2.3 integrating factor

al(X)y’+a0(x)y:0 T —[uy]=0

’”‘Seou/
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Sturm-Liouville Problem

=Self-Adjoint Form a(x)y"+b(x)y'+ (c(x)+ Ad(x))y=0 —
%[r(x)y'h[q(x)wp(x)]y=o .

y" + b(X) (@ ij ~0 divided by @(X)

a0’ a0 a)

LIGN
multiply @ a(x)

b(x) () , (500 b(x)
efa(x)dxy” b( X) Ia(x) yr+[e a0 ( ) Ia(x)dx d( )] ~0

(X) (X) a(x)
[ b(x) ‘ b(x) b(x)
= dx [——dx [—=%dx
i e a(x) yr n C(X) e a(x) +/1 d (X) e a(x) y _ O
dt a(x) a(x)

Innovatlve Shlp Des(qn) Elasticity
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Sturm-Liouville Problem

=Self-Adjoint Form

a(x)y"+b(x)y"+(c(x)+Ad(x))y=0 —

%[r(x)y'h[q(x)wp(x)]y=o =

Example) 3y” + 6y’ + /Iy =0

y”+§y1+iy_0
3 3

a00™ 2dx _ 2
e a(x) :ej X _ g2

2X M 2X 1

e?*y" +2e y+%e2xy:0

jwdx
r(x)=e %
jde
q(x) — C(X) e a(x)
a(x)
b(x)
[——-dx
p(X) —_ d (X) e a(x)
a(x)

utomation Lab. 176/183



di[r<x)y']+[q(x)+ip(x)]y=o

Sturm-Liouville Problem x [a,b]

[, POOY,Y,dx =0, 2, # 2,
=Self-Adjoint Form
Ex.)Parametric Bessel Series*

Xy +xy' +(a’x*=n?)y=0, n=012,...
General solution Yy = C1J N (OCX) + C2Yn (OZX) J " (X) converges on [O, OO) when N >0
Yn (X) converges on (O, OO)

divided by X2

" 1 4 2 n2 2 n2
y'+—y+@ -73)y=0 ———  xy"+y' +(xa’-—)y=0
X X Iidx \l/ X
multiply € * =e " =X d 2

[xy]+(——+a x)y =0
r(x)  q(x) 2 PX)

x>0 &

Innovative Shlp Design - Elasticity
= " = e e PR . [T ’”’Seo/
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%[r(x)y']ﬂq(x)mmx)]y=o

Sturm-Liouville Problem b [a,b]
L p(X)y,y,,dx=0, 4 #A_
-Self-Adjoint Form « Singular r(a) — (: Orthogonal relation
holds on without B/C

Ex.)Parametric Bessel Series* e
Xy +xy' +(a’x*=n?)y=0, n=012,...
General solution 'y = C1J N (OCX) + CZYn (O(X) J . (X) converges on [O, OO) when N >0

Yn (X) converges on (O, OO)

Ya(x)

d. , n 5,
W+ +at)y =0

r(x)  q(x) 2 PX)

Recall, singular Sturm-Liouville Problem, the set
r(O) =0 } {Jn(afiX)} : I =1, 2,3..., is orthogonal with

only ‘]n (OCX) is bounded at X = () respect to the weight function p(X) =X

of the two solutions J n (OCX),Yn (OCX) on an interval [O, b]

(Yn > —o0 as X > 0) The orthogonality relation is
b
2
jo xJ, (@ X)d,(a;X)dx=0, 4 # 4, (A=a’)
s -_.E_.‘t.._-._u_.- R “—.______ ;‘*‘l«iigﬂz.feou/ @%%CA%’LE/;I# g?llgnAummaﬁon L5 178/183
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Sturm-Liouville Problem

»Self-Adjoint Form

Ex.)Parametric Bessel Series* SRUINCE COnEen.

; Ay(a)+By'(a)=0
&[r(x)y’] +[a(x)+Ap()]y=0 [a,b] A y(b)+B,y'(b)=0

Orthogonal relation

j: P(X)Y,Y.dx=0, 4, # 4,

d n2 Provided the &;, and hence the
—[xy’] + (——+ azx)y =0 eigenvalues A = aiz, =123,
dx — X —= are defined by means of a
boundary condition at x=b of the
X X ary ¢
r(x) ax) 4 P(x) type given in A y(b)+B,y'(b)=0 :
_ | = : orth | set ’
{Jn(OC,X)},I 1,2,3..., -orthogonal se AJ.{@b) + B,ard. {ab) = 0
(b)rthogonal relation 2 > Roots i(: Olib) ,
jo xJ, (@ X)J,(a;x)dx =0, 4 =4, (1=a?) e L w (X
Eigenvalues /ll = (ai) = F

Innovatlve Shlp Design - Elasticity
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Sturm-Liouville Problem

=Self-Adjoint Form
Ex.) Legendre’s Equation*

%[r(x)y’] +[q(x) + Ap(x)]y =0 [a’ b]

Orthogonal relation

'C P(X)Y,Y,dx=0, A, # 4,

[(1—x2)y'] +Ay=0 < (1-x3)y" -2xy’+n(n+1)y =0

Boundary Condition:

Ay(a)+B,y'(a)=0
A,y(b)+B,y'(b) =0

L dre’s D.E.
CI(X) =0, p(X) :@ éegpeor:yrrizsmial solutions P (xX) n=012,--

As P,(X) is the only solutions of the equation that are bounded on the closed
interval [-1,1], and r(-1) =r(1) =0 (no boundary condition required) that the
set P (x) is orthogonal with respect to the weight function on [-1,1], The

orthogonality relation is J-l

_@Pm(x) P (x)dx=0, m=n

Innovatlve Shlp Design - Elasticity

9 ”“‘Seou/
Nt nal Ad dShpD kq n Automation Lab. 180/183
http: // sdal.sni



Innovative Ship Design - Elasticity

e

; ; ; 181/183
Advanced Ship D Aut tion Lab.
@ hﬁz‘.?/,}c?sda/.sl':u.a%n utomation £a



Mk =Xt A S vIHF =X} 2H2 Heols S

- Lagrange Multiplier Al-&

o o
Minimize T (X)
Subjectto h(x) =0 S3 M XA
g(x) <0 FSTHY =AU

Lagrange S 0|20t HIHIS X =19 2 HI=9] Bigt
L(x,v,u,s) = f(X)+ Vv h(x)+u'(g(x)+s°)
I8 Y XXM XHO v =02ZEH u, vid HI2H0HOF Bt

1) HIHC AHIENM K2 Z2HE AtE0l= BS

ST MY XA 2L h(xX)=0

HES jlof X0 2. U = 0 (MAIHOI HISE ZHOl ZAHI0 UK & W)
s=0=>g(x) =0 (MHEO0I M ZHOI ZN A0l US W)

mWatM L(x,v,u,s) = f(X)+ Vv h(X)+u' (g(X) +5*) = f(x) » MY ZHS =2 0
Lagrange &7}

2) eIHOl AAHIEMA H =2 & fAtliolE 3 < Ao S -0 SUS
ST HSYZAHYHL: v h(x) =0
HS o X2 AL U’ (g(X)+s°) >0
MM L(x,v,u,s) = f(X)+Vv h(X)+u' (g(x)+s?)

of TUS IR I} AHO| S S4-0)l 2| G CIDt NOT WA 4 AL}
Ny g - £E38® Seou
-_'___'-‘_ %@ﬁ f[\;zféna/ @ %}%gij%gﬁug%sgn Automation Lab.
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Mk = Mot XS HINY XXt 2H| 2 Helohs UE
- SUMT: Sequential Unconstrained Minimization Technique(nternal Penalty Function
Method)

oF X1 X

Minimize T (X)

Subjectto h(X) =0 S M XA
g(x) <0 $STHA X

1968'50" Fiacco®Q McCormickO]
Hiek X290 fliiEgE Al SH S0l 4t =8 SA Si—~& 0120101
Hie X =39 EXl&E X< ?ﬁl’“ﬂ ZHIE HEol= “'52 Hioret.

- SUMT: Sequential Unconstrained Minimization Technique D f

EHI0IM F 20| At
®00)= 10013 s T ) o S g wem

&HI"0| Feasible regionOllM £S=2 M2 ZH2| FHIZ
201

g,(x)<0 OlH, FTHZLOI X0} g(x)>0
>0 Ol M, FCHk0l HA

1
9;(x)
OictM HIE0] S22 HI% 2240 FHIZ 2 & I

A= 25 220| 310l ZJ10MI 1, =
01= HI2t Z21 Al IHIO= 2 WXt} | g(x) <0
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