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3 Displacement 

18 Variables
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Given : Body force , ,X Y Z
Find   : Displacement

12

3

18 Equations

3 Variables

3 Equations

If we are interested in finding the displacement 
components in a body, we may reduce the system of 
equations to three equations with three unknown 
displacement components.

Variables and Equations

, : Lame Elastic constantµ λ
:Shear MoldulusG

: Young's ModulusE

u v we
x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

, , : bodyforce in x,y, and z direction repectivelyX Y Z
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∂ ∂ ∂
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∂ ∂ ∂

x y zσ σ σΘ = + +
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Compatibility equations 3 independent Equations

18 Variables

18 EquationsIf we are interested in finding only the stress components 
in a body, we may reduce the system of equations to six 
equations with six unknown stress components
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Differential Equation 
(ODE/PDE)

Classification

Integral 
Equations

Variational 
formulation

Rayleigh-Ritz 
Approximate Method

Galerkin

Collocation

Least Square

Approximate Method

Volterra

Weak Form2)
Approximate Method4)

Galerkin

Collocation

Least Square

FEM

( ) ( ) ( ) ( , ) ( )
x

a
x y x F x K x y dα λ ξ ξ ξ= + ∫

( ) ( ) ( ) ( , ) ( )
b

a
x y x F x K x y dα λ ξ ξ ξ= + ∫

Fredholm

Leibnitz formula1)

( ) ( )
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( , )( , ) [ , ( )] [ , ( )]
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ξξ ξ ξ∂
= + −

∂∫ ∫

1) Jerry, A.j., Introduction to Integral Equations with Applications, Marcel Dekker Inc., 1985, p19~25
2) ‘variational statement of the problem’ -Becker, E.B., et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, 1981, p4
3) Becker, E.B., et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, 1981, p2 . See also Betounes, Partial Differential Equations for Computational Science, Springer, 1988, p408 “…the weak solution is actually a strong (or classical) solution…”
4) some books refer as ‘Method of Weighted Residue’ from the Finite Element Equation point of view and they have different type depending on how to choose the weight functions. See also Fletcher,C.A.J., “Computational Galerkin Methods”, Springer, 
1984
5) Jerry, A.j., Introduction to Integral Equations with Applications, Marcel Dekker Inc., 1985, p1 “Problems of a ‘hereditary’ nature fall under the first category, since the state of the system u(t) at any time t depends by the definition on all the previous 
states u(t-τ) at the previous time t-τ ,which means that we must sum over them, hence involve them under the integral sign in an integral equation.
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what is the relationship 
between ‘week form’ and 
‘Variational formulation’?
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1 11
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what is the relationship between ‘week form’ and ‘Variational formulation’?

Differential Equation 
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Variational 
formulation
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Approximate Method
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Least Square

Approximate Method

Volterra
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Variational formulation: 

physical meaning : “Minimize the 
difference of kinetic energy and 

potential energy”
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dx dx

νρω ν   + = −    
∫ ∫
multiply      and ‘week form’ν

Weighted Residual

if is has a meaning of minimizing the weighted residual,
we may rewrite is as 

virtual displacement
(it has a physical 
meaning)
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d
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B
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Ritz method
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=
≈ ∑

2

0
0
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dx dx

δ ρω ν   + + =    
∫

in case of using Galerkin method, weight function can be 
regarded as a kind of y since they have same basis functions

2

0
0

l d dyT y p dxy
dx dx

δ ρω   + + =    
∫

a similarity
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1) Becker E.B., Finite Elements An Introduction, Volume1, Prentice-Hall, 1981

what is the relationship between ‘week form’ and ‘Variational formulation’?

Our reference to certain weak forms of boundary-value problems as 
“variational” statements arises from the fact that, whenever the 
operators involved possess a certain symmetry, a weak form of the 
problem can be obtained which is precisely that arising in standard 
problems in the calculus of variations.
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1) Rectorys, K. Variational Methods in Mathematics, Science and Engineering, Second edition, D.Reidel Publishing, 1980, p163
2) Rectorys, K. Variational Methods in Mathematics, Science and Engineering, Second edition, D.Reidel Publishing, 1980, p106

what is the relationship between ‘week form’ and ‘Variational formulation’?

Remark 14.11) In the case of positive definite operators, the Galerkin method brings nothing new in comparison with the Ritz method ; the 
two methods lead to the solution of identical systems of linear equations and to identical sequences of approximate solution. However, the 
possibility of the application of the Galerkin method is much broader that that of the Ritz method.

( , ) 0, 1,...,n kAu f k nϕ− = =The Galerkin method, which is characterized by the condition                                               does not impose beforehand any essential 
restrictive conditions on operator                                                  

It is in no way necessary that the operator A be positive definite, it need not even be symmetric, above all it need not ne linear.
Formally speaking, the Galerkin method can thus applied even in the case of very general operators

A

Remark 14.2. Although both the Ritz and the Galerkin methods lead to the same results in the case of linear positive operators, the basic 
ideas of these methods are entirely different.

ex: deflection of beam

[ ] ( )EIu q x′′′′ = with the B/C (0) (0) 0, ( ) ( ) 0,u u u l u l′ ′= = = =
2

0 0

1 ( )
2

l l
EI u dx qu dx′′ −∫ ∫

or   minimize the function of energy

Definition 8.152) An operator      is called positive in its domain        if it is symmetric and if for all              , the relations  A AD Au D∈

( , ) 0Au u ≥ and ( , ) 0 0  Au u u= ⇒ = hold.

2( , )
b

a
Au u Au dx′= ∫

If, moreover, there exists a constant               such that for all              the relation                              holds, 

then the operator      is called positive definite in   

0C >
22( , )Au u C u≥Au D∈

A AD

ADin
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Classification

1) Rectorys, K. Variational Methods in Mathematics, Science and Engineering, Second edition, D.Reidel Publishing, 1980, p163

what is the relationship between ‘week form’ and ‘Variational formulation’?

Remark 14.2. Although both the Ritz and the Galerkin methods lead to the same results in the case of linear positive operators, the basic 
ideas of these methods are entirely different.

ex: deflection of beam

[ ] ( )EIu q x′′′′ = with the B/C (0) (0) 0, ( ) ( ) 0,u u u l u l′ ′= = = = 2

0 0

1 ( )
2

l l
EI u dx qu dx′′ −∫ ∫

or   minimize the function of energy

1
,n

n i ik
u aϕ

=
=∑approximate solution                             where     satisfy the B/Ciϕ

Galerkin method

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 2 1 1 10 0 0 0

1 1 2 2 2 2 2 20 0 0 0

1 1 2 20 0 0 0

l l l l

n n

l l l l

n n

l l l l

n n n n n n

a EI dx a EI dx a EI dx q dx

a EI dx a EI dx a EI dx q dx

a EI dx a EI dx a EI dx q dx

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

′′ ′′ ′′′′ ′′ ′′+ + + =

′′ ′′ ′′′′ ′′ ′′+ + + =

′′ ′′ ′′′′ ′′ ′′+ + + =

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫









: multiply      and integration ϕ
Ritz method

( )

( )

( )

2
1 1 2 1 2 1 10 0 0 0

2
1 1 2 2 2 2 20 0 0 0

2
1 1 2 20 0 0 0

l l l l

n n

l l l l

n n

l l l l

n n n n n

a EI dx a EI dx a EI dx q dx

a EI dx a EI dx a EI dx q dx

a EI dx a EI dx a EI dx q dx

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

′′ ′′ ′′ ′′ ′′+ + + =

′′ ′′ ′′ ′′ ′′+ + + =

′′ ′′ ′′ ′′ ′′+ + + =

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

∫ ∫ ∫ ∫









different?

The Galerkin method starting with the differential equation of the problem and the Ritz method with the respective functional

( ) ( ) ( ) ( ) ( )

( )

0 0 00

0

ll l l

i k i k i k i k i k

l

i k

EI dx EI EI dx EI EI dx

EI dx

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

 ′′ ′ ′′′ ′′ ′′ ′ ′′ ′ ′′ ′′ = − = − +   

′′ ′′=

∫ ∫ ∫

∫
identical
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Self-adjoint form
2 0d dyT y p

dx dx
ρω  + + = 

 

2

0 0 0
0

l l ld dyT y dx y y dx p y dx
dx dx

δ ρω δ δ  + + = 
 ∫ ∫ ∫

differential equation

multiply      and integrateyδ

integrating by part 
and two end conditions

2
2 2

0
0

1 0
2 2

l
l T dy dyy py dx T y

dx dx
δ ρω δ

    + − + =         
∫

2
2 2

0

1 0
2 2

l T dyy py dx
dx

δ ρω
  + − =  

   
∫variational problem

2
2 21let

2 2
T dyF y py

dx
ρω  = + −  

 

0F F
x y y
 ∂ ∂ ∂

− = ′∂ ∂ ∂ 

then the differential 
equation is obtained by 
the Euler equation

0Iδ =
0
( . ) 0

l
D E y dxδ =∫Can this procedure be used for any 

differential equations?

while the technique of forming the left directly to the right is a particularly convenient one, and certainly is appropriate in 
this case, its use in other situation may be less well motivated unless it is verified that the differential equation involved is 
indeed the Euler equations of some variational problem,               whose natural boundary conditions include those which 
govern the problem at hand*

0Iδ =

2

0

l d dyT y p y dx
dx dx

ρω δ   + +    
∫

*Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p184

Ex.)
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Self-adjoint form
0Iδ =

0
( . ) 0

l
D E y dxδ =∫Can this procedure be used for any 

differential equations?

while the technique of forming the left directly to the right is a particularly convenient one, and certainly is appropriate in 
this case, its use in other situation may be less well motivated unless it is verified that the differential equation involved is 
indeed the Euler equations of some variational problem,               whose natural boundary conditions include those which 
govern the problem at hand*

0Iδ =

2( ) ,0x y xy x x l′ ′ + = ≤ ≤Ex.)

2

0
( )

l
x y xy x y dxδ′ ′ + − ∫

2 2 2 2

00

1 1( ) 0
2 2

l l
x y xy xy dx x y yδ δ ′ ′ + − + =    ∫

multiply      and integrateyδ

if the specified boundary conditions are such that 

2

0
0

l
x y yδ′  = 

2 2 2

0

1 1( ) 0
2 2

l
x y xy xy dxδ  ′ + − = 

 ∫
the variational problem

equivalent equation 2 2
2 1

x y xy xy x
xy y y
′′ ′+ + =
′′ ′⇒ + + =

( )
0

2 1
l

xy y y y dxδ′′ ′+ + −∫
multiply      and integrateyδ

this form cannot be transformed to a proper variational 
problem,             , merely by multiplication by       and 
subsequent integration by part

0Iδ = yδ

introducing weighting function x

or, after calculating the variation

2

0
( )

l
x y xy x y dxδ′ ′ + − ∫

In the case of a D.E. of order greater than two, it may happen 
that no such weighting function exists. 

However, it is readily verified that the abbreviated procedure is 
valid ( when appropriate boundary conditions are prescribed ) if 
the governing equation is of the so-called self-adjoint form 

( ) , , : function of or const.y py qy f p q x′ ′≡ + =L
That is such an equation is the Euler equation of a proper 
variational problem,            which is equivalent to the condition 0Iδ =

( )2

1

.
x

x
y f y dxδ−∫ L

11/183



Innovative Ship Design - Elasticity
SDAL@Advanced Ship Design Automation Lab.
http://asdal.snu.ac.kr

Seoul 
National
Univ.

Self-adjoint form*

*Jerry A.J., Introduction to Integral Equations with Applications, Marcel Dekker, 1985, p96-97

2

0 1 22

1 2

1 2

( ) ( ) ( ) ( )

( ) ( ) 0
( ) ( ) 0

d y dyA x A x A x y Ly f x
dx dx

y a y a
y b y b

α α
β β

+ + ≡ =

′+ =
′+ =

nonhomogeneous boundary value problem

the self-adjoint form, which means                         must be exact differential  ( )v Lu u Lv dx−

( )dg v Lu u Lv dx= − for any two functions          and         operated on by ( ) ( )u x v x L

A very important example in applied mathematics if a self-adjoint differential operator is

[ ( ) ] [ ( ) ( )] 0d duLu r x q x p x u
dx dx

λ≡ + + =

Subject to:

which is used with well-known Sturm-Liouville problem

[ ( ) ] [ ( ) ( )] 0d duLu r x q x p x u
dx dx

λ≡ + + =

1 2

1 2

( ) ( ) 0
( ) ( ) 0

y a y a
y b y b

α α
β β

′+ =
′+ =
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Self-adjoint form*

*Jerry A.J., Introduction to Integral Equations with Applications, Marcel Dekker, 1985, p96-97
1) Becker, E.B., et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, p63 , see also Greenburg, M.D., Application of Green’s Functions in Science and Engineering, p6-9 1971, p6-9

[ ( ) ] [ ( ) ( )] 0d duLu r x q x p x u
dx dx

λ≡ + + =

the self-adjoint form, which means                         must be exact differential  ( )v Lu u Lv dx−

( )dg v Lu u Lv dx= − for any two functions          and         operated on by ( ) ( )u x v x L

[ ( ) ] [ ( ) ]

( ) ( )

d dv r x u u r x v
dx dx

vr u vru ur v urv
r vu uv r vu uv

′ ′= −

′ ′ ′′ ′ ′ ′′= + − −
′′ ′′ ′ ′ ′= − + −

[ ]

( ) ( )
( ) ( )

( )

r vu uv v u v u r vu uv
r v u vu u v uv r vu uv
d r vu uv
dx

′′ ′′ ′ ′ ′ ′ ′ ′ ′= − − + + −
′ ′ ′′ ′ ′ ′′ ′ ′ ′= + − − + −

′ ′= −

[ ]

[ ]

( )

( ) , ( )

dvLu uLv r vu uv
dx

vLu uLv dx dg g r vu uv

′ ′− = −

′ ′∴ − = = −

2

0 1 22( ) ( ) ( ) ( )d y dyA x A x A x y Ly f x
dx dx

+ + ≡ =
self-adjoint form

Note that the governing differential equation in linear second-
order problems can be written compactly in the operator form1)

Au f=
Where     is the differential operator for the problem.A
If      and      are arbitrary smooth functions vanishing at x=0, x=l, 
the operator     is said to be formally self-adjoint whenever

u v
A

0 0

l l
v Au dx u Av dx=∫ ∫

it can be shown that an energy functional exists for a given 
boundary-value problem only when the operator     for the 
problem is self-adjoint. For self-adjoint problems and, therefore, 
for all problems derivable from an energy functional and the 
stiffness matrix resulting from the Rits approximation will always 
be symmetric.

Clearly, when Ritz method is applicable, it leads the the same 
system of equations as Galerkin method.

In the general case, the operator was not self-adjoint. For this 
reason, it is clear that Galerkin method is applicable to a wider 
class od problems that is Rits method

A

[ ( ) ] [ ( ) ( )] [ ( ) ] [ ( ) ( )]d dvLu u Lv v r x u v q x p x u u r x v u q x p x v
dx dx

λ λ′ ′− = + + − + +
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Summary : Variational Problem and D.E.

2
2 2

0

1 0
2 2

l T dyy py dx
dx

δ ρω
  + − =  

   
∫Variational formulation

2
2 21let

2 2
T dyF y py

dx
ρω  = + −  

 

0F F
x y y
 ∂ ∂ ∂

− = ′∂ ∂ ∂ 

then the differential 
equation is obtained by 
the Euler equation

2

0 0 0
0

l l ld dyT y dx y y dx p y dx
dx dx

δ ρω δ δ  + + = 
 ∫ ∫ ∫

multiply     and integrateyδ

integrating by part 
and two end conditions 2

2 2

0
0

1 0
2 2

l
l T dy dyy py dx T y

dx dx
δ ρω δ

    + − + =         
∫

2

0

l d dyT y p y dx
dx dx

ρω δ   + +    
∫

2 0d dyT y p
dx dx

ρω  + + = 
 

Differential Equation Ex.)

solution of D.E. solution of Integral Equation 

Approximation
-Galerkin /Collocation /Least Square 

Green Function

Approximation
- Rayleigh-Ritz 
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Variational problems for deformable bodies

Calculus of variation are concerned chiefly with the determination of 
maxima and minima of certain expression involving unknown functions*

*Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p119
**Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172

a variational problem can be derived from a differential equation and the 
associated boundary conditions…such formulations are readily adapted to 
approximate analysis**

Calculus of variation 

Variational problems for deformable bodied
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Variational problems for deformable bodies

*Zill,D.G, Cullen,M.R., Advanced Engineering Mathematics, Third Edition, Jones and Bartlett, 2006, p107

a variational problem can be derived from a differential equation and the associated 
boundary conditions…such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Example : the problem of determining small deflection s of a rotating string 

1θ

1T

2T

2θ

xx ∆+x

y
( )y x

( )y x x+ ∆

r

)(xy

x l=0=x

ω

ρ : string density 
ω : string angular velocity
T : magnitude of tension 

r r+ ∆

s∆

2ωra =

0x =∑F

1 1 2 2cos cosT Tθ θ∴ =

 derivation of the differential equation*
force equilibrium in x-direction

, 2,x x x= +∑ 1F T T

1 1 2 2let cos cosT T Tθ θ= =

1 2
1 2

then ,
cos cos

T TT T
θ θ

= =

1 1 2 2

1 1 2 2

cos( ) cos
cos cos

T T
T T

π θ θ
θ θ

= + +
= − +

i i
i i

2, 2 2cosx T θ=T i
1, 1 1cosx T θ= −T i

0=
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1θ
2θ

xx ∆+x

y
( )y x

( )y x x+ ∆

r r r+ ∆

s∆

2ωra =

Variational problems for deformable bodies

Example : the problem of determining small deflection s of a rotating string 

)(xy

x l=0=x

ω

ρ : string density 
ω : string angular velocity
T : magnitude of tension 

1 2tan , tan
x x x

dy dy
dx dx

θ θ
+∆

= =

 derivation of the differential equation*

1, 2,y y y= +∑F T T
resultant force in y-direction

1 1 2 2

1 1 2 2

sin( ) sin
sin sin

T T
T T

π θ θ
θ θ

= + +
= − +

j j
j j

force equilibrium in x-direction

1 2
1 2

,
cos cos

T TT T
θ θ

= =

1 2

1 2

1 2

sin sin
cos cos
tan tan

T T

T T

θ θ
θ θ
θ θ

= − +

= − +

j j

j j

[ ( ) ( )]y T y x x y x′ ′= + ∆ −∑F j

a variational problem can be derived from a differential equation and the associated 
boundary conditions…such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

*Zill,D.G, Cullen,M.R., Advanced Engineering Mathematics, Third Edition, Jones and Bartlett, 2006, p107

2, 2 2siny T θ=T j

1, 1 1siny T θ= −T j

1T

2T
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1θ
2θ

xx ∆+x

y
( )y x

( )y x x+ ∆

r r r+ ∆

s∆

2ωra =

Variational problems for deformable bodies

Example : the problem of determining small deflection s of a rotating string 

)(xy

x l=0=x

ω

ρ : string density 
ω : string angular velocity
T : magnitude of tension 

[ ( ) ( )]y T y x x y x′ ′= + ∆ −∑F j

 derivation of the differential equation*
resultant force in y-direction

m s xρ ρ= ∆ ≈ ∆Mass: 

2
ya yω∴ = −

1x∆ assum.: 

When Δx is small, 

r r r y+ ∆ ≈ =
linearization

acceleration in y-direction

2
ya rω= −Centripetal acceleration: 

negative sign : acceleration 
points in the direction 
opposite to the positive y 
direction

2( )yma x yρ ω∴ ≈ − ∆

a variational problem can be derived from a differential equation and the associated 
boundary conditions…such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

*Zill,D.G, Cullen,M.R., Advanced Engineering Mathematics, Third Edition, Jones and Bartlett, 2006, p107

2, 2 2siny T θ=T j

1, 1 1siny T θ= −T j

1T

2T
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1θ
2θ

xx ∆+x

y
( )y x

( )y x x+ ∆

r r r+ ∆

s∆

2ωra =

Variational problems for deformable bodies

Example : the problem of determining small deflection s of a rotating string 

)(xy

x l=0=x

ω

ρ : string density 
ω : string angular velocity
T : magnitude of tension 

[ ( ) ( )]y T y x x y x′ ′= + ∆ −∑F j

 derivation of the differential equation*
• resultant force in y-direction

• acceleration in y-direction
2

yma x yρ ω= − ⋅∆ ⋅ ⋅

• Newton’s 2nd law y yma=∑F j

2[ ( ) ( )]T y x x y x x yρ ω′ ′+ ∆ − = − ⋅∆ ⋅ ⋅

0)()( 2 =+
∆

′−∆+′
y

x
xyxxyT ρω

02
2

2

=+∴ y
dx

ydT ρω

2

2)()(
dx

yd
x

xyxxy
≈

∆
′−∆+′When Δx is small, 

a variational problem can be derived from a differential equation and the associated 
boundary conditions…such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

*Zill,D.G, Cullen,M.R., Advanced Engineering Mathematics, Third Edition, Jones and Bartlett, 2006, p107

1T

2T
2, 2 2siny T θ=T j

1, 1 1siny T θ= −T j
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Physical Meaning of Green Function

)(xy

Lx =0=x ω

Ex) Rotating String

1θ

1T

2T

2θ

xx ∆+x

y
( )y x

( )y x x+ ∆

r

ρ : string density 
ω : string angular velocity
T : magnitude of tension 

r r+ ∆

s∆

2ωra =

02
2

2

=+∴ y
dx

ydT ρω

displacement can be occurred with no 
external force and homogeneous B/C ?

2

2 0, (0) 0, ( ) 0d y y y y l
dx

λ+ = = =

0
( ) ( , ) ( )

l
y x K x y dλ ξ ξ ξ∴ = ∫

( )
, ( , )

( )

l x when x
lK x
x l when x
l

ξ ξ
ξ

ξ ξ

 − <= 
 − >


Green function

in this example, string’s angular velocity are causing the 
displacement. If tension is zero, this equation is not valid. With 
non zero tension, displacement is affected by the string’s 
angular velocity and in the equation it is     .

Even in the case of homogeneous B/C and no external force 
(actually, it means the nonhomogeneous term in the equation), 
there could be ‘a source’ causing ‘motion’ of the system in the 
equation *

λ

* this statement is just writer’s note, sea also Morse, P.M, Feshbach, H, Methods of theoretical Physics, McGraw-Hill, 1953, p791~p793 20/183
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Variational problems for deformable bodies

Example : the problem of determining small deflection s of a rotating string 

2 0d dyT y p
dx dx

ρω ∴ + + = 
 

The governing differential equation
y : the displacement of a point from the axis of rotation
ρ : linear mass density 
ω : string angular velocity
T : magnitude of tension
p : intensity of a distributed radial load

)(xy

x l=0=x

ω
p

a variational problem can be derived from a differential equation and the associated 
boundary conditions…such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

Regular Sturm-Liouville Problem
rrqp ′,,, real-valued functions

continuous on an interval

are not both zero

],[ ba

11, BA

Solve : 0)]()([])([ =++′ yxpxqyxr
dx
d λ

Subject to:

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA

0)(,0)( >> xpxr

for every    in the interval ],[ bax

are not both zero22 , BA

B.V.P

Recall, *

*Zill, D.G., Cullen, M.R., Advanced Engineering Mathematics, Third Edition, Jones and Bartllet, 2006, ch.12.5 21/183
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Variational problems for deformable bodies

Example : the problem of determining small deflection s of a rotating string 

2 0d dyT y p
dx dx

ρω ∴ + + = 
 

The governing differential equation
y : the displacement of a point from the axis of rotation
ρ : linear mass density 
ω : string angular velocity
T : magnitude of tension
p : intensity of a distributed radial load

in order to formulate a corresponding variational problem

2

0 0 0
0

l l ld dyT y dx y y dx p y dx
dx dx

δ ρω δ δ  + + = 
 ∫ ∫ ∫

)(xy

x l=0=x

ω

multiply      and integrate over yδ (0, )l

0 0
0

0
0

2

0 0
0

( )

2

l
l l

l
l

l
l l

d dy dy dy d yT y dx T y T dx
dx dx dx dx dx

dy dy dyT y T dx
dx dx dx

d dy y
dx dx

d dy dy T dyT y dx T y dx
dx dx dx dx

δδ δ

δ δ

δ δ

δ δ δ

   • = −      

 = −  

=

      = −              

∫ ∫

∫

∫ ∫



2 2 21
2

y y yρω δ δ ρω • =  
 

( )p y pyδ δ• =

( )
2

2 2

0 0 0

1 0
2 2

l l lT dy dx y dx py dx
dx

δ δ ρω δ
    − + + =         

∫ ∫ ∫

2
2 2

0
0

1 0
2 2

l
l T dy dyy py dx T y

dx dx
δ ρω δ

    + − + =         
∫

p

a variational problem can be derived from a differential equation and the associated 
boundary conditions…such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)

22/183



Innovative Ship Design - Elasticity
SDAL@Advanced Ship Design Automation Lab.
http://asdal.snu.ac.kr

Seoul 
National
Univ.

Variational problems for deformable bodies

Example : the problem of determining small deflection s of a rotating string 

2 0d dyT y p
dx dx

ρω ∴ + + = 
 

The governing differential equation
y : the displacement of a point from the axis of rotation
ρ : linear mass density 
ω : string angular velocity
T : magnitude of tension
p : intensity of a distributed radial load

2
2 2

0
0

1 0
2 2

l
l T dy dyy py dx T y

dx dx
δ ρω δ

    + − + =         
∫

if we impose at each of the two ends one of the conditions

0 0dyy y or T
dx

= =
0

0
ldythen T y

dx
δ  =  

2
2 2

0

1 0
2 2

l T dyy py dx
dx

δ ρω
  ∴ + − =  

   
∫

)(xy

x l=0=x

ω
p

a variational problem can be derived from a differential equation and the associated 
boundary conditions…such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)
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Variational problems for deformable bodies

*Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172

Example : the problem of determining small deflection s of a rotating string 

2 0 ( )d dyT y p A
dx dx

ρω ∴ + + = 
 



The governing differential equation

y : the displacement of a point from the axis of rotation
ρ : linear mass density 
ω : string angular velocity
T : magnitude of tension
p : intensity of a distributed radial load

 The variational form

0 0 ( .1)dyy y or T B
dx

= = 

2
2 2

0

1 0 ( )
2 2

l T dyy py dx B
dx

δ ρω
  + − =  

   
∫ 

if y renders the integral in (B) stationaryit must satisfy (A)

it renders the integral in (B) stationaryif y satisfies (A) and end conditions 
of the type required in (B.1)

conversely,

the solution are different ?

the end conditions (B.1) or equivalently  
0

0
ldyT y

dx
δ  =  

are so-called ‘natural boundary conditions’ of the variational problem (B)

a variational problem can be derived from a differential equation and the associated 
boundary conditions…such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)
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Variational problems for deformable bodies

*Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172

Example : the problem of determining small deflection s of a rotating string 

 The variational form (meaning of terms)

0 0 ( .1)dyy y or T B
dx

= = 

2
2 2

0

1 0 ( )
2 2

l T dyy py dx B
dx

δ ρω
  + − =  

   
∫ 

2
2 2

0

1 0 ( )
2 2

l T dyy py dx B
dx

δ ρω
   − − =        

∫ 

potential energy per unit length due to the radial force

potential energy per unit length due to the tension in the string, to a first approximation

2

1 dyds dx
dx

 = +  
 



2

2

2

1 1

11 1
2

1
2

ds dx dyT T
dx dx

dyT
dx

dyT
dx

 −   = + −  
   

   = + + −  
   

 ≈  
 



Taylor series←

kinetic energy of the 
string per unit length

a variational problem can be derived from a differential equation and the associated 
boundary conditions…such formulations are readily adapted to approximate analysis
(Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p172)
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Linearization

2
2 2 2 1 dyds dx dy ds dx

dx
 = + → = +  
 

2 2

let, then, 1 1dy dyz z
dx dx

   = + = +   
   

1
2

0

3
2

0

( ) 1
(0) 1

1 1(0) (1 )
2 2

1 1(0) (1 )
4 4

z

z

f z z
f

f z

f z

−

=

−

=

= +
=

′ = + =

′′ = − + = −

21 1 1( ) 1
2 2 4

f z z z ∴ = + + − + 
 



1( ) 1 1
2

f z z z∴ = + ≈ +

, 1if θ 

21 11 1
2 2

dyds z
dx

 ∴ ≈ + = +  
 

1if θ 
dy

dx
θ ds
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The Rayleigh-Ritz method
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Recall, *

The Rayleigh-Ritz method

In the case when a function y(x) is to be determined, 

: (basis) functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c’s

general procedure for obtaining approximate solutions of problems expressed in 
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

 assuming that the desired stationary function of a given problem can be approximated by a linear 
combination of suitably chosen functions, of the form

0 1 1 2 2( ) ( ) ( ) ( ) ( )n ny x x c x c x c xφ φ φ φ≈ + + + +

( ) , 0,1, .kwhere x k nφ = 

( ) , 0,1, .kc x k n= 

: constants to be determined

3 5
*)sin ,

3! 5!
x xex x x= − + −

xsin

x

!5!3

53 xxx +−

!3

3xx −

*see also Larson R., Hostetler R.P., Edwards B.H., Calculus with Analytic Geometry, English Edition, Houghton Mifflin Company, 2006, p679 example 2 28/183
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The Rayleigh-Ritz method

In the case when a function y(x) is to be determined, 

: (basis) functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c’s

general procedure for obtaining approximate solutions of problems expressed in 
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

 assuming that the desired stationary function of a given problem can be approximated by a linear 
combination of suitably chosen functions, of the form

0 1 1 2 2( ) ( ) ( ) ( ) ( )n ny x x c x c x c xφ φ φ φ≈ + + + +

( ) , 0,1, .kwhere x k nφ = 

( ) , 0,1, .kc x k n= 

: constants to be determined

recall, the variational form

0 0 ( .1)dyy y or T B
dx

= = 

2
2 2

0

1 0 ( )
2 2

l T dyy py dx B
dx

δ ρω
  + − =  

   
∫ 

2

0
0

2
l x T dyq y dx

l dx
δ

  − − =  
   

∫

Example : the problem of determining small static         deflections of a string fixed at the points                        
and       ,                 and subject to a transverse loading 

(0,0)
( , )l h ( ) /p x qx l= −

0ω =

corresponding variational problem 

(0 )0, ( )y y l h= =

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫

which means      
vanish at end points 

yδ

0ω =
( ) /p x qx l= −
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The Rayleigh-Ritz method

In the case when a function y(x) is to be determined, 

: functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c’s

general procedure for obtaining approximate solutions of problems expressed in 
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

 assuming that the desired stationary function of a given problem can be approximated by a linear 
combination of suitably chosen functions, of the form

0 1 1 2 2( ) ( ) ( ) ( ) ( )n ny x x c x c x c xφ φ φ φ≈ + + + +

( ) , 0,1, .kwhere x k nφ = 

( ) , 0,1, .kc x k n= 

: constants to be determined

Example : the problem of determining small static         deflections of a string fixed at the points                        
and       ,                 and subject to a transverse loading 

(0,0)
( , )l h ( ) /p x qx l= −

, (0 )0, ( )y y l h= =
variational problem 

0ω =

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫
The function         then is to satisfy the end conditions, whereas the other coordinate functions

are to vanish at the both ends. 
0 ( )xφ

1 2( ), ( ), , ( )nx x xφ φ φ

If polynomials are to be used, for convenience, among the simplest choices, the functions are
2

0 1 2( ) , ( ) ( ), ( ) ( ), , ( ) ( )n
n

hx x x x x l x x x l x x x l
l

φ φ φ φ= = − = − = −

2
1 2( ) ( ) ( ) ( )n

n
hy x x c x x l c x x l c x x l
l

≈ + − + − + + −

Which correspond to an approximation of the form 
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The Rayleigh-Ritz method

In the case when a function y(x) is to be determined, 

: functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c’s

general procedure for obtaining approximate solutions of problems expressed in 
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

 assuming that the desired stationary function of a given problem can be approximated by a linear 
combination of suitably chosen functions, of the form

0 1 1 2 2( ) ( ) ( ) ( ) ( )n ny x x c x c x c xφ φ φ φ≈ + + + +

( ) , 0,1, .kwhere x k nφ = 

( ) , 0,1, .kc x k n= 

: constants to be determined

Example : the problem of determining small static         deflections of a string fixed at the points                        
and       ,                 and subject to a transverse loading 

(0,0)
( , )l h ( ) /p x qx l= −

, (0 )0, ( )y y l h= =
variational problem 

0ω =

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫
2

1 2( ) ( ) ( ) ( )n
n

hy x x c x x l c x x l c x x l
l

≈ + − + − + + −

For simplicity, we consider here only the one-parameter approximation, n=1

1( ) ( )hy x x c x x l
l

≈ + −
can it be the solution 
of the relevant 
differential equation?

0xTy q
l

′′ − = , (0 )0, ( )y y l h= =
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The Rayleigh-Ritz method

In the case when a function y(x) is to be determined, 

: functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c’s

general procedure for obtaining approximate solutions of problems expressed in 
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

 assuming that the desired stationary function of a given problem can be approximated by a linear 
combination of suitably chosen functions, of the form

0 1 1 2 2( ) ( ) ( ) ( ) ( )n ny x x c x c x c xφ φ φ φ≈ + + + +

( ) , 0,1, .kwhere x k nφ = 

( ) , 0,1, .kc x k n= 

: constants to be determined

Example : the problem of determining small static         deflections of a string fixed at the points                        
and       ,                 and subject to a transverse loading 

(0,0)
( , )l h ( ) /p x qx l= −

, (0 )0, ( )y y l h= =
variational problem 

0ω =

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫ 1( ) ( )hy x x c x x l
l

≈ + −replacing

2
2

1 10 0

1 1 (2 ) ( )
2 2

l lx h x hTy q y dx T c x l q x c x x l dx
l l l l

δ δ
      ′ + = + − + + −            

∫ ∫
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The Rayleigh-Ritz method

, (0 )0, ( )y y l h= =
variational problem 2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫ 1( ) ( )hy x x c x x l
l

≈ + −replacing

2
2

1 10 0

1 1 (2 ) ( )
2 2

l lx h x hTy q y dx T c x l q x c x x l dx
l l l l

δ δ
      ′ + = + − + + −            

∫ ∫

2
2 2 2 2 3 2

1 1 10

2
2 2 3 2 2 3 4 3

1 1 1

0

2
2 3
1

1 12 (2 ) (4 4 ) ( )
2

1 4 1 1 12 ( ) ( 2 ) ( )
2 3 3 4 3

1 4(
2 3

l

l

h h hT c x l c x xl l q x c x lx dx
l l l l

h h h lT x c x lx c x x l l x q x c x x
l l l l

hT c l
l

δ

δ

δ

     = + − + − + + + −            

     = + − + − + + + −            

= +

∫

3 3 3 4 4
1

2
3 2 3

1 1

3 3
1 1 1 1

3
1 1 1

1

1 1 1 12 ) ( )
3 4 3

1 1 1
2 3 2 12

1 1 12 ,since here only is varied
2 3 12

1 1 , since is arbitrary
3 12

4

hl l q l c l l
l l

h hT l c q l c l
l

T l c c q l c c

l T c q c c

qc
T

δ

δ δ

δ

    − + + + −    
   

    = + + −    
   

 = − 
 
 = − 
 

∴ =
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The Rayleigh-Ritz method

In the case when a function y(x) is to be determined, 

: functions chosen that y(x) satisfies the specified boundary conditions for any choice of the c’s

general procedure for obtaining approximate solutions of problems expressed in 
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

 assuming that the desired stationary function of a given problem can be approximated by a linear 
combination of suitably chosen functions, of the form

0 1 1 2 2( ) ( ) ( ) ( ) ( )n ny x x c x c x c xφ φ φ φ≈ + + + +

( ) , 0,1, .kwhere x k nφ = 

( ) , 0,1, .kc x k n= 

: constants to be determined

Example : the problem of determining small static         deflections of a string fixed at the points                        
and       ,                 and subject to a transverse loading 

(0,0)
( , )l h ( ) /p x qx l= −

, (0 )0, ( )y y l h= =
variational problem 

0ω =

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫ 1( ) ( )hy x x c x x l
l

≈ + −replacing

1 4
qc
T

=

( ) ( )
4

h qy x x x x l
l T

∴ = + −
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The Rayleigh-Ritz method
general procedure for obtaining approximate solutions of problems expressed in 
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

Example : the problem of determining small static         deflections of a string fixed at the points                        
and       ,                 and subject to a transverse loading 

(0,0)
( , )l h ( ) /p x qx l= −

, (0 )0, ( )y y l h= =
variational problem 

0ω =

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫

1( ) ( )hy x x c x x l
l

≈ + − ( ) ( )
4

h qy x x x x l
l T

= + −

what about the 
differential equation?

21
2

xF Ty q y
l

′= + then, by the Euler equation

(approximation)

let 0F F
x y y
 ∂ ∂ ∂

− = ′∂ ∂ ∂ 

( )

2 21 1 0
2 2

' 0

0

x xTy q y Ty q y
x y l y l

xTy q
x l

xTy q
l

 ∂ ∂ ∂   ′ ′+ − + =    ′∂ ∂ ∂    
∂

− =
∂

′′ − =
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Solution of D.E. : Integration

0xTy q
l

′′ − =

2

3

2

6

xy q
Tl

qy x C
Tl

qy x Cx D
Tl

′′ =

′ = +

= + +

2

2

( )

( )
6

6

6

y l h
qy l l Cl
T

q l Cl h
T

h qC l
l T

=

= +

+ =

∴ = −

(0) 0
(0)

0

y
y D

D

=
=
∴ =

3

6 6
q h qy x x lx
Tl l T

∴ = + −

2 2( )
6

h qy x x x l
l Tl

→ = + −

Rayleigh-Ritz solution: ( ) ( )
4

h qy x x x x l
l T

= + −

Integration twice

, (0 )0, ( )y y l h= =
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Solution of D.E. : Integration
Rayleigh-Ritz solution: ( ) ( )

4
h qy x x x x l
l T

= + −

Homogeneous Solution

0y′′ =

2

2

1

2

1 2

1 2

let
then

0
0 (double roots)

x

x

h

y e

Te

y C
y Cx

y C C C Cx
c c x

λ

λλ

λ

=

=

∴ =

=
=

∴ = +
= +

Nonhomogeneous Solution
qy x
Tl

′′ =

try y A Bx= +
it is associate with

then, Let’s assume particular solution as
hy

2y Ax Bx= +

So, Let’s assume particular solution as

it is also associate withhy

2 3y Ax Bx= +

2 6y A Bx′′ = +

0

6

A
qB
Tl

=

=

3
1 2 6h p

qy y y c c x x
Tl

∴ = + = + +

1

2
2

2

(0) 0

( )
6

6

y c
qy l c l l h
T

h qc l
l T

= =

= + =

∴ = −

0xTy q
l

′′ − = , (0 )0, ( )y y l h= =

3( )
6 6

h q qy l x x
l T Tl

∴ = − +

2 2( )
6

h qor y x x x l
l Tl

= + −
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Solution of D.E. : series solution

0xTy q
l

′′ − =

3
1

2
1

1

( )

( )
6

6

6

y l h
qy l l c l
Tl

q l c l h
T

h qc l
l T

=

= +

+ =

∴ = −

0

0

(0) 0
(0)

0

y
y c

c

=
=
∴ =

0
( ) n

n
n

y x c x
∞

=

=∑
1

1
( ) n

n
n

y x n c x
∞

−

=

′ = ⋅∑
2

2
( ) ( 1) n

n
n

y x n n c x
∞

−

=

′′ = − ⋅∑

assume

2

2
( 1) 0n

n
n

qT n n c x x
l

∞
−

=

− ⋅ − =∑

, (0 )0, ( )y y l h= =

0 1 2
2 3 4(2 1 3 2 4 3 ) 0qT c x c x c x x

l
⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + − =

( ) ( )0 1 2
2 3 42 1 3 2 4 3 0qT c x T c x T c x

l
 ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − + ⋅ ⋅ ⋅ + = 
 



2 0c = 3,
6
qc
Tl

=4 5, 0, 0,c c= = 

0 1 3
0 1( )

6
qy x c x c x x
Tl

→ = + + 3

2 2

6 6

( )
6

h q qy l x x
l T Tl

h qx x x l
l Tl

 ∴ = − + 
 

= + −

2 2( )
6

h qy x x x l
l Tl

= + −

Rayleigh-Ritz solution: ( ) ( )
4

h qy x x x x l
l T

= + −

D.E : 
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Differential Equation 

The Rayleigh-Ritz method
general procedure for obtaining approximate solutions of problems expressed in 
variational form (Hildebrand, F.B., Methods of Applied Mathematics, second edition, Dover, 1965, p181)

Example : the problem of determining small static         deflections of a string fixed at the points                        
and       ,                 and subject to a transverse loading 

(0,0)
( , )l h ( ) /p x qx l= −

, (0 )0, ( )y y l h= =
Variational problem 

0ω =

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫

1( ) ( )hy x x c x x l
l

≈ + − ( ) ( )
4

h qy x x x x l
l T

= + −
(approximation)

0xTy q
l

′′ − =

2 2( )
6

h qy x x x l
l Tl

= + −

, (0 )0, ( )y y l h= =

(exact solution)
what happens if we 
use two-parameter 

approximation? 

what is difference or 
common?
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Differential Equation 

The Rayleigh-Ritz method

, (0 )0, ( )y y l h= =

Variational problem 

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫

1( ) ( )hy x x c x x l
l

≈ + −

( ) ( )
4

h qy x x x x l
l T

= + −

basis functions (from characteristic equation)

0xTy q
l

′′ − = , (0 )0, ( )y y l h= =

(exact solution)

3( ) ( )
6 6

h q qy x l x x
l T Tl

= − +

(approximation solution)

1, x

0y′′ =
which satisfy the homogeneous equation

basis functions (with assumed coefficient)

which satisfy the boundary conditions

, ( )h x x x l
l

−

, (0 )0, ( )y y l h= =

2
2

2 2

(0) 0
( ) 0

1 ( )
2 2 6 2 4

1 3
2 6 2 4 2 16

y
y l

h l q l ly l l
l Tl

h q l h ql
T T

=
=

  = + − 
 

= − = −

2

(0) 0
( ) 0

1
2 2 16

y
y l

h qly l
T

=
=

  = − 
 same values at 

10, ,
2

x l l=
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The Rayleigh-Ritz method

, (0 )0, ( )y y l h= =
variational problem 2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫ 2
1 2( ) ( ) ( )hy x x c x x l c x x l

l
≈ + − + −

replacing

2
2 2

1 2 1 20 0

1 1 (2 ) (3 2 ) ( ) ( )
2 2

l lx h x hTy q y d x T c x l c x x l q x c x x l c x x l d x
l l l l

δ δ
      ′ + = + − + − + + − + −            

∫ ∫

2
2 2 2 2 4 3 2 2 3 2 2 2 2 3 2 4 3
1 2 1 1 2 2 1 20

2
2 3 2 2 2 5
1 2

1 1(4 4 ) (9 1 2 4 ) 2 (2 ) 2 (6 7 2 ) 2 (3 2 ) ( ) ( )
2

1 4 9( 2 ) (
2 3 5

l h h h hT c x xl l c x x l l x c x l c c x lx l x c x lx q x c x lx c x lx dx
l l l l l

hT x c x x l l x c x
l

δ

δ

     = + − + + − + + − + − + + − + + − + −            

 = + − + + − 
 

∫

3 4 3 5 4
4 2 3 2 4 3 2 2 3 2

1 1 2 2 1 2

0

2
2 3 3 3 2 5 5 5 2 2 4
1 2 1 1 2

4 6 7 13 ) 2 ( ) 2 ( ) 2 ( ) ( ) ( )
3 4 3 3 4 3 5 4

1 4 9 4 6 7( 2 ) ( 3 ) 2 ( ) 2 (
2 3 5 3 4 3

l

h h h x x x x xx l l x c x lx c c x lx l x c x lx q c l c l
l l l l

h hT l c l l l c l l l c l l c c l l
l l

δ

    
+ + − + − + + − + + − + −         

 = + − + + − + + − + − 
 

2 4 4 5 5
4 4 3 3

2 1 2

2 3 4
2 3 2 5 4
1 2 1 2 1 2

3
3 5 4 4

1 1 2 2 2 1 1 2

1) 2 ( ) ( ) ( )
3 4 3 5 4

1 1 2 1
2 3 15 3 3 12 20

1 2 1 1
3 15 6 6 1

h l l l l ll c l l q h c c
l l

h l l lT c l c l c c l q h c c
l

lc T l c c T l c c T l c c T l c q

δ

δ δ δ δ

    
+ + − + + − + −         

    
= + + + + − −    

    

 = + + + + − 
 

4

1 2 1 2

3 4
1 2 1 2 1 2 1 2

1 2

1 2 1 2

,since here only and are varied
2 20

1 1 1 2 1 1 ,since , are arbitrary
3 6 12 15 6 20

0
1 1 1
3 6 12
1 2 1 , ,
6 15 20 6 6

lc q c c c

l c T c lT q c l c lT c T q c c c

c T c lT q

q qc T c lT q c c
T lT

δ δ

δ δ

 
− 

 
   = + − + + −   
   

=

∴ + =

+ = ∴ = = 2( ) ( ) ( )
6 6

h q qy x x x x l x x l
l T lT

≈ + − + −
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The Abbreviated Procedure
variational problem 

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫

2
2

1 10 0

1 1 (2 ) ( )
2 2

l lx h x hTy q y dx T c x l q x c x x l dx
l l l l

δ δ
      ′ + = + − + + −            

∫ ∫
2

2 2 2 2 3 2
1 1 10

2
2 2 3 2 2 3 4 3

1 1 1

0

2
2 3
1

1 12 (2 ) (4 4 ) ( )
2

1 4 1 1 12 ( ) ( 2 ) ( )
2 3 3 4 3

1 4(
2 3

l

l

h h hT c x l c x xl l q x c x lx dx
l l l l

h h h lT x c x lx c x x l l x q x c x x
l l l l

hT c l
l

δ

δ

δ

     = + − + − + + + −            

     = + − + − + + + −            

= +

∫

3 3 3 4 4
1

2
3 2 3

1 1

3 3
1 1 1 1

3
1 1 1

1

1 1 1 12 ) ( )
3 4 3

1 1 1
2 3 2 12

1 1 12 ,since here only is varied
2 3 12

1 1 , since is arbitrary
3 12

4

hl l q l c l l
l l

h hT l c q l c l
l

T l c c q l c c

l T c q c c

qc
T

δ

δ δ

δ

    − + + + −    
   

    = + + −    
   

 = − 
 
 = − 
 

∴ =

0d dy qxT
dx dx l

  − = 
 

differential equation

integration and then variation

1( ) ( )hy x x c x x l
l

≈ + −

approximation

, (0 )0, ( )y y l h= =

2

0

1 0
2

l xTy q y dx
l

δ  ′ + =  ∫

0

l d dy qxT y dx
dx dx l

δ   −    
∫

integrating by part 
and two end conditionsmultiply    and integrateyδ

this procedure 
frequently involves a 
reduced amount of 
calculation

1 10
(2 1) ( ) 0

l d h qxT c x x x l c dx
dx l l

δ
    + − − − =         

∫

1 10
2 ( ) 0

l qxTc x x l c dx
l

δ  − − =    
∫

1 4
qc
T

∴ =

2 3 2
1 10

2 ( ) ( ) 0
l qc Tc x lx x lx dx

l
δ  − − − = 

 ∫
3 3

1 1
1( ) 0
3 12

qc Tc l lδ  − + = 
 

variation and then integration
(the abbreviated procedure)

the abbreviated procedure

1( ) ( )hy x x c x x l
l

≈ + −

approximation
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The Abbreviated Procedure

2 3 2
1 10

2 ( ) ( ) 0
l qTc x lx x lx c dx

l
δ  − − − =    

∫

1 10
2 ( ) 0

l qxTc x x l c dx
l

δ  − − =    
∫

1
3 2 4 3

1 1
0

1 1 12 ( ) ( ) 0
3 2 4 3

q lc Tc x lx x x
l

δ   − − − =    

3 3 4 3
1 1

1 1 1 12 ( ) ( ) 0
3 2 4 3

qc Tc l l l l
l

δ  − − − = 
 

1 4
qc
T

∴ =

2 3 2
1 10

2 ( ) ( ) 0
l qc Tc x lx x lx dx

l
δ  − − − = 

 ∫
3 3

1 1
1( ) 0
3 12

qc Tc l lδ  − + = 
 

0

l d dy qxT y dx
dx dx l

δ   −    
∫

1( ) ( )hy x x c x x l
l

≈ + −

approximation

1( )y x x l cδ δ= −

1 10
(2 1) ( ) 0

l d h qxT c x x x l c dx
dx l l

δ
    + − − − =         

∫

1(2 1)dy h c x
dx l

= + −
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Strain Energy
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Strain Energy

When a body is deformed by external forces, work is done by these 
forces.

The energy absorbed in the body due to this external work is called 
strain energy.

If the body behaves elastically, the strain energy can be recovered 
completely when the body is returned to its unstrained state.

reference : Chou.p.c , Pagano N.J., Elasticity , d. van nostrand, 1967 45/183
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

y dx

A B

CD

Strain Energy due to a uniaxial stress

A B

CD

dx

dy

dz

:displacementu

dx

dy

x
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

y

u

dx

A B

CD

x

A′ B′

C′D′

uu dx
x
∂

+
∂

A B

CD

dx

dy

dz

σ σ

deformation

:displacementu

dx

dy

Strain Energy due to a uniaxial stress
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

:displacementu

on the plane      , the stress vector acts in the opposite direction of the displacement DA u
the work done by     on       is negative  σ DA
the work done by     on       is positive  σ BC
the normal stress     increase from zero to       σ xσ

‘no contribution is made to the strain energy 
by    and    as      and       are assumed to 
be zero’ 

v w y zσ σ

y

u

dx

A B

CD

x

A′ B′

C′D′

uu dx
x
∂

+
∂

A B

CD

dx

dy

dz

σ σ

deformation

dx

dy

Strain Energy due to a uniaxial stress
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

:displacementu

on the plane      , the stress vector acts in the opposite 
direction of the displacement 

DA u
the work done by     on       is negative  σ DA
the work done by     on       is positive  σ BC
the normal stress     increase from zero to   σ xσ

0 0

0

0

x x

x

x

ud u dx dydz dudydz
x

udu d dx du dydz
x

ud dxdydz
x

σ σ σ σ

σ σ

σ σ

σ

σ σ

σ

σ σ

σ

σ

= =

= =

=

=

=

=

∂ + − ∂ 
∂ = + − ∂ 

∂
=

∂

∫ ∫

∫

∫

the net work done on the element 

‘no contribution is made to the strain energy 
by    and    as      and       are assumed to 
be zero’ 

v w y zσ σ

y

u

dx

A B

CD

x

A′ B′

C′D′

uu dx
x
∂

+
∂

σ σ

deform
ation

dx

dy

Strain Energy due to a uniaxial stress
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

:displacementu

on the plane      , the stress vector acts in the opposite 
direction of the displacement 

DA u
the work done by     on       is negative  σ DA
the work done by     on       is positive  σ BC
the normal stress     increase from zero to   σ xσ

0 0

0

0

1

x x

x

x

ud u dx dydz dudydz
x

ud dxdydz
x

d dxdydz
E

σ σ σ σ

σ σ

σ σ

σ

σ σ

σ

σ σ

σ

σ σ

= =

= =

=

=

=

=

∂ + − ∂ 
∂ =  ∂ 

=

∫ ∫

∫

∫
1

u
x

E
ud d
x E

ε

σε

σ

∂
=

∂

=

∂  = ∂ 

definition of strain

Hooke’s law

the net work done on the element 

‘no contribution is made to the strain energy 
by    and    as      and       are assumed to 
be zero’ 

v w y zσ σ

y

u

dx

A B

CD

x

A′ B′

C′D′

uu dx
x
∂

+
∂

σ σ

deform
ation

dx

dy

Strain Energy due to a uniaxial stress
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

:displacementu

on the plane      , the stress vector acts in the opposite 
direction of the displacement 

DA u
the work done by     on       is negative  σ DA
the work done by     on       is positive  σ BC
the normal stress     increase from zero to   σ xσ

, which is equal to the strain energy dU
the net work done on the element 

0

1xdU d dxdydz
E

σ σ

σ
σ σ

=

=
= ∫

note that                are variables and 

the integration is with respect to the displacement gradient

, ,dx dy dz

, , uu
x

σ ∂
∂

u
x
∂
∂

are constant for this integration

2

0
0

2

1 1 1
2

1
2

x
x

x

d dxdydz dxdydz
E E

dxdydz
E

σ
σ σ

σ
σ σ σ

σ

=

=

 =   

=

∫
21

2 xdU dxdydz
E
σ∴ =

21 1or  
2 2x x xdU dxdydz E dxdydzσ ε ε= =

‘no contribution is made to the strain energy 
by    and    as      and       are assumed to 
be zero’ 

v w y zσ σ

y

u

dx

A B

CD

x

A′ B′

C′D′

uu dx
x
∂

+
∂

σ σ

deform
ation

dx

dy

, xε direction

Strain Energy due to a uniaxial stress

E
σε = :Hooke’s law
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

the net work done on the element on the element , 
which is equal to the strain energy

x
x

dx
E dx
σε ∆

= =

xσ

A B

CD

dx

dy

dz

dx∆

work done by Uniaxial Stress

x dy dzσ

x dxε

dy dzσ

dxε

21
2 xdU dxdydz

E
σ=

The strain energy per unit volume, 
(the strain energy density)

2
0

1
2 xU

E
σ= 0

2
0

1or 
2
1
2

x x

x

U

U E

σ ε

ε

=

=

For a linear stress-strain relation, 
the force-displacement curve is a straight line and
the work done is equal to the area of the shaded triangle displacement

force

xε direction

net displacement of 
the elementStrain Energy due to a uniaxial stress

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

y

Strain Energy due to the shear stress components      and            

dx

dy

dz

, :displacementu v

dx

x

xyτ yxτ

dy dyxyτ

xyτ

v dx
x
∂
∂

v dy
y
∂
∂
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy due to the shear stress components      and            xyτ yxτ

y dx

x

dy dyxyτ

xyτ

v dx
x
∂
∂

v dy
y
∂
∂1 ( ) ( )

2

1
2

xy yx

xy

v udU dydz dx dxdz dy
x y

v u dxdydz
x y

τ τ

τ

  ∂ ∂ = +   ∂ ∂    
  ∂ ∂

= +  ∂ ∂  

xy
v u
x y

γ ∂ ∂
= +
∂ ∂



The shear strain energy per unit volume, (the shear strain energy density)

( )1
2 xy xy dxdydzτ γ=

0
1
2 xy xyU τ γ=

2

0

2
0

1or 
2
1
2

xy

xy

U
G

U G

τ

γ

=

=

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

, :displacementu v
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy under the action of both      and            xσ yσ , :displacementu v

xσ

A B

CD

dx

dy

dz

x

y

O

Z

Step

1

2

xσ yσ
Let the action take place in the following order

xσincrease zero to yσ remains zero

xσ remains constant increase zero to yσ

xσ

A B

CD

dx

dy

dz

x

y

O

Z

yσ

xε yε

0 x

E
σ

→

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

0 xE
ν σ→ −

x yx

E E
σ νσσ −

→ y

E
σ
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy under the action of both      and            xσ yσ

Step

1

2

xσ yσ
Let the action take place in the following order

xσincrease zero to yσ remains zero

xσ remains constant increase zero to yσ

xε yε

0 x

E
σ

→

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

0 xE
ν σ→ −

x yx

E E
σ νσσ −

→ y

E
σ

The work done by xσ

( )1

2

1
2
1

2

x
x

x

dU dydz dx
E

dxdydz
E

σσ

σ

 =  
 

=

2 21 1 
2 2x x x xdU dxdydz E dxdydz dxdydz

E
σ ε ε σ= = =

work done by Uniaxial Stress

x dy dzσ

x dxε

dy dzσ

dxε
displacement

force

recall,
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy under the action of both      and            xσ yσ

Step

1

2

xσ yσ
Let the action take place in the following order

xσincrease zero to yσ remains zero

xσ remains constant increase zero to yσ

xε yε

0 x

E
σ

→

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

0 xE
ν σ→ −

x yx

E E
σ νσσ −

→ y

E
σ

The work done by yσ

2 21 1 
2 2x x x xdU dxdydz E dxdydz dxdydz

E
σ ε ε σ= = =

work done by Uniaxial Stress

x dy dzσ

x dxε

dy dzσ

dxε
displacement

force

recall,

( )2
1
2
0

x
ydU dxdz dy

E
νσσ  = − 

 
=

2
1

1
2 xdU dxdydz

E
σ=
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy under the action of both      and            xσ yσ

Step

1

2

xσ yσ
Let the action take place in the following order

xσincrease zero to yσ remains zero

xσ remains constant increase zero to yσ

xε yε

0 x

E
σ

→

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

0 xE
ν σ→ −

x yx

E E
σ νσσ −

→ y

E
σ

The work done by yσ

2
1

1
2 xdU dxdydz

E
σ=

2 21 1 
2 2x x x xdU dxdydz E dxdydz dxdydz

E
σ ε ε σ= = =

work done by Uniaxial Stress

x dy dzσ

x dxε

dy dzσ

dxε
displacement

force

recall,

( )3

2

1
2
1

2

y
y

y

dU dxdz dy
E

dxdydz
E

σ
σ

σ

 
=  

 

=

2 0dU =
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy under the action of both      and            xσ yσ

Step

1

2

xσ yσ
Let the action take place in the following order

xσincrease zero to yσ remains zero

xσ remains constant increase zero to yσ

xε yε

0 x

E
σ

→

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

0 xE
ν σ→ −

x yx

E E
σ νσσ −

→ y

E
σ

The work done by x constσ =

2
1

1
2 xdU dxdydz

E
σ=

2 21 1 
2 2x x x xdU dxdydz E dxdydz dxdydz

E
σ ε ε σ= = =

work done by Uniaxial Stress

x dy dzσ

x dxε

dy dzσ

dxε
displacement

force

recall,

2 0dU =

2
3

1
2 ydU dxdydz

E
σ=

( )4
y

x

x y

dU dydz dx
E

dxdydz
E

νσ
σ

ν σ σ

− 
=  

 
−

=

( )4
1
2

y
xdU dydz dx

E
νσ

σ
− 

=  
 

x constσ =
the factor ½ is not included since
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy under the action of both      and            xσ yσ

Step

1

2

xσ yσ
Let the action take place in the following order

xσincrease zero to yσ remains zero

xσ remains constant increase zero to yσ

xε yε

0 x

E
σ

→

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

0 xE
ν σ→ −

x yx

E E
σ νσσ −

→ y

E
σ

2
1

1
2 xdU dxdydz

E
σ=

2 0dU =

2
3

1
2 ydU dxdydz

E
σ=

4 x ydU dxdydz
E
ν σ σ−

=

1 2 3 4dU dU dU dU dU= + + +

( )2 21 10
2 2x y x ydxdydz dxdydz dxdydz

E E E
νσ σ σ σ−     = + + +     

     

( )2 21 2
2 x y x y dxdydz

E
σ σ νσ σ= + −

Total strain energy accumulated in the element 
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Strain Energy  engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

Total strain energy accumulated in the element 

( )2 21 2
2 x y x ydU dxdydz

E
σ σ νσ σ= + −

recall,
6 Relations between 6 Strain and 6 Stress 

In case of “Plane Stress State”, 0z yz zxσ τ τ= = =

Strain-stress relation for “Plane Stress State”

2

2

( )
1

( ),
1

x x y

y y x xy xy

E

E G

σ ε νε
ν

σ ε νε τ γ
ν

= +
−

= + =
−

Generalized Hooke’s 
Law for “Plane 
Stress State”

1 ( )

1 ( )

( )

x x y

y y x

z x y

E

E

E

ε σ νσ

ε σ νσ

νε σ σ

= −

= −

= − +

2( 1)
xy xyE

νγ τ+
=

( ) ( ) ( )

2 2

2 2 2 2

2
2 2 2 2 2 2 2 2 2

2

2
2 2

1 ( ) ( ) 2 ( ) ( )
2 1 1 1 1

1 2 2 2
2 1
1 2
2 (1 )

x y y x x y y x

x x y y y x y x x y x y x y

x

E E E E dxdydz
E

E dxdydz
E

E

ε νε ε νε ν ε νε ε νε
ν ν ν ν

ε νε ε ν ε ε νε ε ν ε ν ε ε νε νε ν ε ε
ν

ε ν
ν

       = + + + − + +        − − − −       

   = + + + + + − + + +   − 

= +
−

2 2 2 2 2 2 2 2 2 3

2 2 2 2 2 2 2 2 2 2 3
2 2

2 2 2 2 2
2 2

2

2 2 2 2 2

1 2 2 2 2
2 (1 )
1 (1 ) (1 ) 2 (1 )
2 (1 )
1
2 (1 )

x y y y x y x x y x y x y

x x y y y x x y x y

x y x y

x

dxdydz

E dxdydz

E dxdydz

E

ε ε ν ε ε νε ε ν ε νε ε ν ε ν ε ν ε ε

ε νε ε ν ε ε ν ε ν ε ν ε ν ε ε
ν

ν ε ν ε ν ν ε ε
ν

ε
ν

 + + + + − − − − 

 = + + + + − − − −

 = − + − + − −

=
−

2 2

2
2

2

2

1
2 (1 )
1 ( ) ( )
2 (1 )

y x y

x x y y x y

x x y y y x

dxdydz

E dxdydz

E dxdydz

ε νε ε

ε νε ε ε νε ε
ν

ε ε νε ε ε νε
ν

 + + 

 = + + + −

 = + + + −
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Strain Energy  engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

Total strain energy accumulated in the element 

( )2 21 2
2 x y x ydU dxdydz

E
σ σ νσ σ= + −

recall,
6 Relations between 6 Strain and 6 Stress 

In case of “Plane Stress State”, 0z yz zxσ τ τ= = =

Strain-stress relation for “Plane Stress State”

2

2

( )
1

( ),
1

x x y

y y x xy xy

E

E G

σ ε νε
ν

σ ε νε τ γ
ν

= +
−

= + =
−

Generalized Hooke’s 
Law for “Plane 
Stress State”

1 ( )

1 ( )

( )

x x y

y y x

z x y

E

E

E

ε σ νσ

ε σ νσ

νε σ σ

= −

= −

= − +

2( 1)
xy xyE

νγ τ+
=

2

2 2

1 ( ) ( )
2 (1 )

1 ( ) ( )
2 (1 ) (1 )
1
2
1
2

x x y y y x

x x y y y x

x x y y

x x y y

E dxdydz

E E dxdydz

dxdydz

dxdydz

ε ε νε ε ε νε
ν

ε ε νε ε ε νε
ν ν

ε σ ε σ

σ ε σ ε

 = + + + −

 
= + + + − − 

 = + 

 = + 
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy under the action of both      and            xσ yσ

Step

1

2

xσ yσ
Let the action take place in the following order

xσincrease zero to yσ remains zero

xσ remains constant increase zero to yσ

xε yε

0 x

E
σ

→

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

0 xE
ν σ→ −

x yx

E E
σ νσσ −

→ y

E
σ

2
1

1
2 xdU dxdydz

E
σ=

2 0dU =

2
3

1
2 ydU dxdydz

E
σ=

4 x ydU dxdydz
E
ν σ σ−

=

( )2 21 2
2 x y x ydU dxdydz

E
σ σ νσ σ= + −

recall,
6 Relations between 6 Strain and 6 Stress 
In case of “Plane Stress State”, 0z yz zxσ τ τ= = =

Strain-stress relation for “Plane Stress State”

2

2

( )
1

( ),
1

x x y

y y x xy xy

E

E G

σ ε νε
ν

σ ε νε τ γ
ν

= +
−

= + =
−

Generalized Hooke’s 
Law for “Plane 
Stress State”

1 ( )

1 ( )

( )

x x y

y y x

z x y

E

E

E

ε σ νσ

ε σ νσ

νε σ σ

= −

= −

= − +

2( 1)
xy xyE

νγ τ+
=

1
2 x x y ydU dxdydzσ ε σ ε ∴ = + 

Total strain energy accumulated in the element 
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy under the action of both      and            xσ yσ

Step

1

2

xσ yσ
Let the action take place in the following order

xσincrease zero to yσ remains zero

xσ remains constant increase zero to yσ

xε yε

0 x

E
σ

→

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=

0 xE
ν σ→ −

x yx

E E
σ νσσ −

→ y

E
σ

2
1

1
2 xdU dxdydz

E
σ=

2 0dU =

2
3

1
2 ydU dxdydz

E
σ=

4 x ydU dxdydz
E
ν σ σ−

=

Total strain energy accumulated in the element 
recall,

6 Relations between 6 Strain and 6 Stress 
In case of “Plane Stress State”, 0z yz zxσ τ τ= = =

Strain-stress relation for “Plane Stress State”

2

2

( )
1

( ),
1

x x y

y y x xy xy

E

E G

σ ε νε
ν

σ ε νε τ γ
ν

= +
−

= + =
−

Generalized Hooke’s 
Law for “Plane 
Stress State”

1 ( )

1 ( )

( )

x x y

y y x

z x y

E

E

E

ε σ νσ

ε σ νσ

νε σ σ

= −

= −

= − +

2( 1)
xy xyE

νγ τ+
=1

2 x x y ydU dxdydzσ ε σ ε = + 

If we assume that the stresses are applied in a different order, we can 
prove that the strain energy stored in a body will be exactly same.

That is, the strain energy depends on the final state of the stress and 
is independent of the manner in which the stresses are applied
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

Strain Energy under the action of both      and            xσ yσ
1
2 x x y ydU dxdydzσ ε σ ε = + 

21
2 xdU dxdydz

E
σ=

Strain Energy due to a uniaxial stress

Strain Energy due to the shear stress components      and            xyτ yxτ

( )1
2 xy xydU dxdydzτ γ=

y dx

x

dy dyxyτ

xyτ

v dx
x
∂
∂

v dy
y
∂
∂

xσ

A B

CD

dx

dy

dz

x

y

O

Z

xσ

A B

CD

dx

dy

dz

x

y

O

Z

yσ

The Strain Energy stored in the element  under a general three 
dimensional stress system can be found in a similar way,            

1 ( )
2 x x y y z z xy xy yz yz zx zxdU dxdydzσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

The Strain Energy stored in the element  under a general three dimensional stress system can be 
found in a similar way,            

1 ( )
2 x x y y z z xy xy yz yz zx zxdU dxdydzσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

The Strain Energy Density

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

The Strain Energy Density under a general three dimensional stress system can be found in a 
similar way, 

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

by using generalized Hooke’s law, 
it may be expressed in terms of 
the stress components or strain components

(1 )(1 2 ) (1 )

(1 )(1 2 ) (1 )

(1 )(1 2 ) (1 )

x x

y y

z z

E Ee

E Ee

E Ee

νσ ε
ν ν ν
νσ ε
ν ν ν
νσ ε
ν ν ν

= +
+ − +

= +
+ − +

= +
+ − +

, x y ze ε ε ε= + +

2( 1)

2( 1)

2( 1)

xy xy

yz yz

zx zx

E

E

E

τ γ
ν

τ γ
ν

τ γ
ν

=
+

=
+

=
+

6 Relations between 6 Strain and 6 Stress 6 Relations between 6 Strain and 6 Stress 

1 [ ( )]

1 [ ( )]

1 [ ( )]

x x y z

y y z x

z z x y

E

E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

= − +

= − +

= − +

2( 1)

2( 1)

2( 1)

xy xy

yz yz

zx zx

E

E

E

νγ τ

νγ τ

νγ τ

+
=

+
=

+
=

=
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

The Strain Energy Density under a general three dimensional stress system can be found in a 
similar way, 

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

0

2 2 2

1 ( )
2
1 1 1 1 2( 1) 2( 1) 2( 1)[ ( )] [ ( )] [ ( )]
2
1 1 2( ) ( )
2

x x y y z z xy xy yz yz zx zx

x x y z y y z x z z x y xy xy yz yz zx zx

x y z x y x z y z y x z x z y

U

E E E E E E

E E

σ ε σ ε σ ε τ γ τ γ τ γ

ν ν νσ σ ν σ σ σ σ ν σ σ σ σ ν σ σ τ τ τ τ τ τ

νσ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

= + + + + +

+ + + = − + + − + + − + + + + 
 

= + + − + + + + + + 2 2 21 ( )xy yz zxG
τ τ τ + + 

 

by using generalized Hooke’s law,it may be expressed in 
terms of the stress components

6 Relations between 6 Strain and 6 Stress 

1 [ ( )]

1 [ ( )]

1 [ ( )]

x x y z

y y z x

z z x y

E

E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

= − +

= − +

= − +

2( 1)

2( 1)

2( 1)

xy xy

yz yz

zx zx

E

E

E

νγ τ

νγ τ

νγ τ

+
=

+
=

+
=

2 2 2 2 2 2
0

1 1 2 1( ) ( ) ( )
2 x y z x y y z z x xy yz zxU

E E G
νσ σ σ σ σ σ σ σ σ τ τ τ ∴ = + + − + + + + +  

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

The Strain Energy Density under a general three dimensional stress system can be found in a 
similar way, 

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

by using generalized Hooke’s law,it may be expressed in 
terms of the strain components (1 )(1 2 ) (1 )

(1 )(1 2 ) (1 )

(1 )(1 2 ) (1 )

x x

y y

z z

E Ee

E Ee

E Ee

νσ ε
ν ν ν
νσ ε
ν ν ν
νσ ε
ν ν ν

= +
+ − +

= +
+ − +

= +
+ − +

, x y ze ε ε ε= + +

2( 1)

2( 1)

2( 1)

xy xy

yz yz

zx zx

E

E

E

τ γ
ν

τ γ
ν

τ γ
ν

=
+

=
+

=
+

6 Relations between 6 Strain and 6 Stress 

( ) ( ) ( )( )
( )

0

2 2 2 2 2 2

1 ( )
2
1 2 2 2
2
1 ( ) 2 ( ) ( )
2

x x y y z z xy xy yz yz zx zx

x x y y z z xy xy yz yz zx zx

x y z x y z xy yz zx

U

e G e G e G G G G

e G G

σ ε σ ε σ ε τ γ τ γ τ γ

λ ε ε λ ε ε λ ε ε γ γ γ γ γ γ

λ ε ε ε ε ε ε γ γ γ

= + + + + +

= + + + + + + + +

= + + + + + + + +

(1 )(1 2 )
Eνλ

ν ν
=

+ −

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=
2( 1)

EG
ν

=
+

( )2 2 2 2 2 2 2
0

1 2 ( ) ( )
2 x y z xy yz zxU e G Gλ ε ε ε γ γ γ∴ = + + + + + +
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

The Strain Energy Density under a general three dimensional stress system can be found in a 
similar way, 

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

by using generalized Hooke’s law, 
it may be expressed in terms of 
the stress components

(1 )(1 2 ) (1 )

(1 )(1 2 ) (1 )

(1 )(1 2 ) (1 )

x x

y y

z z

E Ee

E Ee

E Ee

νσ ε
ν ν ν
νσ ε
ν ν ν
νσ ε
ν ν ν

= +
+ − +

= +
+ − +

= +
+ − +

, x y ze ε ε ε= + +

2( 1)

2( 1)

2( 1)

xy xy

yz yz

zx zx

E

E

E

τ γ
ν

τ γ
ν

τ γ
ν

=
+

=
+

=
+

6 Relations between 6 Strain and 6 Stress 

6 Relations between 6 Strain and 6 Stress 

1 [ ( )]

1 [ ( )]

1 [ ( )]

x x y z

y y z x

z z x y

E

E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

= − +

= − +

= − +

2( 1)

2( 1)

2( 1)

xy xy

yz yz

zx zx

E

E

E

νγ τ

νγ τ

νγ τ

+
=

+
=

+
=

=

(1 )(1 2 )
Eνλ

ν ν
=

+ −

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=
2( 1)

EG
ν

=
+

( )2 2 2 2 2 2 2
0

1 2 ( ) ( )
2 x y z xy yz zxU e G Gλ ε ε ε γ γ γ= + + + + + +

2 2 2

0
2 2 2

1 2( ) ( )
1

12 ( )

x y z x y y z z x

xy yz zx

E EU

G

νσ σ σ σ σ σ σ σ σ

τ τ τ

 + + − + + 
= 
 + + + 

in terms of strain components
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

The Strain Energy Density under a general three dimensional stress system can be found in a 
similar way, 

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

in terms of the stress components

(1 )(1 2 )
Eνλ

ν ν
=

+ −

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=
2( 1)

EG
ν

=
+

( )2 2 2 2 2 2 2
0

1 2 ( ) ( )
2 x y z xy yz zxU e G Gλ ε ε ε γ γ γ= + + + + + +

in terms of strain components

2 2 2 2 2 2
0

1 1 2 1( ) ( ) ( )
2 x y z x y y z z x xy yz zxU

E E G
νσ σ σ σ σ σ σ σ σ τ τ τ = + + − + + + + +  

We observe that the derivative of       with respect to any stress components is equal to the 
corresponding strain component, and the reverse is true, i.e.,  

0U

( )

0 ( , ,..., ) 1 1 22 ( )
2
1 ( )

x y xz
x y z

x

x y z

x

U
E E

E

σ σ τ νσ σ σ
σ

σ ν σ σ

ε

∂  = − + ∂  

= − +

=

6 Relations between 6 Strain and 6 Stress 
1 [ ( )]

1 [ ( )]

1 [ ( )]

x x y z

y y z x

z z x y

E

E

E

ε σ ν σ σ

ε σ ν σ σ

ε σ ν σ σ

= − +

= − +

= − +

2( 1)

2( 1)

2( 1)

xy xy

yz yz

zx zx

E

E

E

νγ τ

νγ τ

νγ τ

+
=

+
=

+
=
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

The Strain Energy Density under a general three dimensional stress system can be found in a 
similar way, 

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

in terms of the stress components

(1 )(1 2 )
Eνλ

ν ν
=

+ −

 engineering elastic constant

Modulus of Elasticity ‘E’

Poisson’s ratio ‘ν’ x
y z x E

σε ε νε ν= = − = −

Modulus of elasticity in shear ‘G’
1

xy xyG
γ τ=

1
x xE

ε σ=
2( 1)

EG
ν

=
+

( )2 2 2 2 2 2 2
0

1 2 ( ) ( )
2 x y z xy yz zxU e G Gλ ε ε ε γ γ γ= + + + + + +

in terms of strain components

2 2 2 2 2 2
0

1 1 2 1( ) ( ) ( )
2 x y z x y y z z x xy yz zxU

E E G
νσ σ σ σ σ σ σ σ σ τ τ τ = + + − + + + + +  

We observe that the derivative of       with respect to any stress components is equal to the 
corresponding strain component, and the reverse is true, i.e.,  

0U

( )

( )

0 ( , ,..., ) 1 2 2 2
2

2

x y xz
x

x

x

x

U
e G

e G

ε ε γ
λ ε

ε

λ ε

σ

∂
= + ⋅

∂

= +

=

(1 )(1 2 ) (1 )

(1 )(1 2 ) (1 )

(1 )(1 2 ) (1 )

x x

y y

z z

E Ee

E Ee

E Ee

νσ ε
ν ν ν
νσ ε
ν ν ν
νσ ε
ν ν ν

= +
+ − +

= +
+ − +

= +
+ − +

, x y ze ε ε ε= + +

2( 1)

2( 1)

2( 1)

xy xy

yz yz

zx zx

E

E

E

τ γ
ν

τ γ
ν

τ γ
ν

=
+

=
+

=
+

6 Relations between 6 Strain and 6 Stress 
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Strain Energy
When a body is deformed by external forces, work is done by these forces.
The energy absorbed in the body due to this external work is called strain energy.
If the body behaves elastically, the strain energy can be recovered completely when the 
body is returned to its unstrained state.

The Strain Energy Density under a general three dimensional stress system can be found in a 
similar way, 

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

in terms of the stress components

( )2 2 2 2 2 2 2
0

1 2 ( ) ( )
2 x y z xy yz zxU e G Gλ ε ε ε γ γ γ= + + + + + +

in terms of strain components

2 2 2 2 2 2
0

1 1 2 1( ) ( ) ( )
2 x y z x y y z z x xy yz zxU

E E G
νσ σ σ σ σ σ σ σ σ τ τ τ = + + − + + + + +  

 The total Strain Energy absorbed in an elastic body is found by the integral

∫∫∫=
V

dzdydxUU 0
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Principle of Virtual Work 
Virtual Displacement 
a particle which is acted upon by a system of forces, assume the particle is at rest
: the resultant of all the forces acting on it is zero

1F

2F

3F

1F

2F

3F

addF

if we want to move this particle to a new position or to give it a 
small displacement, additional force is required and the original 
force system must be altered

dr

1F

2F

3F
δr

now, we shall consider a “virtual displacement” , defined as an 
arbitrary displacement which does not affect the force system 
acting on the particle

during the process of it each of the forces acting on the particle 
remains constant in magnitude and direction

Virtual Work
the work done by the forces acting on the particle during a virtual displacement is called the virtual 
work : the virtual work done is zero if the particle is in equilibrium, since the resultant force vanishes

( )1 2 3 0δ+ + • =F F F r ( )1 2 3 0add d+ + + • ≠F F F F r

1 2 3 0= + + =∑F F F F

1 2 3 0= + + =∑F F F F

1 2 3 0add= + + + ≠∑F F F F F
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Principle of Virtual Work 
Virtual Displacement 
a particle which is acted upon by a system of forces, assume the particle is at rest
: the resultant of all the forces acting on it is zero

1F

2F

3F

1F

2F

3F
δr

a “virtual displacement”, defined as an arbitrary 
displacement which does not affect the force 
system acting on the particle

during the process of it each of the forces acting 
on the particle remains constant in magnitude and 
direction

Virtual Work
the work done by the forces acting on the particle during a 
virtual displacement is called the virtual work :

the virtual work done is zero if the particle is in equilibrium, 
since the resultant force vanishes

( )1 2 3 0δ+ + • =F F F r

1 2 3 0= + + =∑F F F F

1 2 3 0= + + =∑F F F F
if the virtual work vanishes, the force system acting on the 
article must be in equilibrium

it is also evident that

In the case of single rigid particle, it is easy to write the equilibrium 
equations governing the forces, and it seems that the virtual work 
does not contribute much to the problem. 

For more complicated problems, however, it is sometimes 
more convenient to require the virtual work corresponding to 
a certain virtual displacement to vanish than to write down and 
solve the equilibrium equations
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Principle of Virtual Work 
Virtual Displacement / Strain Field
in discussing the principle of virtual work for an elastic body, we must introduce a virtual 
displacement field and virtual strain filed

),,(),,,(),,,( zyxwwzyxvvzyxuu δδδδδδ ===

( , , ), ( , , ), ( , , ),

( , , ), ( , , ), ( , , )
x x y y z z

xy xy yz yz zx zx

x y z x y z x y z
x y z x y z x y z

δε δε δε δε δε δε

δγ δγ δγ δγ δγ δγ

= = =

= = =

all of which take place after the body has reached its equilibrium configuration 

We define the virtual strain components in a manner analogous to the definition of real 
strain components

( ),x
u u
x x

δε δ δ∂ ∂ = = ∂ ∂ 

( ) ( ),xy
u v u v
y x y x

δγ δ δ δ
 ∂ ∂ ∂ ∂

= + = + ∂ ∂ ∂ ∂ 

( ), ( ),y zv w
y z

δε δ δε δ∂ ∂
= =
∂ ∂

( ) ( ), ( ) ( )yz zxw v u w
y z z x

δγ δ δ δγ δ δ∂ ∂ ∂ ∂
= + = +
∂ ∂ ∂ ∂
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The commutative properties of the δ-process

•The derivative of the variation

[ ]( ) ( ) ( ) ( )d d dy f x f x x x
dx dx dx

δ εφ εφ  ′= − = = 

•The variation of the derivative

( )( ) ( ) ( ) ( ) ( )d y f x f x f x f x x
dx

δ εφ εφ ′ ′ ′ ′ ′ ′= − = + − = 

( ) ( ) ( )f x f x xεφ= +

d dy y
dx dx

δ δ∴ =

( )y f x=
y

x

( )f x

1P

2P

a b x

P

x dx+

yδ

( )f x

( )y f x=

y

x

dx
dy

( ) ( ) ( )y f x f x xδ εφ= − =

The modified function       
can be written making use of 
the variable parameter

( )f x

ε

( )f x′

( )f x′

slope
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

Consider an elastic body subjected to a force system causing actual displacement 

, ,u v wδ δ δ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

, ,u v w

then let the body be subjected to a virtual displacement field with components

in order to determine the virtual strain energy, we first consider the virtual work done by xσ

dx

xσ xσ

uδ dx
x
uu

∂
∂

+
δδ

we are not concerned with the work done while the actual 
displacements occur; we assume that          and     occur first and 
following this we imagine that the virtual displacement components 
are applied

,u v w

recall “all of which take place after the body has reached its equilibrium 
configuration”
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

Consider an elastic body subjected to a force system causing actual displacement 
, ,u v wδ δ δ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

, ,u v w
then let the body be subjected to a virtual displacement field with components

the virtual work done by      is therefore,xσ

dx

xσ xσ

uδ dx
x
uu

∂
∂

+
δδ

we are not concerned with the work done while the actual displacements occur; we 
assume that          and     occur first and following this we imagine that the virtual 
displacement components are applied

,u v w

( )x x

x

uu dx dy dz u dy dz
x

u dxdy dz
x

δσ δ σ δ

δσ

∂ + − ∂ 
∂

=
∂
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

Consider an elastic body subjected to a force system causing actual displacement 
, ,u v wδ δ δ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

, ,u v w
then let the body be subjected to a virtual displacement field with components

x
u dxdy dz

x
δσ ∂
∂

the virtual work done per unit volume 0Uδ

0 x

x x x

uU
x
u
x

δδ σ

σ δ σ δε

∂
=

∂
∂

= =
∂

dx

xσ xσ

uδ dx
x
uu

∂
∂

+
δδ

the virtual work done by      is therefore,xσ

we are not concerned with the work done while the actual displacements occur; we 
assume that          and     occur first and following this we imagine that the virtual 
displacement components are applied

,u v w

0 x xUδ σ δε∴ =
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0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

Consider an elastic body subjected to a force system causing actual displacement 
, ,u v wδ δ δ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

, ,u v w
then let the body be subjected to a virtual displacement field with components

the virtual work done per unit volume 0Uδ

dx

xσ xσ

uδ dx
x
uu

∂
∂

+
δδ

x
u dxdy dz

x
δσ ∂
∂

the virtual work done by      isxσ

0 x xUδ σ δε=

under a general stress condition it can be shown that the virtual strain energy is given by

zxzxyzyzxyxyzzyyxxU δγτδγτδγτδεσδεσδεσδ +++++=0

∫∫∫=
V

dzdydxUU 0δδ

The Strain Energy Density

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

the factor ½ is not included since stresses are constant 
during the virtual displacement

the total virtual strain energy
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

Consider an elastic body subjected to a force system causing actual displacement 
, ,u v wδ δ δ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

, ,u v w
then let the body be subjected to a virtual displacement field with components

the virtual work done per unit volume 0Uδ

dx

xσ xσ

uδ dx
x
uu

∂
∂

+
δδ

x
u dxdy dz

x
δσ ∂
∂

the virtual work done by      isxσ

0 x xUδ σ δε=

under a general stress condition it can be shown that the virtual strain energy is given by

zxzxyzyzxyxyzzyyxxU δγτδγτδγτδεσδεσδεσδ +++++=0

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

The Strain Energy Density

0
1 ( )
2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +

the total virtual strain energy
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

next, consider the virtual work done by the external work 

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

The virtual work done by the surface forces is 

is an elemental surface area and the 
integration is taken over the complete 
boundary surface of the body

Again, the factor of ½ is not present 
because the surface force are constant 
during the virtual displacement

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

dAwTvTuT zA yx )( δδδ µµµ ++∫
dA

x xy zx

xy y yz

zx yz z

X l m n

Y l m n

Z l m n

σ τ τ

τ σ τ

τ τ σ

= + +

= + +

= +
x

y

O

Y

X

N

Specified Field

Z

Z

(on boundary surface)

Normal to surface

recall,

x

y

z

T

T

T

µ

µ

µ
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

Consider next consider the virtual work done by the external work ( definition ) 

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

The virtual work done by the surface forces is 

is an elemental surface area and the integration is taken over the complete boundary surface of the body

Again, the factor of ½ is not present because the surface force are constant during the virtual displacement

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

dAwTvTuT zA yx )( δδδ µµµ ++∫

∫ ++
V zyx dVwFvFuF )( δδδ

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

The virtual work done by the body forces is 

dA

The virtual work done by the external forces

x xy zx

xy y yz

zx yz z

X l m n

Y l m n

Z l m n

σ τ τ

τ σ τ

τ τ σ

= + +

= + +

= +
x

y

O

Y

X

N

Specified Field

Z

Z

(on boundary surface)

Normal to surface

x

y

z

T

T

T

µ

µ

µ
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x y z xy yz zx
V

U u v w u v v w u w dV
x y z y x z y z x

δ σ δ σ δ σ δ τ δ δ τ δ δ τ δ δ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
∫

( )x x y y z z xy xy yz yz zx zx
V

U dVδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫

( )x
V

u dV
x

σ δ∂
∂∫

x xy zx

xy y yz

zx yz z

X l m n

Y l m n

Z l m n

σ τ τ

τ σ τ

τ τ σ

= + +

= + +

= +
x

y

O

Y

X

N

Specified Field

Z

Z

(on boundary surface)

Normal to surface

x

y

z

T

T

T

µ

µ

µ

85/183



Innovative Ship Design - Elasticity
SDAL@Advanced Ship Design Automation Lab.
http://asdal.snu.ac.kr

Seoul 
National
Univ.

Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x y z xy yz zx
V

U u v w u v v w u w dV
x y z y x z y z x

δ σ δ σ δ σ δ τ δ δ τ δ δ τ δ δ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
∫

( ) ( )x x
V V

M u dV u dxdydz
x x

σ δ σ δ∂ ∂
= =

∂ ∂∫ ∫∫∫let

integrating by part

[ ] 2

1

( , )

( , )

x y z x
x x y z

A V

M u dydz u dV
x
σσ δ δ ∂

= −
∂∫∫ ∫∫∫ where,               and                are the equations of the right and 

left surfaces respectively of
2 1( , ) ( , )x y z x y z

A
we have                         on xdydz Aµ= 1x

on xdydz Aµ= − 2x
thus it may be written as

x
x x

A V

M u dA u dV
x
σσ δ µ δ ∂

= −
∂∫ ∫∫∫

dx

xσ xσ

uδ dx
x
uu

∂
∂

+
δδ

x xy zx

xy y yz

zx yz z

X l m n

Y l m n

Z l m n

σ τ τ

τ σ τ

τ τ σ

= + +

= + +

= +
x

y

O

Y

X

N
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Z

(on boundary surface)
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x y z xy yz zx
V

U u v w u v v w u w dV
x y z y x z y z x

δ σ δ σ δ σ δ τ δ δ τ δ δ τ δ δ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
∫

( ) x
x x x

V A V

M u dV u dA u dV
x x

σσ δ σ δ µ δ ∂∂
= = −

∂ ∂∫ ∫ ∫∫∫

[( ) ( ) ( ) ]x x xy y zx z y y xy x yz z z z yz y zx x
A

xy y xy yz yzx zx zxz
V

U u v w dA

u v w dV
x y z y x z z y x

δ σ µ τ µ τ µ δ σ µ τ µ τ µ δ σ µ τ µ τ µ δ

τ σ τ τ τσ τ τσδ δ δ

= + + + + + + + +

 ∂ ∂ ∂ ∂ ∂     ∂ ∂ ∂∂
− + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

∫

∫

x xy zx

xy y yz

zx yz z

X l m n

Y l m n

Z l m n

σ τ τ

τ σ τ

τ τ σ

= + +

= + +

= +
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

[( ) ( ) ( ) ]x x xy y zx z y y xy x yz z z z yz y zx x
A

xy y xy yz yzx zx zxz
V

U u v w dA

u v w dV
x y z y x z z y x

δ σ µ τ µ τ µ δ σ µ τ µ τ µ δ σ µ τ µ τ µ δ

τ σ τ τ τσ τ τσδ δ δ

= + + + + + + + +

 ∂ ∂ ∂ ∂ ∂     ∂ ∂ ∂∂
− + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

∫

∫

x x x xy y zx z

y y y xy x yz z

z z z yz y zx x

T

T

T

µ

µ

µ

σ µ τ µ τ µ

σ µ τ µ τ µ

σ µ τ µ τ µ

= + +

= + +

= + +

0

0

0

xyx zx
x

y xy yz
y

yz zxz
z

F
x y z

F
y x z

F
z y x

τσ τ

σ τ τ

τ τσ

∂∂ ∂
+ + + =

∂ ∂ ∂
∂ ∂ ∂

+ + + =
∂ ∂ ∂

∂ ∂∂
+ + + =

∂ ∂ ∂

since,

( ) ( )∫∫ +++++=
V zyxA zyx dVwFvFuFdAwTvTuTU δδδδδδδ µµµ

and

x xy zx

xy y yz

zx yz z

X l m n

Y l m n

Z l m n

σ τ τ

τ σ τ

τ τ σ

= + +

= + +
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

[( ) ( ) ( ) ]x x xy y zx z y y xy x yz z z z yz y zx x
A

xy y xy yz yzx zx zxz
V

U u v w dA

u v w dV
x y z y x z z y x

δ σ µ τ µ τ µ δ σ µ τ µ τ µ δ σ µ τ µ τ µ δ

τ σ τ τ τσ τ τσδ δ δ

= + + + + + + + +

 ∂ ∂ ∂ ∂ ∂     ∂ ∂ ∂∂
− + + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

∫

∫

( ) ( )∫∫ +++++=
V zyxA zyx dVwFvFuFdAwTvTuTU δδδδδδδ µµµ

if the displacement components satisfy the 
equilibrium equations, the virtual strain energy is 
equal to the virtual work done by external force

x xy zx

xy y yz

zx yz z
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= + +

= +
x

y

O

Y

X

N

Specified Field

Z

Z

(on boundary surface)

Normal to surface

x

y

z

T

T

T

µ

µ

µ

89/183



Innovative Ship Design - Elasticity
SDAL@Advanced Ship Design Automation Lab.
http://asdal.snu.ac.kr

Seoul 
National
Univ.

Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

( ) ( )∫∫ +++++=
V zyxA zyx dVwFvFuFdAwTvTuTU δδδδδδδ µµµ

if the displacement components satisfy the 
equilibrium equations, the virtual strain energy 
is equal to the virtual work done by external 
force

Since the external forces are unchanged during the virtual displacement and the limits of integration are 
constant, the operator      may be placed before the integral signs  δ

( ) ( )x y z x y zA V
U T u T v T w dA F u F v F w dVµ µ µδ δ  = + + + + + ∫ ∫

0U Wδ δ∴ − =

[( ) ( ) ( ) ]x x xy y zx z y y xy x yz z z z yz y zx x
A

U u v w dAδ σ µ τ µ τ µ δ σ µ τ µ τ µ δ σ µ τ µ τ µ δ= + + + + + + + +∫

Wδ= ( ) ( ), x y z x y zA V
where W T u T v T w dA F u F v F w dVµ µ µ= + + + + +∫ ∫

1 ( )
2strain x x y y z z xy xy yz yz zx zx

V

U dx dy dzσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +∫∫∫

The Strain Energy
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

( ) ( )0, x y z x y zA V
U W W T u T v T w dA F u F v F w dVµ µ µδ δ− = = + + + + +∫ ∫

Defining U WΠ = − called the potential energy of the body

The Strain Energy
1 ( )
2strain x x y y z z xy xy yz yz zx zx

V

U dx dy dzσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +∫∫∫

what’s this supposed to mean?

0δΠ =
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Virtual Work in Elastic Body
Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

( )x x y y z z xy xy yz yz zx zxV
U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

,Defining U WΠ = −( ) 0U Wδ δ∴ Π = − = called the potential energy of the body

The Strain Energy
1 ( )
2strain x x y y z z xy xy yz yz zx zx

V

U dx dy dzσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +∫∫∫

U WΠ = −

strainU∴Π = −

( )strain x x y y z z xy xy yz yz zx zxV
U dx dy dzδ δ σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +∫∫∫

,where ( )1
2strain x x y y z z xy xy yz yz zx zxV

U dx dy dzσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +∫∫∫
1

( ) ( )1 1
2 2ext x y z x y zA V

W T u T v T w dA F u F v F w dAµ µ µ= + + + + +∫ ∫
1
2extW W∴ =2

ext strainW U=
energy conservation

3

what’s this supposed to mean?

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3

,where ( ) ( )x y z x y zA V
W T u T v T w dA F u F v F w dAµ µ µ= + + + + +∫ ∫
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Virtual Work in Elastic Body
The Strain Energy

1 ( )
2strain x x y y z z xy xy yz yz zx zx

V

U dx dy dzσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +∫∫∫

,Defining U WΠ = −( ) 0U Wδ δ∴ Π = − = called the potential energy of the body

U WΠ = −

strainU∴Π = −

( )strain x x y y z z xy xy yz yz zx zxV
U dx dy dzδ δ σ ε σ ε σ ε τ γ τ γ τ γ= + + + + +∫∫∫

,where ( )1
2strain x x y y z z xy xy yz yz zx zxV

U dx dy dzσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +∫∫∫
1

( ) ( )1 1
2 2ext x y z x y zA V

W T u T v T w dA F u F v F w dAµ µ µ= + + + + +∫ ∫
1
2extW W∴ =2

ext strainW U=
energy conservation

3

what’s this supposed to mean?

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3

,where ( ) ( )x y z x y zA V
W T u T v T w dA F u F v F w dAµ µ µ= + + + + +∫ ∫

*이해성, 탄성체역학 강의록, 서울대학교 건축환경공학부, 2009

*c.f.)

work done by external forces

strain energy stored in elastic body

same

extW

strainU

ext strainW U=
2strain extU WΠ = −

means

1

2

3

strainU∴Π = −

2strain strainU UΠ = −

1 2

3
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Virtual Work and Principle of Potential Energy

Virtual Work

: the virtual work done by the external (surface and body) forcesWδ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

( ) 0U Wδ δΠ = − =
this implies that 
at the equilibrium configuration of a body, the potential energy assumes a stationary value

The principle of potential energy :

Of all the displacement distribution satisfying the conditions of continuity and the prescribed 
displacement boundary conditions, 
the one which actually takes place ( or which satisfies the equilibrium equations) is the one which 
makes the potential energy assume a stationary(minimum) value)

U Wδ δ=

94/183



Innovative Ship Design - Elasticity
SDAL@Advanced Ship Design Automation Lab.
http://asdal.snu.ac.kr

Seoul 
National
Univ.

Discussion : Energy 

* Langhar, H.L., “Energy Methods in Applied Mechanics”, John Wiley and Sons, 1962, p10-11

internal force and external force* 
Newton’s third law asserts that if body A exert a force F on body B,
then body B exerts the force -F on body A. 
This law signifies that forces may be mated, ‘action’ and ‘reaction’

The reaction of a given force F is understood to act on the body 
that cause or exert force F.

if a force F acts on a mechanical system

its reaction -F acts on another part of the same system
or it acts on a body outside the system

in the first case, it is called an ‘internal force’

in the second case, it is called an ‘external force’

Accordingly, all the forces that act on a mechanical system 
may be classified as internal or external

Hence the work W of all the forces that act on a mechanical system is separated in a sum

e iW W W= +
Where

is the work of the external forces and 
is the work of the internal forces      iW

eW
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Discussion : Energy 

* Langhar, H.L., “Energy Methods in Applied Mechanics”, John Wiley and Sons, 1962, p10-11

Law of Kinetic Energy* 

Newton’s equation for a mass particle is 

dW dT∴ =

,d dm
dt dt

= =
v rF v

dW d= F r

( )ddW m dt m d
dt

 = = 
 

v v v v 

the infinitesimal work dW that the force     performs on the particleF

21
2

ddW mv dt
dt
 ∴ =  
 

since, by definition: the kinetic energy of the particle is

let v=v i

21
2

T mv=

consequently, by integration, W T= ∆
where,          is the increment of kinetic energy that result from work T∆ W

e iW W W= +
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Discussion : Energy 

* Langhar, H.L., “Energy Methods in Applied Mechanics”, John Wiley and Sons, 1962, p10-11

Law of Kinetic Energy* 

W T= ∆
where,          is the increment of kinetic energy that result from work T∆ W

This conclusion may be generalized immediately to apply to all finite mechanical systems.
The kinetic energy of any mechanical system is defined as 
the sum of the kinetic energies of its particles.
Consequently, by summing the equation                over all the particles of a system, 
we obtain the following conclusion : 

W T= ∆

The work of all the forces (internal and external) that act on a mechanical system equals
the increase of kinetic energy of the system

e iW W W= +

This theorem is a modern statement of Leibniz’s law of vis viva ; 
it is called the ‘law of kinetic energy’

e iW W T+ = ∆

e iW W W= +
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Discussion : Energy 

The work that is performed on a mechanical system by external forces plus the heat 
that flows into the system from the outside equals the increase of kinetic energy plus 
the increase of internal energy

eW Q T U+ = ∆ + ∆

e iW W T+ = ∆

, : the work performed on the system by external forces
, : the heat flows into the system
, : the increase of kinetic energy
, : the increase of internal energy

eW
Q

T
U

∆
∆

Where
is the work of the external forces and 
is the work of the internal forces      

and

iW
eW

iW Q U∴ = − ∆

if the system is adiabatic , 0Q =

iW U∴ = −∆

The first law of thermodynamics* 

* Langhar, H.L., “Energy Methods in Applied Mechanics”, John Wiley and Sons, 1962, p10-11 98/183
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Discussion : Energy 

eWδ

eW U Qδ δ= − where         is the increase of internal energy in R and

is the heat that flows into R while the virtual 
displacement is being performed  
Q

Uδ

If R is any region within a deformable body and S is the surface enclosing region R,
the external forces acting on the material in R consists of the tractive forces due to stresses on S and 
the body forces acting on material R.

The work that these forces perform when the virtual displacement is imposed is denoted by       . 

It will be supposed that the equilibrium conditions prevail during the displacement,
and the kinetic energy is zero.

Then, by the first law of thermodynamics

eW Q T U+ = ∆ + ∆

The first law of thermodynamics applied to a deformation process* 

The first law of thermodynamics : 

Law of Kinetic Energy : 
e iW W W= +

if the deformation is adiabatic, eW Uδ δ=
since iW U= −∆ 0

0
0

e

e i

W U
W W

W

δ δ
δ δ
δ

− =
+ =

∴ = what this means?

* Langhar, H.L., “Energy Methods in Applied Mechanics”, John Wiley and Sons, 1962, p115-116 99/183
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Illustrative Problem
Uniform Loaded String : the application of the principle of potential energy

l l

w

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of applied force
- assume that body force is neglected 

T
q

q

T

x

z

q T

TT

T
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

( )dAwTvTuTW
A zyx∫ ++= µµµ ( )∫=

l
dxqw

0

Considering the stretched string under tension      and            as the reference state0q =T

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

since the surface force per unit length is     and there are no body force q

WU −=∏

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏ ( )
0

,
l

W qw dx= ∫
Considering the stretched string under tension      and            as the reference state0q =T

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

Uin order to evaluate        we must determine the change in length of the string caused by the 
transverse load  q

: strain energy U

l l

w
T

x

z

q T

TT

dx

dx

ds

TT

T

T

dwdw dx
dx

=

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏ ( )
0

,
l

W qw dx= ∫

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

: strain energy U

dx

dx

ds

TT

T

T

dwdw dx
dx

=

: the elongation of the element due to the application of qds dx−

: the internal work done by      on the element( )T ds dx⋅ − T
notice that no facto of ½ is introduced, since     is constant during the displacement T

Considering the stretched string under tension      and            as the reference state0q =T

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏ ( )
0

,
l

W qw dx= ∫

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

: strain energy U

dx

dx

ds

TT

T

T

dwdw dx
dx

=

: the internal work done by      on the element( )T ds dx⋅ − T

( )22 2 1 /ds dx dw dx dw dx= + = +

2 2

let, then, 1 1dw dwz z
dx dx

   = + = +   
    1

2

0

(0) 1

1 1(0) (1 )
2 2

z

f

f z
−

=

=

′ = + =



21 1 1( ) 1
2 2 4

f z z z = + + − + 
 



1( ) 1
2

f z z≅ +

Taylor Series
* * * * 21( ) ( ) ( ) ( ) . . .

2
f x x f x f x x f x x′ ′′+ ∆ = + ∆ + ∆ +

let, ( ) 1f z z= +

recall,

Considering the stretched string under tension      and            as the reference state0q =T

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏ ( )
0

,
l

W qw dx= ∫

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

: strain energy U

dx

dx

ds

TT

T

T

dwdw dx
dx

=

: the internal work done by      on the element( )T ds dx⋅ − T

( )22 2 1 /ds dx dw dx dw dx= + = +
2 2

let, then, 1 1dw dwz z
dx dx

   = + = +   
   

1( ) 1
2

f z z≅ +

Taylor Series
* * * * 21( ) ( ) ( ) ( ) . . .

2
f x x f x f x x f x x′ ′′+ ∆ = + ∆ + ∆ +

21( ) (0) (0) (0) ...
2

f x f f x f x′ ′′= + + +
Maclaurin Series

( ) 1f z z= +

recall,

( )
2

2 11 / 1
2

dwds dx dw dx dx
dx

  ∴ = + ≅ +     

Considering the stretched string under tension      and            as the reference state0q =T

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3

105/183



Innovative Ship Design - Elasticity
SDAL@Advanced Ship Design Automation Lab.
http://asdal.snu.ac.kr

Seoul 
National
Univ.

Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏ ( )
0

,
l

W qw dx= ∫

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

: strain energy U

dx

dx

ds

TT

T

T

dwdw dx
dx

=

: the internal work done by      on the element( )T ds dx⋅ − T 11
2

dwds dx
dx

 = + 
 2

2

1( ) 1
2

2

dwT ds dx T dx dx
dx

T dw dx
dx

    ⋅ − = ⋅ + −       

 =  
 

Considering the stretched string under tension      and            as the reference state0q =T

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏ ( )
0

,
l

W qw dx= ∫

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

: strain energy U

dx

dx

ds

TT

T

T

dwdw dx
dx

=

: the internal work done by      on the element( )T ds dx⋅ − T 11
2

dwds dx
dx

 = + 
 2

( )
2
T dwT ds dx dx

dx
 ⋅ − =  
 

( )
2

0 02
l lT dwU T ds dx dx

dx
 ∴ = − =  
 ∫ ∫

Considering the stretched string under tension      and            as the reference state0q =T

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏ ( )
0

,
l

W qw dx= ∫
0q =

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

2

0
,

2
lT dwU dx

dx
 =  
 ∫

( )
2

0 02
l lT dw dx qw dx

dx
 ∴∏ = − 
 ∫ ∫

variation of      : ∏

0 0

l ldw dwT dx q wdx
dx dx

δ δ δ ∏ = − 
 ∫ ∫

Considering the stretched string under tension      and            as the reference state0q =T

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

variation of      : ∏
0 0

l ldw dwT dx q wdx
dx dx

δ δ δ ∏ = − 
 ∫ ∫

d dy y
dx dx

δ δ∴ =
recall,

0 0

l ldw dw dw d wT dx T dx
dx dx dx dx

δδ    =   
   ∫ ∫

Considering the stretched string under tension      and            as the reference state0q =T

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

variation of      : ∏
0 0

l ldw dwT dx q wdx
dx dx

δ δ δ ∏ = − 
 ∫ ∫

2

20 0
0
2

20

l
l l

l

dw d w dw d wT dx T w T w dx
dx dx dx dx

d wT w dx
dx

δ δ δ

δ

 = −  

= −

∫ ∫

∫

integrating by part

since 0 0w at x and x lδ = = =

Considering the stretched string under tension      and            as the reference state0q =T

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

WU −=∏

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

variation of      : ∏
0 0

l ldw dwT dx q wdx
dx dx

δ δ δ ∏ = − 
 ∫ ∫

2

20 0

l ld wT w dx q wdx
dx

δ δ δ∏ = − −∫ ∫ 0 0

l ldw dw dw d wT dx T dx
dx dx dx dx

δδ    =   
   ∫ ∫

2

20 0
0

2

20

l
l l

l

dw d w dw d wT dx T w T w dx
dx dx dx dx

d wT w dx
dx

δ δ δ

δ

= −

= −

∫ ∫

∫
2

20

l d wT q wdx
dx

δ δ
 

∏ = − + 
 

∫

Considering the stretched string under tension      and            as the reference state0q =T

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

variation of      : ∏
2

20

l d wT q wdx
dx

δ δ
 

∏ = − + 
 

∫

from 0δΠ =
2

20
0

l d wT q wdx
dx

δ
 

− + = 
 

∫

since        is arbitrary wδ 2

2 0d wT q
dx

+ =

l l

w
T

x

z

q T

TT

U WΠ = −

strainU∴Π = −

strainU WΠ = −
1

2strain extU WΠ = −
2

2strain strainU UΠ = −
3

2 0d dwT w q
dx dx

ρω  + + = 
 

recall, differential equation
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

2

2 0d wT q
dx

+ =

The principle of potential energy :

Of all the displacement distribution satisfying the conditions of continuity and the prescribed 
displacement boundary conditions, 
the one which actually takes place ( or which satisfies the equilibrium equations) is the one which 
makes the potential energy assume a stationary(minimum) value)

recall,

We shall now demonstrate that this stationary value is a minimum 

In order to prove this, we shall show the quantity

( ) ( )w w w∆Π = Π +∆ −Π

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

is always positive

l l

w
T

x

z

q T

TT
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

2

2 0d wT q
dx

+ =

We shall now demonstrate that this stationary value is a minimum 
In order to prove this, we shall show the quantity ( ) ( )w w w∆Π = Π +∆ −Π

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

is always positive

( )w w x∆ = ∆ , (0 )0, ( ) 0w w l∆ = ∆ =where

( ) ( ) 0w w w∆Π = Π +∆ −Π >

means that 
if the string is displaced by        from its equilibrium position 
the potential energy is increased

w∆

l l

w
T

x

z

q T

TT
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

2

2 0d wT q
dx

+ =

We shall now demonstrate that this stationary value is a minimum 
In order to prove this, we shall show the quantity ( ) ( )w w w∆Π = Π +∆ −Π

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

is always positive

( )w w x∆ = ∆ , (0 )0, ( ) 0w w l∆ = ∆ =where

( ) ( ) 0w w w∆Π = Π +∆ −Π > means that 
if the string is displaced by        from its equilibrium position 
the potential energy is increased

w∆

( ) ( )( ) ( )

( ) ( )

2 2

0 0 0 0

2 2

0 0 0 0

( ) ( )

2 2

2 2

l l l l

l l l l

w w w

d w wT T dwdx q w w dx dx qw dx
dx dx

T dw d w T dwdx qw q w dx dx qw dx
dx dx dx

∆Π = Π +∆ −Π

   + ∆    = − + ∆ − −    
        

   ∆   = + − + ∆ − −      
         

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

l l

w
T

x

z

q T

TT
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

2

2 0d wT q
dx

+ =

We shall now demonstrate that this stationary value is a minimum 
In order to prove this, we shall show the quantity ( ) ( )w w w∆Π = Π +∆ −Π

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

is always positive

( )w w x∆ = ∆ , (0 )0, ( ) 0w w l∆ = ∆ =where

( ) ( ) 0w w w∆Π = Π +∆ −Π > means that 
if the string is displaced by        from its equilibrium position 
the potential energy is increased

w∆

( ) ( )

( ) ( )

2 2

0 0 0 0

2 2 2

0 0 0 0 0

( ) ( )

2 2

2
2 2

l l l l

l l l l l

w w w

T dw d w T dwdx qw q w dx dx qw dx
dx dx dx

T d w d wd w d w T d wdx q w dx qw dx qwdx
dx dx dx dx dx

∆Π = Π +∆ −Π

   ∆   = + − + ∆ − −      
         

  ∆ ∆ ∆      = + + − ∆ − − +       
         

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

l l

w
T

x

z

q T

TT
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

2

2 0d wT q
dx

+ =

We shall now demonstrate that this stationary value is a minimum 
In order to prove this, we shall show the quantity ( ) ( )w w w∆Π = Π +∆ −Π

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

is always positive

( )w w x∆ = ∆ , (0 )0, ( ) 0w w l∆ = ∆ =where

( ) ( ) 0w w w∆Π = Π +∆ −Π > means that 
if the string is displaced by        from its equilibrium position 
the potential energy is increased

w∆

( ) ( )

( )

2 2 2

0 0 0 0 0

2

0 0 0

( ) ( )

2
2 2

2 2
2 2 2

l l l l l

l l l

w w w

T d w d wd w d w T d wdx q w dx qw dx qwdx
dx dx dx dx dx

T d wd w d w T d wd w T ddx q w dx dx
dx dx dx dx dx

∆Π = Π +∆ −Π

  ∆ ∆ ∆      = + + − ∆ − − +       
         

  ∆ ∆ ∆ ∆  = + − ∆ = +   
     

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫
2

0 0

l lw dx q wdx
dx

  − ∆ 
 ∫ ∫

l l

w
T

x

z

q T

TT
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

2

2 0d wT q
dx

+ =

We shall now demonstrate that this stationary value is a minimum 
In order to prove this, we shall show the quantity ( ) ( )w w w∆Π = Π +∆ −Π

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

is always positive

( )w w x∆ = ∆ , (0 )0, ( ) 0w w l∆ = ∆ =where

( ) ( ) 0w w w∆Π = Π +∆ −Π > means that 
if the string is displaced by        from its equilibrium position 
the potential energy is increased

w∆

2

0 0 02
l l ld wd w T d wT dx dx q wdx

dx dx dx
∆ ∆ ∆Π = + − ∆ 

 ∫ ∫ ∫
2

20
0

l
ldw d ww w dx

dx dx
= ∆ − ∆∫

integrating by part

0

l dw d w dx
dx dx

∆
∫

since 0 0w at x and x l∆ = = =

2

20

l d ww dx
dx

= − ∆∫
22

20 0 02
l l ld w T d wT w dx dx q wdx

dx dx
∆ ∆Π = − ∆ + − ∆ 

 ∫ ∫ ∫

l l

w
T

x

z

q T

TT
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

2

2 0d wT q
dx

+ =

We shall now demonstrate that this stationary value is a minimum 
In order to prove this, we shall show the quantity ( ) ( )w w w∆Π = Π +∆ −Π

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

is always positive

( )w w x∆ = ∆ , (0 )0, ( ) 0w w l∆ = ∆ =where

( ) ( ) 0w w w∆Π = Π +∆ −Π > means that 
if the string is displaced by        from its equilibrium position 
the potential energy is increased

w∆

22

20 0 02
l l ld w T d wT w dx dx q wdx

dx dx
∆ ∆Π = − ∆ + − ∆ 

 ∫ ∫ ∫
22

20 02
l ld w T d ww T q dx dx

dx dx
  ∆ ∆Π = − ∆ + +   

  
∫ ∫

2

02
lT d w dx

dx
∆ ∆Π =  

 ∫

2

2 0d wT q
dx

+ =because of equilibrium condition

l l

w
T

x

z

q T

TT
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Illustrative Problem
Uniform Loaded String : 
the application of the principle of potential energy

S
q

q

- initially under a large tensile force
- uniform transverse load 
- assume that the application of      does not change the magnitude of application force
- assume that body force is neglected 

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

2

2 0d wT q
dx

+ =

We shall now demonstrate that this stationary value is a minimum 
In order to prove this, we shall show the quantity ( ) ( )w w w∆Π = Π +∆ −Π

( )
2

0 02
l lT dw dx qw dx

dx
 ∏ = − 
 ∫ ∫

is always positive

( )w w x∆ = ∆ , (0 )0, ( ) 0w w l∆ = ∆ =where

( ) ( ) 0w w w∆Π = Π +∆ −Π > means that 
if the string is displaced by        from its equilibrium position 
the potential energy is increased

w∆

2

02
lT d w dx

dx
∆ ∆Π =  

 ∫ since the integral cannot be negative 0∆Π ≥

0d w
dx
∆

=the integral vanishes only in the exceptional case when, 

which only occurs at the equilibrium position 

thus we have demonstrated the theorem of minimum potential energy

l l

w
T

x

z

q T

TT
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Illustrative Problem
Simply supported beam : 
the application of the principle of potential energy

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

x

y

wq

2 0d dyT y p
dx dx

ρω  + + = 
 

2

0 0 0
0

l l ld dyT y dx y y dx p y dx
dx dx

δ ρω δ δ  + + = 
 ∫ ∫ ∫

Differential Equation

multiply     and integrateyδ

integrating by part 
and two end conditions 2

2 2

0
0

1 0
2 2

l
l T dy dyy py dx T y

dx dx
δ ρω δ

    + − + =         
∫

2
2 2

0

1 0
2 2

l T dyy py dx
dx

δ ρω
  + − =  

   
∫Variational Method

2
2 21let

2 2
T dyF y py

dx
ρω  = + −  

 

0F F
x y y
 ∂ ∂ ∂

− = ′∂ ∂ ∂ 

then the differential 
equation is obtained by 
the Euler equation

2

0

l d dyT y p y dx
dx dx

ρω δ   + +    
∫

solution of D.E. 

Ex.)

solution of Integral Equation 

Approximation
-Galerkin /Collocation /Least Square 

Green Function

Approximation
- Rayleigh-Ritz 

recall,

this example
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Illustrative Problem

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

⑦ Assume that

( )
dx
dydxds =≈≈ θθ tan,

2

2

d
d

d
s xd

yθ
∴ =

dsd =⋅ θρ
ρ

θ 1
=

ds
d

dAyEdAdF
ρ

σ ⋅==

dM y dAσ= − ρ
1

−=
EI
M

E
d

Ids
Mθ

∴ = −

EI
M

dx
yd

−=2

2

ds

M M

y

θdρ

y

x

dx

θd

중립면

dy

 

dMM +M

dx

V

dxxf )(

dVV +

분포하중:)(xf

( )dV f x
dx

= − ( )dM V x
dx

= )(4

4

xf
dx

ydEI =∴

recall,

2

2

d wM EI
dx

=According to the Bernoulli-Euler law in beam theory

Simply supported beam : 
the application of the principle of potential energy

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

x

y

wq
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Illustrative Problem

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

22
2

0 22
E d wU y

dx
 

∴ =  
 

2

2

d wM EI
dx

=According to the Bernoulli-Euler law in beam theory

The strain energy per unit volume, 
(the strain energy density)

2
0

1
2 xU

E
σ= 0

2
0

1or 
2
1
2

x x

x

U

U E

σ ε

ε

=

=

recall,

2

2

/x
M

I y
y d wEI
I dx

σ =

=

2

2x
d wE y
dx

σ∴ =

2

0

22 2
2

2

2

2

xU
E

E d w y
E dx

σ
=

 
=  

 

The strain energy per unit volume, 
(the strain energy density)

Simply supported beam : 
the application of the principle of potential energy

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

x

y

wq
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Illustrative Problem

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

22
2

0 22
E d wU y

dx
 

=  
 

2

2

d wM EI
dx

=According to the Bernoulli-Euler law in beam theory

The strain energy per unit volume, 
(the strain energy density)

22

20 2
l EI d wU dx

dx
 

∴ =  
 

∫

The total Strain Energy absorbed in the beam

∫∫∫=
V

dzdydxUU 0

22
2

22
E d w y dxdydz

dx
 

=  
 

∫∫∫

Simply supported beam : 
the application of the principle of potential energy

( ) 0U Wδ δ∴ Π = − =

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

since 2y dydz I=∫∫

Neutral 
Axis 

<section view>

dy dz⋅y

y

x

x

y

wq
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Illustrative Problem

22

20
,

2
l EI d wU dx

dx
 

=  
 

∫

: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

WU −=∏

0
,

l
W qwdx= ∫ recall, uniform loaded string

22

20 02
l lEI d w dx qwdx

dx
 

∏ = − 
 

∫ ∫
22

20 2
l EI d w qw dx

dx

  
 ∴∏ = − 
   

∫

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

Simply supported beam : 
the application of the principle of potential energy

( ) 0U Wδ δ∴ Π = − =

x

y

wq
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Illustrative Problem
: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

22

20 2
l EI d w qw dx

dx

  
 ∏ = − 
   

∫

2 2

2 20 0
2

2
l lEI d w d w dx q wdx

dx dx
δδ δΠ = −∫ ∫

2 2

2 20 0

l ld w d wEI dx q wdx
dx dx

δδ δΠ = −∫ ∫

integrating by part

variation of      : ∏

2 2

2 20

l d w d w dx
dx dx

δ
∫

integrating by part

2 2 2 3

2 2 2 30 0
0

3

30

4 4

4 40
0

4

40

l
l l

l

l
l

l

d w d w d w d w d w d wdx dx
dx dx dx dx dx dx

d w d w dx
dx dx

d w d ww wdx
dx dx

d w wdx
dx

δ δ δ

δ

δ δ

δ

 
= − 
 

= −

   = − −  
   

=

∫ ∫

∫

∫

∫

boundary condition
simple support : 

2

2 0 0 andd w at x x l
dx

= = =

since

0 0w at x and x lδ = = =

4

40 0

l ld wEI wdx q wdx
dx

δ δ δΠ = −∫ ∫

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

Simply supported beam : 
the application of the principle of potential energy

( ) 0U Wδ δ∴ Π = − =

x

y

wq

126/183



Innovative Ship Design - Elasticity
SDAL@Advanced Ship Design Automation Lab.
http://asdal.snu.ac.kr

Seoul 
National
Univ.

Illustrative Problem
: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

22

20 2
l EI d w qw dx

dx

  
 ∏ = − 
   

∫
variation of      : ∏

4

40 0

l ld wEI wdx q wdx
dx

δ δ δΠ = −∫ ∫
4

40

l d wEI q wdx
dx

δ δ
 

∴ Π = − 
 

∫

from 0δΠ =
4

40
0

l d wEI q wdx
dx

δ
 

− = 
 

∫

since        is arbitrary wδ 4

4 0d wEI q
dx

− =

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

Simply supported beam : 
the application of the principle of potential energy

( ) 0U Wδ δ∴ Π = − =

x

y

wq
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Illustrative Problem
: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

4

40

l d wEI q wdx
dx

δ δ
 

Π = − 
 

∫ from 0δΠ = since        is arbitrary wδ
4

4 0d wEI q
dx

− =

임상전편저, 재료역학, 2002년 ,문운당 ( Timoshenko S., Young D.H., Elements of strength of materials, 5th edition, Van Nostrand, 1968)

+ -
- - comp.

+
+ tension+

y
or
y

κ

ρ

ydAσ

match

dMM +M

dx

V

dxxf )(

dVV +y

x

y

x
M

x

y

2σ

1σ
dA

2

2

d y M
dx EI

= ±
( )( ) 0V f x dx V dV− + + + =

( )dV f x
dx

⇒ = −

( ) 1( ) 0
2

M M dM Vdx f x dx dx− + + − ⋅ =

)(xV
dx

dM
=⇒

all sign convention is same
except y-axis in opposite direction

≠

B.M. Κ
=1/ρ y ε σ check dM=

yσdA dM relation btw V, M, f(x)
A

M dM= ∫

modify 
considering the 

curvature

2

2

d y M
dx EI

= − 4

4 ( )d yEI f x
dx

=

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

Simply supported beam : 
the application of the principle of potential energy

( ) 0U Wδ δ∴ Π = − =

x

y

wq
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Illustrative Problem
: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

4

40

l d wEI q wdx
dx

δ δ
 

Π = − 
 

∫ from 0δΠ = since        is arbitrary wδ
4

4 0d wEI q
dx

− =

The condition          leads directly to 
the governing equilibrium equation in 
terms of displacement 

0δΠ =

임상전편저, 재료역학, 2002년 ,문운당 ( Timoshenko S., Young D.H., Elements of strength of materials, 5th edition, Van Nostrand, 1968)

dMM +M

dx

V

dxxf )(

dVV +y

x

y

x
M

x

y

2σ

1σ
dA

( )( ) 0V f x dx V dV− + + + =

( )dV f x
dx

⇒ = −

( ) 1( ) 0
2

M M dM Vdx f x dx dx− + + − ⋅ =

)(xV
dx

dM
=⇒

all sign convention is same except y-axis in opposite direction

4

4 ( )d yEI f x
dx

=

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

Simply supported beam : 
the application of the principle of potential energy

( ) 0U Wδ δ∴ Π = − =

x

y

wq
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Illustrative Problem
: the virtual work done by the external (surface and body) forcesWδ

Uδ

( )x x y y z z xy xy yz yz zx zx
V

U dx dy dzδ σ δε σ δε σ δε τ δγ τ δγ τ δγ= + + + + +∫∫∫

( ) ( )dAwFvFuFdAwTvTuTW
V zyxA zyx ∫∫ +++++= δδδδδδδ µµµ

: the virtual strain energy 
or the strain energy absorbed in the body during a virtual displacement

4

40

l d wEI q wdx
dx

δ δ
 

Π = − 
 

∫ from 0δΠ = since        is arbitrary wδ
4

4 0d wEI q
dx

− =

If it is difficult to find a solution for the equilibrium equations, we can find an approximate solution which satisfies the equation 0δΠ =

approximation method

dMM +M

dx

V

dxxf )(

dVV +y

x

y

x
M

x

y

2σ

1σ
dA

( )( ) 0V f x dx V dV− + + + =

( )dV f x
dx

⇒ = −

( ) 1( ) 0
2

M M dM Vdx f x dx dx− + + − ⋅ =

)(xV
dx

dM
=⇒

4

4 ( )d yEI f x
dx

=

- uniformly distributed load 
- constant cross section
- only consider the strain energy due to pure bending due to 

- normal stress : 

- bending moment :
- moment of inertia of the cross section with respect to the    axis : 

xσ

q

/x
M

I y
σ =

M
y I

Simply supported beam : 
the application of the principle of potential energy

( ) 0U Wδ δ∴ Π = − =

x

y

wq
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CALCULUS OF VARIATION
- EQUATION OF EULER-LAGRANGE
- HAMILTON’S PRINCIPLE
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Calculus of Variation
- Mechanical System의 운동 방정식 유도

1
( ) 0

N

i i i
i

W mδ δ
=

= − ⋅ =∑ F r r

m=F r
Newton’s 2nd law

2

1

0
t

t
L dtδ =∫ :define L T V= −

0L d L
q dt q
∂ ∂

− =
∂ ∂ 

D’Alembert’s Principle

Virtual work

Hamilton’s Principle

- System의 초기 상태와 최종 상태는 정의되어 있음

- Mechanical System에 가해지는 힘은 보존력임

Equation of Euler-Lagrange

보존력이 작용하는 Mechanical System의
Kinetic energy(T)와 Potential energy(V)의 차이(L)를
Equation of Euler-Lagrange에 대입후 정리하면
Mechanical System의 운동 방정식을 유도할 수 있음

(T: Kinetic energy, V: Potential energy)
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진자(Pendulum)의 운동 방정식 유도
- 예시

x

y

θ

( , )p px y

sinpx r θ=

l

cospy r r θ= −

:define L T V= −

21
2

T m= r

cospx l θ θ= ⋅ 

sinpy l θ θ= ⋅ 

2 2 2 2 2 2 2 2 2 2 2cos sinp px y l l lθ θ θ θ θ= + = + =r   

  

2 21
2

mr θ=  , ( cos )V mg l l θ= −

2 21 ( cos )
2

L T V ml mg l lθ θ= − = − −

0L d L
q dt q
∂ ∂

− =
∂ ∂ 
(단,            ) q θ=

2sin 0dmgl ml
dt

θ θ− − =

2sin 0mgl mlθ θ− − =

sin 0g lθ θ− − =

sing
l

θ θ− = 

①

②

식①은 ②를 만족함

보존력이 작용하는 Mechanical System의
Kinetic energy(T)와 Potential energy(V)의 차이(L)를
Equation of Euler-Lagrange에 대입후 정리하면
Mechanical System의 운동 방정식을 유도할 수 있음

양의 방향
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Virtual work and D’Alembert’s Principle

x

y

1F

2F

1 2= + =F F F 0

1 2δ δ= ⋅ + ⋅F r F r
0=

정적평형

Wδ δ= ⋅F r

가상일의 원리

힘의 합력이 0이므로 물체는 정지해 있음
“정적 평형 상태”

물체를 미소 변위 만큼 움직인다고 가정 하면
질점에 작용하는 모든 힘이 한 일은 다음과 같다.

δr

rδ
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Virtual work and D’Alembert’s Principle

동적평형

D’Alembert’s Principle

1 2= + =F F F 0

1 2 3 m= + + =F F F F r

- 질량과 가속도의 곱은 물체에 가해지는 힘과 같다.
- 물체에 F라는 힘이 가해져서 m의 질량을 가진 물체가
가속도 운동을 한다.

해석

x

y
rδ

mr

3F

1F

2F
x′

y′

만일 물체에 고정되어 있는 좌표계(x’,y’)에서
물체를 바라본다면?

1 2 3 0m+ + − =F F F r

물체에 외력 이외에 관성력(          )이 가해져서
힘의 합력은 0이고, 움직이지 않는다.
“동적 평형 상태”

해석

m− r

동적 평형 상태에 가상일의 원리를 적용

1 2 3( )W mδ δ= + + −F F F r r

( ) 0m δ= − ⋅ =F r r

외력과 관성력이 한 가상 일(Virtual work)의 총 합은
0이다.

( ) 0W mδ δ= − =F r r
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Hamilton’s Principle (1/3)

1
( ) 0

N

i i i
i

W mδ δ
=

= − ⋅ =∑ F r r

2 2

1 11 1

N Nt t

i i i it t
i i

dt m dtδ δ
= =

= ⋅ − ⋅∑ ∑∫ ∫F r r r

2 2 2

1 1 11

Nt t t

i it t t
i

dt U dt V dtδ δ δ
=

⋅ = = −∑∫ ∫ ∫F r 작용하는 외력(F)이 보존력이라면 U = -V가 성립한다.
U: Work function, V: Potential energy

2

1 1

Nt

i it
i

m dtδ
=

⋅∑∫ r r

1 2( ) ( ) 0i it tδ δ= =r r

2 2

1 1 1
( )

Nt t

i i it t
i

W dt m dtδ δ
=

= − ⋅∑∫ ∫ F r r

양변을 t1 부터 t2까지 적분하면

( )
2

2

1
1

1 1

tN Nt

i i i it
i it

dm m dt
dt

δ δ
= =

 
= ⋅ − ⋅ 
 
∑ ∑∫r r r r 

시스템의 초기 상태와 마지막 상태는 정의
되어 있으며, 변분에 의해 변화하지 않는다.

From D’Alembert’s principle

∫∫ ′−=′ dxxgxfxgxfdxxgxf )()()()()()(

( )( ) ( )( )∫−= dx미분적분그대로적분

부분 적분

(부분 적분 적용)
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Hamilton’s Principle (2/3)

2 2 2

1 1 11

Nt t t

i it t t
i

dt U dt V dtδ δ δ
=

⋅ = = −∑∫ ∫ ∫F r 작용하는 외력(F)이 보존력이라면 U = -V가 성립한다.
U: Work function, V: Potential energy

2

1 1

Nt

i it
i

m dtδ
=

⋅∑∫ r r ( )2

1 1

Nt

i it
i

dm dt
dt

δ
=

= − ⋅∑∫ r r

2

1

2

1

1
2

Nt

it
i

m dtδ
=

= − ∑∫ r

2 2

1 11 1

1 ( )
2

N Nt t

i i i it t
i i

m dt m dtδ δ
= =

= − ⋅ = − ⋅∑ ∑∫ ∫r r r r   

( ) ( ) ( ) 2 ( )i i i i i i i iδ δ δ δ⋅ = ⋅ + ⋅ = ⋅r r r r r r r r       


2

1

t

t
T dtδ= − ∫

2 2

1 11 1

N Nt t

i i i it t
i i

dt m dtδ δ
= =

= ⋅ − ⋅∑ ∑∫ ∫F r r r

2 2

1 1 1
( )

Nt t

i i it t
i

W dt m dtδ δ
=

= − ⋅∑∫ ∫ F r r

양변을 t1 부터 t2까지 적분하면

2 2

1 1

t t

t t
V dt T dtδ δ= − +∫ ∫

1
( ) 0

N

i i i
i

W mδ δ
=

= − ⋅ =∑ F r r

T: Kinetic energy
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Hamilton’s Principle (3/3)

2 2

1 11 1

N Nt t

i i i it t
i i

dt m dtδ δ
= =

= ⋅ − ⋅∑ ∑∫ ∫F r r r

2 2

1 1 1
( )

Nt t

i i it t
i

W dt m dtδ δ
=

= − ⋅∑∫ ∫ F r r

양변을 t1 부터 t2까지 적분하면

2 2

1 1

t t

t t
V dt T dtδ δ= − +∫ ∫

1
( ) 0

N

i i i
i

W mδ δ
=

= − ⋅ =∑ F r r

2

1

0
t

t
T V dtδ= − =∫

2

1

0
t

t
L dtδ= =∫

L T V= − 라고 정의 하면
V: Potential energy
T: Kinetic energy

초기 상태와 최종 상태가 정의되어 있는 Mechanical System의
Potential energy와 Kinetic energy의 차이를 L이라 정의하면
L의 정적분값은 stationary value가 된다.
(L의 정적분값의 변화율은 0이 된다.)

• F의 정적분값의 변화율(δI)이 0이 되도록 하는
y = f (x)를 찾아야 함

0F d F
y dx y

∂ ∂
− =

′∂ ∂

참고(Equation of Euler-Lagrange)

( , , )
b

a
I F y y x dx′= ∫

•Find: 적분 I가 stationary value를 갖도록
하는 y = f (x)

•Given:

( ) , ( )f a f bα β= =
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The Calculus of Variation 
- Equation of Euler-Lagrange (1/6)

The stationary value of a definite integral treated by the calculus of variation

•Given: ( , , )
b

a
I F y y x dx′= ∫

•Find: 적분 I가 stationary value를 갖도록 하는 y = f (x)

where  ( ), ( ) , ( )y f x f a f bα β= = =

• y = f (x)가 I 가 stationary value를 갖도록 하는 함수라 가정한다.

( ) ( )
b b

a a
F x dx F x dxδ δ∴ =∫ ∫

•y의 변분(variation) δy를 고려한다.

•적분 I의 변화율(δI / ε)이 0이 되도록 하는 조건을 만족하는 y = f (x) 가 적분 I가
stationary value를 갖도록 한다.

•y가 y + δy로 이동했을 때, 적분 I의 변분 δI 를 살펴본다.
•함수 F 의 변분 δF의 값을 살펴본다.
•δI의 계산식을 구한다.
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The Calculus of Variation 
- Equation of Euler-Lagrange (2/6)

( )y f x=y

x

( )f x

1P

2P

a b

yδ

x

P

( )f x

( )y f x=

y

x

( , , )
b

a
I F y y x dx′= ∫

•Find: 적분 I가 stationary value를 갖도록
하는 y = f (x)

•Given:

( ) , ( )f a f bα β= =

• y = f (x)가 I 가 stationary value를 갖도록 하는 함수라 가정한다.

The given function:

The modified function:

( )y f x=

( ) ( ) ( )f x f x xεφ= +

• y의 변분(variation) δy를 고려한다.

( ) ( ) 0a bφ φ= =

• Ф(x) : arbitrary new function, continuous and differentiable.

변분 δy : 

( ) ( ) ( )y f x f x xδ εφ= − =

•parameter ε 이 감소함에 따라 0으
로 점근(infinitesimal change), 임의
의 방향으로 변경(virtual change)
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The Calculus of Variation 
- Equation of Euler-Lagrange (3/6)

•dy 와 δy

•dy : 주어진 함수 y = f (x)의 독립변수 x가
미소변위 dx만큼 이동하여 생기는,
함수 f (x) 의 변화량

( , , )
b

a
I F y y x dx′= ∫

•Find: 적분 I가 stationary value를 갖도록
하는 y = f (x)

•Given:

( ) , ( )f a f bα β= =

yδ

x

P

( )f x

( )y f x=

y

xx dx+

dx
dy

•δy : 주어진 함수 y = f (x)에 새로운 함수를
더함으로써 생긴 변화량
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The Calculus of Variation 
- Equation of Euler-Lagrange (4/6)

( , , ) ( , , ) ( , , )F y y x F y y x F y y xδ εφ εφ′ ′ ′ ′= + + −

( , , )
b

a
I F y y x dx′= ∫

•Find: 적분 I가 stationary value를 갖도록
하는 y = f (x)

•Given:

( ) , ( )f a f bα β= =

( )y xδ εφ=( )y f x=

( ) ( ) ( )f x f x xεφ= +

•함수 F 의 변분 δF

( ) ( ) 0a bφ φ= =

2 2 2

2 2

1 2
2

F F F F F
y y y y y y
εφ εφ εφ εφεφ εφ

 ∂ ∂ ∂ ∂ ∂′ ′ ′= + + + + + ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ 


Taylor series expansion 이용

ε이 작으므로, 고차항은 무시함

F F
y y

ε φ φ
 ∂ ∂ ′= + ′∂ ∂ 

•y가 y + δy로 이동했을 때, 적분 I의 변분 δI 를 살펴본다.
•함수 F 의 변분 δF의 값을 살펴본다.
•δI의 계산식을 구한다.
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The Calculus of Variation 
- Equation of Euler-Lagrange (5/6)

( , , ) F FF y y x
y y

δ ε φ φ
 ∂ ∂′ ′= + ′∂ ∂ 

( , , )
b

a
I F y y x dx′= ∫

•Find: 적분 I가 stationary value를 갖도록
하는 y = f (x)

•Given:

( ) , ( )f a f bα β= =

•함수 F 의 변분 δF:

•적분 I 의 변분 δI
b b b

a a a

F FI Fdx Fdx dx
y y

δ δ δ ε φ φ
 ∂ ∂ ′= = = + ′∂ ∂ 

∫ ∫ ∫

•y가 y + δy로 이동했을 때, 적분 I의 변분 δI 를 살펴본다.
•함수 F 의 변분 δF의 값을 살펴본다.
•δI의 계산식을 구한다.

b

a

I F F dx
y y

δ φ φ
ε

 ∂ ∂ ′= + ′∂ ∂ 
∫

•적분 I의 변화율(양변을 ε으로 나눔)

b
b b

a a
a

F F d Fdx dx
y y dx y
φ φ φ

   ∂ ∂ ∂′ = −   ′ ′ ′∂ ∂ ∂   
∫ ∫

0b

a

I F d F dx
y dx y

δ φ
ε

 ∂ ∂
∴ = − ′∂ ∂ 

∫
( )( ) ( ) 0a bφ φ= =

부분 적분을 이용하여 구함.

대입

∫∫ ′−=′ dxxgxfxgxfdxxgxf )()()()()()(

( )( ) ( )( )∫−= dx미분적분그대로적분
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The Calculus of Variation 
- Equation of Euler-Lagrange (6/6)

( , , )
b

a
I F y y x dx′= ∫

•Find: 적분 I가 stationary value를 갖도록
하는 y = f (x)

•Given:

( ) , ( )f a f bα β= =•적분 I의 변화율(δI)이 0이 되도록 하는 y = f (x)를 찾아야 함

•적분 I의 변화율:
b

a

I F d F dx
y dx y

δ φ
ε

 ∂ ∂
= − ′∂ ∂ 
∫

0
b

a

I F d F dx
y dx y

δ φ
ε

 ∂ ∂
∴ = − = ′∂ ∂ 

∫
• 함수 Ф(x)는 임의의 함수이므로, 위 식이 항상 0이 되기 위해서는 괄호 안의 식이 0이 되어야 한다.

0F d F
y dx y

∂ ∂
∴ − =

′∂ ∂
적분 I가 stationary value를 갖게 하
는 필요충분조건

• 따라서 적분 I가 stationary value를 갖도록 하는 y = f (x)는 위 미분방정식을 만족하는 함수이다.
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(참고) 곱의 미분

( )
h

xgxfhxghxfxgxf
dx
d

h

)()()()(lim)()(
0

−++
=

→

h
xgxfhxgxfhxgxfhxghxf

h

)()()()()()()()(lim
0

−+++−++
=

→

h
xgxfhxgxfhxgxfhxghxf

h

)()()()()()()()(lim
0

−+++−++
=

→

{ } { }
h

xgxfhxgxfhxgxfhxghxf
h

)()()()()()()()(lim
0

−+++−++
=

→

h
xgxfhxgxf

h
hxgxfhxghxf

hh

)()()()(lim)()()()(lim
00

−+
+

+−++
=

→→

h
xghxgxfhxg

h
xfhxf

hh

)()()(lim)()()(lim
00

−+
⋅++⋅

−+
=

→→

)()()()( xgxfxgxf ′+′=

( ), ( )df dgf x g x
dx dx

′ ′= =
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(참고) 부분 적분

( ) )()()()()()( xgxfxgxfxgxf ′+′=′

Integral with respect to x

( ) ∫∫∫ ′+′=′ dxxgxfdxxgxfdxxgxf )()()()()()(

∫∫ ′+′= dxxgxfdxxgxfxgxf )()()()()()(

∫∫ ′=′− dxxgxfdxxgxfxgxf )()()()()()(

∫∫ ′−=′ dxxgxfxgxfdxxgxf )()()()()()(

,∫∫ ′−=′ dxvuuvvdxu ( ))(),( xgvxfuwhere ==

( )( ) ( )( )∫−= dx미분적분그대로적분

u'으로 가정하는 순서 :지수함수, 삼각함수, 다항함수, 로그함수
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The commutative properties of the δ-process (1)

•The derivative of the variation

[ ]( ) ( ) ( ) ( )d d dy f x f x x x
dx dx dx

δ εφ εφ  ′= − = = 

•The variation of the derivative

( )( ) ( ) ( )d y f x f x y y x
dx

δ εφ εφ ′ ′ ′ ′ ′ ′= − = + − = 

( ) ( ) ( )f x f x xεφ= +

( )y f x=

d dy y
dx dx

δ δ∴ =

( )y f x=
y

x

( )f x

1P

2P

a b x

P

x dx+

yδ

( )f x

( )y f x=

y

x

dx
dy

( ) ( ) ( )y f x f x xδ εφ= − =

f (x)와 f (x)의 차이
의 변화율(기울기)

f (x)와 f (x)의 변화
율(기울기)의 차이
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The commutative properties of the δ-process (2)

The variation of a definite integral

( ) ( ) ( )f x f x xεφ= +
( )y f x=

d dy y
dx dx

δ δ∴ =

•The given integrand: ( )F x
•The modified integrand: ( ) ( ) ( )F x F x F xδ= +

•The variation of a definite integral

( ) ( ) ( )
b b b

a a a
F x dx F x dx F x dxδ = −∫ ∫ ∫

( )F x
y

xa b

( )
b

a
F x dx∫

( )
b

a
F x dxδ ∫

( )F x

( ) ( ) ( )
b b

a a
F x F x d x F x d xδ = − = ∫ ∫

( ) ( )
b b

a a
F x dx F x dxδ δ∴ =∫ ∫

The δ-process reveals two characteristic properties:
(a) Variation and differentiation are permutable processes.
(b) Variation and integration are permutable processes.
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Fourier Series(2) 
: Sturm-Liouville Problem
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Sturm-Liouville Problem
Review

0>α

General solutionsLinear Equations

0=+′ yy α
02 =+′′ yy α

02 =−′′ yy α 0>α

xecy α−= 1

xcxcy αα sincos 21 +=





+=
+= −

)sinhcosh
,

21

21

xcxcy
orececy xx

αα

αα

General solutionsCauchy-Euler Equation

022 =−′+′′ yyxyx α





=+=
≠+= −

0,ln
0,

21

21

α
ααα

xccy
xcxcy0≥α

0>x

Linear Equations

When    is a finite 
interval

x

When    is an infinite 
or half finite interval

x
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Sturm-Liouville Problem
Review

General solutionsParametric Bessel equation

)()( 0201 xYcxJcy αα +=

Particular solutions are 
polynomials

Legendre’s equation

0)1(2)1( 2 =++′−′′− ynnyxyx
0

1

2
2

( ) 1,
( ) ,

1( ) (3 1),
2

y P x
y P x x

y P x x

= =
= =

= = −



0>x0=ν
2 2 2 0x y y x yα′′ ′+ + =

,...2,1,0=n

151/183



Innovative Ship Design - Elasticity
SDAL@Advanced Ship Design Automation Lab.
http://asdal.snu.ac.kr

Seoul 
National
Univ.

Sturm-Liouville Problem
Eigenvalues and Eigenfunctions

0)(,0)0(,0" ===+ Lyyyy λ
When               (Case III )0>λ

0,2 >= ααλWrite

xcxcy αα sincos 21 +=

or

01 =c

2 sinn
ny c x
L
π

=(nontrivial solution)

αα imim −== 21 ,
Then roots of auxiliary equation is 

02 =c
0)0( =y

22 )(,
L

nnL nn
παλπα ===0)( =Ly

Recall example 2 of section 3.9

Eigenvalues

Eigenfunctions
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Sturm-Liouville Problem
Eigenvalues and Eigenfunctions

0, (0) 0, ( ) 0y y y y Lλ′′ + = = =

2 sinn
ny c x
L
π

=

22 )(
L

n
nn

παλ ==

Eigenvalues

Eigenfunctions

It is important to recognize the set of functions generated by this B.V.P

the orthogonal set of functions on the interval           used as the basis 

for the Fourier sine series

),0( L

0, (0) 0, ( ) 0y y y y Lλ′′ ′ ′+ = = = the Fourier cosine series
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Sturm-Liouville Problem

 Example 1  
Eigenvalues and 
Eigenfunctions

0)(,0)0(,0 =′=′=+′′ Lyyyy λ

It is left as an exercise to show, by 
considering the three possible 
cases for the parameter    (zero, 
negative, or positive; that is,

)
that the eigenvalues and 
eigenfunctions for the boundary-
value problem

λ

0,0,0,0,0 22 >>=><−== ααλααλλ and

are, respectively,
is an 

eigenvalue for this BVP and       is 
the corresponding eigenfunction. 
The latter comes from solving          
subject to the same boundary 
conditions                     . Note 
also that        can be incorporated 
into the family                  by 
permitting       . The set

is orthogonal on the 
interval [0,L].

,,2,1,0,/ 2222
=== nLnnn παλ

1 1 0cos( , 0. 0/ )y c n x L cπ λ≠ ==
1y =

0=′′y

0)(,0)0( =′=′ Lyy
1=y

)/cos( Lxny π=
0=n )},/{cos( Lxnπ

,,3,2,1,0 =n
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Sturm-Liouville Problem

Regular Sturm-Liouville Problem
rrqp ′,,,

real-valued functions
continuous on an interval

are not both zero

],[ ba

11, BA

Solve : 0)]()([])([ =++′ yxpxqyxr
dx
d λ

Subject to:

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA

0)(,0)( >> xpxr
for every    in the interval ],[ bax

are not both zero22 , BA

0, (0) 0, ( ) 0y y y y Lλ′′ + = = =

LbaBABA ====== ,0,0,1,0,1 2211

LbaBABA ====== ,0,1,0,1,0 2211

0, (0) 0, ( ) 0y y y y Lλ′′ ′ ′+ = = =

1)(,0)(,1)( === xrxqxp
Special case

B.V.P

Sturm-Liouville Problem :
Homogeneous Boundary Value problem

-> Trivial solution y=0

-> goal : find nontrivial solution y
(Eigenvalues, Eigenfunctions)
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Sturm-Liouville Problem

“Homogeneous”

Homogeneous D.E.+
Homogeneous B/C

nonzeroCCayBayA :,)()( 2211 =′+
Nonhomogeneous B/C

Regular Sturm-Liouville Problem
rrqp ′,,,

real-valued functions
continuous on an interval

are not both zero

],[ ba

11, BA

Solve : 0)]()([])([ =++′ yxpxqyxr
dx
d λ

Subject to:

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA

0)(,0)( >> xpxr
for every    in the interval ],[ bax

are not both zero22 , BA

B.V.P
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12.5 Sturm-Liouville Problem

“trivial solution is not our interest”

Homogeneous B.V.P always 
possesses the trivial solution 0=y

Regular Sturm-Liouville Problem
rrqp ′,,,

real-valued functions
continuous on an interval

are not both zero

],[ ba

11, BA

Solve : 0)]()([])([ =++′ yxpxqyxr
dx
d λ

Subject to:

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA

0)(,0)( >> xpxr
for every    in the interval ],[ bax

are not both zero22 , BA

B.V.P
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Sturm-Liouville Problem

 By utilizing the inner product

Properties of the Regular Sturm-Liouville Problem

(a) There exist an infinite number of real eigenvalues that can be arranged in increasing 

order                                                                     such that                        as                

(b) For each eigenvalues there is only one eigenfunction (except for nonzero constant 
multiples)

(c) Eigenfunctions corresponding to different eigenvalues are linearly independent

(d) The set of eigenfunctions corresponding to the set of eigenvalues is orthogonal with

respect to the weight function on interval

Theorem 12.3

)(xp

 <<<<< nλλλλ 321 ∞→nλ ∞→n

],[ ba

Solve : 0)]()([])([ =++′ yxpxqyxr
dx
d λ

Subject to:

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA
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Sturm-Liouville Problem

n

b

a mnm dxxyxyxp λλ∫ ≠= ,0)()()(Proof of (d) 

)1(0)]()([])([ =++′ mmm yxpxqyxr
dx
d λ

)2(0)]()([])([ =++′ nnn yxpxqyxr
dx
d λ

:)2()1( mn yy ×−× [ ( ) ] [ ( ) ] ( ) ( ) 0n m m n m n n m
d dy r x y y r x y p x y y
dx dx

λ λ′ ′− + − =

( ) ( ) [ ( ) ] [ ( ) ]n m n m n m m n
d dp x y y y r x y y r x y
dx dx

λ λ ′ ′− = −

[ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ]n m m n m n n m
d d d dy r x y r x y y y r x y r x y y
dx dx dx dx

′ ′ ′ ′= + − −

( ) ( )[ ( ) ] [ ( ) ]n m m n
d dy r x y y r x y
dx dx

′ ′= −
( ) n mr x y y′ ′ ( ) n mr x y y′ ′−

(d) The set of eigenfunctions corresponding to the set of 
eigenvalues is orthogonal with respect to the weight 
function on interval)(xp ],[ ba
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Sturm-Liouville Problem

n

b

a mnm dxxyxyxp λλ∫ ≠= ,0)()()(
Integrating 

( ) ( )∫∫ 





 ′−′=−

b

a nmmn

b

a mnmn dxyxry
dx
dyxry

dx
ddxyyxp ])([])([)()( λλ

( )
( )[ ( ) ( )] ( )[ ( ) ( )]
( )[ ( ) ( )] ( )[ ( ) ( )]

n m n m

m n m n

y b r b y b y a r a y a
y b r b y b y a r a y a

′ ′= −

′ ′− −

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA

Boundary Condition

)4(0)()(
)3(0)()(

11

11





=′+
=′+

ayBayA
ayBayA

nn

mm

)6(0)()(
)5(0)()(

22

22





=′+
=′+

byBbyA
byBbyA

mn

mm

Proof of (d) 

( ) ( )( ) ( ) [ ( ) ] [ ( ) ]n m n m n m m n
d dp x y y y r x y y r x y
dx dx

λ λ ′ ′− = −

(d) The set of eigenfunctions corresponding to the set of 
eigenvalues is orthogonal with respect to the weight 
function on interval)(xp ],[ ba
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Sturm-Liouville Problem

n

b

a mnm dxxyxyxp λλ∫ ≠= ,0)()()(

dxyyxp
b

a mnmn ∫− )()( λλ

Boundary Condition

As           are not both zero11, BA

0)()()()( =′−′ ayayayay nmnm

)4(0)()(
)3(0)()(

11

11





=′+
=′+

ayBayA
ayBayA

nn

mm








=
















′
′

0
0

)()(
)()(

1

1

B
A

ayay
ayay

nn

mm

=







′
′

)()(
)()(

det
ayay
ayay

nn

mm

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

Proof of (d) 

(d) The set of eigenfunctions corresponding to the set of 
eigenvalues is orthogonal with respect to the weight 
function on interval)(xp ],[ ba
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Sturm-Liouville Problem

n

b

a mnm dxxyxyxp λλ∫ ≠= ,0)()()(

dxyyxp
b

a mnmn ∫− )()( λλ

Boundary Condition

As           are not both zero22 , BA

0)()()()( =′−′ bybybyby nmnm









=
















′
′

0
0

)()(
)()(

2

2

B
A

byby
byby

nn

mm

=







′
′

)()(
)()(

det
byby
byby

nn

mm

)6(0)()(
)5(0)()(

22

22





=′+
=′+

byBbyA
byBbyA

nn

mm

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

Proof of (d) 

(d) The set of eigenfunctions corresponding to the set of 
eigenvalues is orthogonal with respect to the weight 
function on interval)(xp ],[ ba
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Sturm-Liouville Problem

n

b

a mnm dxxyxyxp λλ∫ ≠= ,0)()()(

dxyyxp
b

a mnmn ∫− )()( λλ

From Boundary Condition:

0)()()()( =′−′ bybybyby nmnm

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

0)()()()( =′−′ ayayayay nmnm

zero

zero

0)()( =−∴ ∫ dxyyxp
b

a mnmn λλ

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(

Proof of (d) 

(d) The set of eigenfunctions corresponding to the set of 
eigenvalues is orthogonal with respect to the weight 
function on interval)(xp ],[ ba

163/183



Innovative Ship Design - Elasticity
SDAL@Advanced Ship Design Automation Lab.
http://asdal.snu.ac.kr

Seoul 
National
Univ.

Sturm-Liouville Problem

n

b

a mnm dxxyxyxp λλ∫ ≠= ,0)()()(

dxyyxp
b

a mnmn ∫− )()( λλ

From Boundary Condition:

0)()()()( =′−′ bybybyby nmnm

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

0)()()()( =′−′ ayayayay nmnm

zero

zero

0)()( =−∴ ∫ dxyyxp
b

a mnmn λλ

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(

Orthogonal relation

Proof of (d) 

(d) The set of eigenfunctions corresponding to the set of 
eigenvalues is orthogonal with respect to the weight 
function on interval)(xp ],[ ba
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Sturm-Liouville Problem

 Example 2  
A Regular Sturm-
Liouville Problem
Slove the boundary-value 

problem

.0)1()1(,0)0(,0 =′+==+′′ yyyyy λ

,0,00 2 ><−== ααλλ whereand
0=ysolutiontrivialthe

,0,02 >>= ααλ

xcxcyis
yyofsolutiongeneralthe

αα
α

sincos
0

21

2

+=
=+′′

2 2 2sin cos (sin cos ) 0c c cα α α α α α+ = + =

02 ≠c

The second boundary condition
is satisfied if0)1()1( =′+ yy

Choosing         , we see that the 
last equation is equivalent to αα −=tan

The eigenvalues of problem are 
then         , where    ,             , are 
the consecutive positive roots        
of    

2
nn αλ = nα ,3,2,1=n

,,, 321 ααα
αα −=tan

1 2(0) 0 siny c y c xα= = ∴ =

α
y

tanα

y α= −
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Sturm-Liouville Problem

 Example 2  
A Regular Sturm-
Liouville Problem
Slove the boundary-value 

problem

.0)1()1(,0)0(,0 =′+==+′′ yyyyy λ

,0,00 2 ><−== ααλλ whereand
0=ysolutiontrivialthe

,0,02 >>= ααλ

xcxcyis
yyofsolutiongeneralthe

αα
α

sincos
0

21

2

+=
=+′′

2 2 2sin cos (sin cos ) 0c c cα α α α α α+ = + =

02 ≠c

The second boundary condition
is satisfied if0)1()1( =′+ yy

Choosing         , we see that the 
last equation is equivalent to αα −=tan

and the corresponding solutions are                                                                                  
,0855.11,9787.7,9132.4,0288.2 4321 ==== αααα

,9787.7sin,9132.4sin,0288.2sin 321 xyxyxy ===
xy 0855.11sin4 =

In general, the eigenfunctions of the 
problem are ,3,2,1},{sin =nnα

1 2(0) 0 siny c y c xα= = ∴ =

α
y

tanα

y α= −
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Sturm-Liouville Problem

 Example 2  
A Regular Sturm-
Liouville Problem
Slove the boundary-value 

problem

.0)1()1(,0)0(,0 =′+==+′′ yyyyy λ

1 1 2 2

( ) 1, ( ) 0, ( ) 1
1, 0, 1, 1

r x q x p x
A B A B

= = =
= = = =

Regular Sturm-Liouville Problem

Solve : 0)]()([])([ =++′ yxpxqyxr
dx
d λ

Subject to:

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA

B.V.P

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(

Orthogonal relation
Regular Sturm-Liouville Problem

In general, the eigenfunctions of the 
problem are ,3,2,1},{sin =nnα

,3,2,1},{sin =nnα is an orthogonal set with 

respect to the weight function

on the interval [0,1].( ) 1p x =
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Sturm-Liouville Problem

dxyyxp
b

a mnmn ∫− )()( λλ

should be zero for Orthogonal relation

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(
Orthogonal relation

0)]()([])([ =++′ yxpxqyxr
dx
d λ 0)()(

0)()(

22

11

=′+
=′+

byBbyA
ayBayA

Boundary Condition:
 Regular Sturm-Liouville Problem

In some circumstances, we can prove the orthogonality of the solutions

of                                    without the necessity of specifying a 

boundary condition at x=a and at x=b 

0)]()([])([ =++′ yxpxqyxr
dx
d λ

 Singular Sturm-Liouville Problem

],[ ba
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Sturm-Liouville Problem

dxyyxp
b

a mnmn ∫− )()( λλ

should be zero for Orthogonal relation

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(
Orthogonal relation

0)]()([])([ =++′ yxpxqyxr
dx
d λ

If                             then                   may be a singular and the equation 

may become unbounded as

however 

0)( =ar

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA

)]()()()()[()]()()()()[( ayayayayarbybybybybr nmnmnmnm ′−′−′−′
dropped from the problem 
: no boundary condition at  

Singular Sturm-Liouville Problem

Orthogonal relation hold on 

0)]()([])([ =++′ yxpxqyxr
dx
d λ

ax =
ax →

],[ ba ax =

],(, ba

Boundary Condition:
 Regular Sturm-Liouville Problem

zero

],[ ba
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Sturm-Liouville Problem

If                             then                   may be a singular and the equation 

may become unbounded as

however 

0)( =br

Orthogonal relation hold on 

0)]()([])([ =++′ yxpxqyxr
dx
d λ

bx =
bx →

],[ ba

)]()()()()[()]()()()()[( ayayayayarbybybybybr nmnmnmnm ′−′−′−′
zero

dropped from the problem
: no boundary condition at bx =

),[, ba

Boundary Condition:

dxyyxp
b

a mnmn ∫− )()( λλ

should be zero for Orthogonal relation

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(
Orthogonal relation

0)]()([])([ =++′ yxpxqyxr
dx
d λ 0)()(

0)()(

22

11

=′+
=′+

byBbyA
ayBayA

Singular Sturm-Liouville Problem

 Regular Sturm-Liouville Problem

],[ ba
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Sturm-Liouville Problem

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(
Orthogonal relation

0)]()([])([ =++′ yxpxqyxr
dx
d λ

example*)

Singular Sturm-Liouville Problem
Legendre’s equation is a Sturm-Liouville equation

[ ] 02)1(0)1( 22 =+′−′′−⇔=+
′′− yyxyxyyx λλ

*Kreyszig E. ,Advanced Engineering Mathematics, 9th edition, Willey, 2006, p207 example 5

)(xr
0)1( =±rSince                          need no boundary conditions, but have a singular Sturm-Liouville problem

on the interval                          . We know that , the Legendre polynomials                  are solutions

of the problem for 

Hence these are the eigenfunctions. They are orthogonal on the interval

11 ≤≤− x

)1( += nnλ

)(xPn

,...)32,21,0,...(2,1,0 ⋅⋅== λn

0)1(2)1( 2 =++′−′′− ynnyxyx
Legendre’s equation

)(,0)()(
1

1
nmdxxpxp nm ≠=∫−

],[ ba
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Sturm-Liouville Problem

If                                   then)()( brar =
Periodic Sturm-Liouville Problem

∴Orthogonal relation hold on                  with ],[ ba

Boundary Condition:

[ ]))()()()(())()()()(()(
)]()()()()[()]()()()()[(

bybyayayayaybybyar
ayayayayarbybybybybr

nmnmnmnm

nmnmnmnm

′−′+′−′=

′−′−′−′

)()(),()( byaybyay ′=′=

dxyyxp
b

a mnmn ∫− )()( λλ

should be zero for Orthogonal relation

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(
Orthogonal relation

0)]()([])([ =++′ yxpxqyxr
dx
d λ 0)()(

0)()(

22

11

=′+
=′+

byBbyA
ayBayA Regular Sturm-Liouville Problem

],[ ba
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Sturm-Liouville Problem

with 

with boundary Condition:

( ) ( ), ( ) ( )y a y b y a y b′ ′= =

dxyyxp
b

a mnmn ∫− )()( λλ

)]()()()()[(
)]()()()()[(
ayayayayar

bybybybybr

nmnm

nmnm

′−′−

′−′=

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(
Orthogonal relation hold on.. [a,b]

0)]()([])([ =++′ yxpxqyxr
dx
d λ

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA

Sturm-Liouville Problem

• Regular 

• Singular

• Periodic

0)( =ar

0)( =br

],[ ba

)()( brar =

( ) 0r x ≠

],[ ba

without B/C at x=a

without B/C at x=b

2 2( ) ( ) 0A y b B y b′+ =

1 1( ) ( ) 0A y a B y a′+ =

By assuming the solution (y) are bounded on the closed interval [a,b] , then
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Sturm-Liouville Problem

Self-Adjoint Form

If the coefficient are continuous and                         for all        in some interval, then

any second-order differential equation 

can be recast into the so-called ‘self-adjoint form’.

0)( ≠xa

[ ( ) ( )] [ ( ) ] 0d r x y q p xx y
dx

λ′ + + =

0))()(()()( =++′+′′ yxdxcyxbyxa λ

x

Recall, ch. 2.3 integrating factor

1 0( ) ( ) 0a x y a x y′ + = 0][ =y
dx
d µ

)(
)()(,

1

0)(

xa
xaxpe dxxp == ∫µ
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Sturm-Liouville Problem

Self-Adjoint Form

0)]()([])([ =++′ yxpxqyxr
dx
d λ

0))()(()()( =++′+′′ yxdxcyxbyxa λ

∫ dx
xa
xb

e )(
)(

0
)(
)(

)(
)(

)(
)(

=







++′+′′ y

xa
xd

xa
xcy

xa
xby λ

0
)(
)(

)(
)(

)(
)( )(

)(
)(
)(

)(
)(

)(
)(

=









++′+′′

∫∫∫∫
y

xa
xde

xa
xceye

xa
xbye

dx
xa
xbdx

xa
xbdx

xa
xbdx

xa
xb

λ

0
)(
)(

)(
)( )(

)(
)(
)(

)(
)(

=









++












′

∫∫∫
ye

xa
xde

xa
xcye

dt
d dx

xa
xbdx

xa
xbdx

xa
xb

λ

multiply

)(xr )(xq ( )p x

( )a xdivided by 
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Sturm-Liouville Problem

Self-Adjoint Form

0)]()([])([ =++′ yxpxqyxr
dx
d λ

0))()(()()( =++′+′′ yxdxcyxbyxa λ

∫
=

dx
xa
xb

e
xa
xdxp )(

)(

)(
)()(

∫
=

dx
xa
xb

e
xa
xcxq )(

)(

)(
)()(

∫
=

dx
xa
xb

exr )(
)(

)(
Example) 063 =+′+′′ yyy λ

xdx
dx

xa
xb

eee 22)(
)(

== ∫
∫

0
33

6
=+′+′′ yyy λ

0
3

2 222 =+′+′′ yeyeye xxx λ

2
2

3
0

x
xd e y e y

dx
λ′  + = 
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Sturm-Liouville Problem

1
ln

0

dx xxe e x
x

∫
= =

>

General solution )()( 21 xYcxJcy nn αα +=

Ex.)Parametric Bessel Series*

,...2,1,0,0)( 2222 ==−+′+′′ nynxyxyx α

*Zill & Cullen, Advanced Engineering Mathematics, 3rd edition, John and Bartlett, 2006, p263

converges on               when

converges on

)(xJn ),0[ ∞

)(xYn ),0( ∞
0≥n

0)(1
2

2
2 =−+′+′′ y

x
ny

x
y α

multiply

0)(
2

2 =−+′+′′ y
x

nxyyx α

λ)(xr )(xp)(xq

[ ] 0)( 2
2

=+−+′ yx
x

nyx
dx
d α

Self-Adjoint Form

2xdivided by 

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(

0)]()([])([ =++′ yxpxqyxr
dx
d λ

],[ ba
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Sturm-Liouville Problem

General solution )()( 21 xYcxJcy nn αα +=
,...2,1,0,0)( 2222 ==−+′+′′ nynxyxyx α

*Zill & Cullen, Advanced Engineering Mathematics, 3rd edition, John and Bartlett, 2006, p263

converges on               when

converges on

)(xJn ),0[ ∞

)(xYn ),0( ∞
0≥n

λ)(xr ( )p x)(xq

[ ]
2

2( ) 0d xnxy y
dx x

α′ + − + =

Recall, singular Sturm-Liouville Problem, the set

is orthogonal with

respect to the weight function

on an interval 

0)0( =r

( )nJ xαonly                  is bounded at

of the two solutions  

0x =
)(),( xYxJ nn αα

{ }( ) , 1, 2,3...,n iJ x iα =
( )p x x=

[0, ]b

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(

0)]()([])([ =++′ yxpxqyxr
dx
d λ

],[ ba

Ex.)Parametric Bessel Series*
Self-Adjoint Form • Singular 0)( =ar : Orthogonal relation 

holds on without B/C
at x=a

( 0)nY as x→−∞ → The orthogonality relation is

2

0
( ) ( ) 0, ( )

b

n i n j i jJ x J x dx xα α λ λ λ α= ≠ =∫
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Sturm-Liouville Problem

Provided the    , and hence the 
eigenvalues
are defined by means of a 
boundary condition at        of the 
type given in                              :

iα
2 , 1, 2,3,i i iλ α == 

x b=

2 2( ) ( ) 0n nA J b B J bα α α′+ =

Boundary Condition:

mn

b

a mn dxyyxp λλ ≠=∫ ,0)(
Orthogonal relation

0)]()([])([ =++′ yxpxqyxr
dx
d λ 0)()(

0)()(

22

11

=′+
=′+

byBbyA
ayBayA

],[ ba

Ex.)Parametric Bessel Series*
Self-Adjoint Form

λ)(xr ( )p x)(xq

[ ]
2

2( ) 0d xnxy y
dx x

α′ + − + =

{ }( ) , 1, 2,3...,n iJ x iα =

2

0
( ) ( ) 0, ( )

b

n i n j i jJ x J x dx xα α λ λ λ α= ≠ =∫

: orthogonal set

orthogonal  relation

2 2( ) ( ) 0A y b B y b′+ =

 Roots ( )i ix bα=
 Eigenvalues

2
2( ) i

i i
x
b

λ α  = =  
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Sturm-Liouville Problem

As          is the only solutions of the equation that are bounded on the closed 
interval [-1,1], and                        (no boundary condition required) that the 
set         is orthogonal with respect to the weight function on [-1,1], The 
orthogonality relation is

( ) 0, ( ) 1q x p x= =

)1( += nnλ

,2,1,0=n)(xPn

0)1()1( ==− rr
)(xPn

1

1
( ) ,1 ( ) 0m nP x P x dx m n

−
= ≠⋅∫

2 2(1 ) 0 (1 ) 2 ( 1) 0x y y x y xy n n yλ
′

′ ′′ ′ − + = ⇔ − − + + = 

Boundary Condition:

0( ,)
b

n m n ma
p y xx y d λ λ= ≠∫

Orthogonal relation

0)]()([])([ =++′ yxpxqyxr
dx
d λ

0)()(
0)()(

22

11

=′+
=′+

byBbyA
ayBayA],[ ba

Ex.) Legendre’s Equation*
Self-Adjoint Form

Legendre’s D.E. 
 polynomial solutions  

)(xPn
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제약 최적화 문제를 비제약 최적화 문제로 변환하는 방법
- Lagrange Multiplier 사용

))(()()(),,,( 2sxguxhvxsuvx +++= TTfL

제약 최적화 문제

Minimize )(xf
0xh =)(Subject to

0xg ≤)(
등호 제약 조건

부등호 제약 조건

Lagrange 함수를 이용한 비제약 최적화 문제로의 변환

1) 현재의 설계점에서 제약 조건을 만족하는 경우

0xh =)(등호 제약 조건의 경우:
부등호 제약 조건의 경우: 0u =

따라서 )())(()()(),,,( 2 xsxguxhvxsuvx ffL TT ⇒+++=  제약 조건을 만족할 때
Lagrange 함수가
원래의 목적 함수와 동일함

(설계점이 제약 조건의 경계에 있지 않을 때)
0xg0s =⇒= )( (설계점이 제약 조건의 경계 상에 있을 때)

2) 현재의 설계점에서 제약 조건을 위배하는 경우

0xhv ≠)(T등호 제약 조건의 경우:

부등호 제약 조건의 경우: 0sxgu >+ ))(( 2T

따라서
2( , , , ) ( ) ( ) ( ( ) )T TL f= + + +x v u s x v h x u g x s

 제약 조건을 위배할 때 원래의 목적 함수에 벌칙 값을 더한 것으로 생각할 수 있다.

국부적 후보 최적성 조건인 ∇L=0으로부터 u, v를 계산해야 함

reference: [OCW] 2008_Computer aided ship design 182/
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제약 최적화 문제를 비제약 최적화 문제로 변환하는 방법
- SUMT: Sequential Unconstrained Minimization Technique(Internal Penalty Function 
Method)

제약 최적화 문제

Minimize
Subject to 등호 제약 조건

부등호 제약 조건

)(xf
0xh =)(
0xg ≤)(

1968년에 Fiacco와 McCormick이
제약 조건의 위배량을 원래 목적 함수에 더한 수정된 목적 함수를 이용하여
제약 최적화 문제를 비제약 최적화 문제로 변환하는 방법을 제안함.
- SUMT: Sequential Unconstrained Minimization Technique

f(x)

φ(x, rk)

g(x) < 0

g(x) > 0

x0

Φ, f

Optimum x*

g(x) = 0

∑
=

−=Φ
m

j j
kk g

rfr
1 )(

1)(),(
x

xx 여기서, rk는 문제에서 주어지는 양의 상수로서
Iteration이 진행될수록 그 값이 커짐

설계점이 Feasible region에서 부등호 제약 조건의 경계로
접근하면

( ) 0jg ≤x 이며, 절대값이 작아짐

1 0
( )k

j

r
g

− >
x

이며, 절대값이 커짐

따라서 설계점이 부등호 제약 조건의 경계로 접근 할 때
수정된 목적 함수의 값이 증가하게 되고, 
이는 제약 조건 식을 위배하는 것을 방지한다.

reference: [OCW] 2008_Computer aided ship design 183/
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