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Summary

Variables and Equations

If we are interested in finding the displacement
components in a body, we may reduce the system of
equations to three equations with three unknown
displacement components.

Given : Body force X Y Z
u, v, w

Find : Displacement

(/1+G)?+GVZU+X =0
X

A1+G @+GV2V+Y =0
oy

(A+G)?+GV2W+Z =0
z

3 Variables
3 Equations

X,Y,Z:bodyforce in x,y, and z direction repectivelyg
ou ov owi®=o, +0'y+0'Z§

oX 0Oy OzipuA:lLame Elastic constant:

52 G : Shear Moldulus:

—t—t+— v : Poisson'sRatio:
OX" 0z" 0y” |E:Young's Modulus'

innovative Ship Design - Elasticity
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18 Variables

9 Stress Oy Ty Ty Ty 1Oy Ty 1 Ty 1Ty, 3 O,
6 Strain &, yE € Yy Yy Vi
3 Displacement U,V,W

18 Equations

@@

6 Equations of force equilibrium \
aO-x 8ryx az-zx _
ZFX: ax +W+€+X—O ZMX:TVZ_TZYZO
Zij;szauaaTZMY:o 2 My =70 =7, =0
ZMZ = xy_z-yx =0
or, 0t, oo
DR =424 7=0
\_ x oy & Y,
(" 6 Relations btw. Strain and Displacement N
ou ov ow
gx =—, E, =—, gz =—,
ox 7 oy oz
LN v aw_ow
\ Tyt a7 T y
ﬁ Relations btw. 6 Strain and 6 Stress \
vE E __E
o, = e+ &y !Txy _—yxy
@L+v)Q-2v) (1+v) 2(v+1)
o, = vE e+ E & _—E
Y+ v)@-2v)  @Q+v) ! YT (v +1) Ty
vE E E
O-Z = e+ 82 , :—7/
A+v)d-2v)  (1+v) 2Av+D T
,e=¢&c +&,+&

/
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Summary

If we are interested in finding only the stress components
in a body, we may reduce the system of equations to six
equations with six unknown stress components

Given : Body force X Y /
Find : Stress Oy O-y’ O, z-xy’ z-yz’ T
/ v (oX oY oz X s 1 0°0 _ \
—| —+—+—|+2—+V'0o, + =
l-viox oy oz OX 1+v ox°
v (0X oY oz o . 1 6 ©_
— | —t—+—|+2—+Vo, +
1-viox oy oz) oy 1+v oy2 (3:
v [oX 6Y 6Z oL _, 1 0°0
— —+—[+2—+Vo,+ —— =
1-v| ox ay 0oz 0z 1+v oz P
oY oX 2 1 0%0
—+— |+Vr, , +—— =
oX oy Y v+10x0y
oz oY 2 1 0°0© .
—+— |+Vr, +—— = >
5 azJ et oyer |::> 6 Varlab.Ie:.
AN 50 6 Equations
+Vr, +t———=
K oo v +1 620X /

X .Y, Z:bodyforce in x,y, and z direction repectivelyg

®O=0,+0,+ o-zg
.1, A - Lame Elastic constant:

Eara

52 (G .:Shear Moldulus:
+— v : Poisson's Ratio:
oy

E : Young's Modulus:

Innovatlve Shlp Design -~ Elasticity”

18 Variables
15 Variables

9 Stress Oy Ty 1Ty Ty 1Oy Ty 1 Ty 1Ty, 0,

6Stfai/7 gvlg\llg-/!yxy’}/yziyzx

18 Equations ->» 15 Equations

6 Equations of force equilibrium

aO-x 8ryx az.zx
ZFX— ax +W+§+X—O ZMX:TYZ_TZYZO
oo, Ot zMy:sz_sz_O

or, g
DR =—Z+—L+—24Y =0
ox oy oz

oo

or ot
F — Xz yz z Z:
\Z = +—ay L 0 /
/

Cpmpatlblllty equations 3 /n ependent Equations

agx agy a}/XV 288 a a}/yl ayzx %
o> ox° oxoy oyor x| ox oy oz
82 6ng 0? Yy or |2 62£y 0 0%y 07, N 07y
622 o oy oox oyl ox oy @
2 2 2
aiz-f-a ;Zayzx 82 0 a}/yl_,’_a}/zx_%
OX 0z 020X axay az X ay oz
6 Relations btw. 6 Strain and 6 Stress E
o, = vE e+ E g, 1Ty = Ty
A+v)(1-2v)  (L+v) 2(v+1)
o, = VE e+ E & T. = E
-2 @) e o1
vE E E
o, = e+ g, r =
(l-‘r- V)(l— 21/) (l+ V) VP x 2(V +1) Vx

=&+, teg,
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Classification fevascftsfune (Sl 00 @ a00m 0] -Ea oo

K; F
. "
whenever a smooth ‘classical(strong)’ 2) | Apprommat? Wicted
solution to a (D.E.) problem exists, it —  Weak Form integration by part and Collocation
is also th; solution of the weak . d?/::::: ;:“:;:-‘:n‘:':;:‘::;‘s Least Square
problem [ +u—xvdx= 0 [LCuv +w - x)dx=0 Galerkin > FEM
u(0 90,u@)=0 .
( | )0, u(l) ‘ | 7{$ z| S u F » shape function
Differential Equation multiply V' and integration u() =3¢ ol
n L—A—H
(ODE/PDE) v(x) = Y ad(X) sl AL
—u"+u=x, 0<x<l,
Ex.) 4(0 20, ul) =0 — Work and Energy Principle Approximate Method
e - T | Rayleigh-Ritz |
‘ ‘ ‘ ) Varlatlor.\al o
dy J multiply 0y and integration formulation y(x) ~ ¢0(X) + Cl¢1(x) 1L ooodk Cn¢n (X)
Ex.) d—(T dxj +po°y+p=0 [ d Gy dy - Variation and integration
d . N
J-o(dx (T deerw y+ pjgydx E> 5-[ |: PO y + py— (dxj :ldx 0 ntegration and variation

integration by part and B/C

—> Approximate Method

Leibnitz formula?

problem of a “hereditary’ nature® chsk (X) = F(X) ,s.(0)=6(x —/IJ:K(X,(j)y(g)dg
k7

S Feads = [T X de s RpBL D - Fix AL Integral :
Equations [ Collocation | >'c,s,(x) = F(x)
e
:. What is the relationship Volterra ) Galerki AL ax— [ F(x)d
ibetween ‘week form’ and a(x)y(x):F(x)+/1LK(x,§)y(§)d§ L Galerkin | ;ija""(x)sk(x) x = vi(9F()dx
‘Variational formulation? JWw(X) = " ad(x
Fredholm v(x)=2, ah(x)

a()y(x) = F(9) + 4] K(x,&)y(£)dé

= 2
| Least Square | min J‘b[zcksk(x)—F(x)} dx
dlia

1) Jerry, Aj., Introduction to Integral Equations with Applications, Marcel Dekker Inc., 1985, p19~25

2) 'variational statement of the problem’ -Becker, E.B,, et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, 1981, p4

3) Becker, E.B., et al, Finite Elements An Introduction, Volume 1, Prentice-Hall, 1981, p2 . See also Betounes, Partial Differential Equations for Computational Science, Springer, 1988, p408 "...the weak solution is actually a strong (or classical) solution...”
4

) some books refer as ‘Method of Weighted Residue’ from the Finite Element Equation point of view and they have different type depending on how to choose the weight functions. See also Fletcher,C.A.J., “Computational Galerkin Methods”, Springer,
1984

) Jerry, Aj., Introduction to Integral Equations with Applications, Marcel Dekker Inc., 1985, p1 “Problems of a ‘hereditary’ nature fall under the first category, since the state of the system u(t) at any time t depends by the definition on all the previous
states u(t-1) at the previous time t-T ,which means that we must sum over them, hence involve them under the integral sign in an integral equation.
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Integral Equations

An integral equation is an equation in which a function to be
determined appears under an /ntegral sign

‘Fredholm equation’  a(X)y(x) = F(x)+ 4| K(x,&)y(&)dé

where &, F and K are given function and A, a,b are constant

The given function K(x,&) , which depends upon the current variable x as well as the
auxiliary variable & is known as the kerne/ of the integral equation

The function y(X) is to be determined

L ‘'Volterra equation’  a(x)y(x) = F(x)+ 4] K(x &)y(&)dé, J
, upper limit of integral is not a constant

'k

What is the relationship

@,
between D.E. and the integral Differential Equation | = ' Integral Equations | i’)z

equations? <: Can you guess what decides
the type of integral equation?

€. How can you transform a D.E.
into an integral equation?

Innovative Ship Design - Elasticity
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Integral Equations

An integral equation is an equation in which a function to be
determined appears under an /ntegral sign
' ‘Fredholm equation’ a(X)y(x)= F() + 4| K(x,£)y(£)d¢ |

Differential Equation =  Integration Equations |
'!’:

€. How can you transform a D.E.
into an integral equation?

‘ ‘Volterra equation’  (\)y(X)=F()+4[ K(x&)y(&)d¢, ‘

it is necessary to make use of the known formula

o Rade = [ TR g R BOLTE - FIx AL —

d A(x)

consider the differentiation of the function 7 (x) defined by the equation

1,09 = [ (x=&)" (£)d¢&

n times differentiation by using the with the formula

we have,

Jo I [ 1L ooy ---dix dx, = ﬁ [ i @)dg) Rttt

[ ard
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Integral Equations

An integral equation is an equation in which a function to be
determined appears under an /ntegral sign
' ‘Fredholm equation’ a(X)y(x)= F() + 4| K(x,£)y(£)d¢ |

Differential Equation =  Integration Equations |
'!’:

€. How can you transform a D.E.
into an integral equation?

‘ ‘Volterra equation’  (\)y(X)=F()+4[ K(x&)y(&)d¢, ‘

it is necessary to make use of the known formula

o Rade = [ TR g Rk BOLE - FIx AL —

d A(x) A(X)

consider the differentiation of the function 7 (x) defined by the equation

1,09 = [ (x=&)" (£)d¢&

n times differentiation by using the with the formula

we have,
X (% X3 (%2 1 X 1 What do you think the
Ia Ia e .J‘a -‘-a f (Xl) deXZ U = j)!_"a (X = f)n f (g)d ér meartling zf thtis equtation is?
v
1) if you have a function f / \

2) and integrate it n times 3) you have this

n-1
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Integral Equations

An integral equation is an equation in which a function to be
determined appears under an /ntegral sign
' ‘Fredholm equation’ a(X)y(x)= F() + 4| K(x,£)y(£)d¢ |

Differential Equation =  Integration Equations |
'!’:
(;.‘; How can you transform a D.E.

‘ ‘Volterra equation’  (\)y(X)=F()+4[ K(x&)y(&)d¢, ‘

into an integral equation?

‘ _l),j (x=&)" 1f(§)d<§
1) if you have a function f / —

3) you have this

2) and integrate it n times

2

(;Z+/1y 0, y(0) =1 y(l)=0
g

y(¥) = A[ K(x.&)y(£)dé

¢

=(l-=x) when £<Xx
Kx8) =19
I—(I—z;) when & > x
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Differential Equation and Inte dgral Equations

, (in undergraduate school)
'z:

€, How to solve a
Differential Equation?

|élntegratlonI
Ex) Population dynamics .
dP(t Integration!!
d( ) = kP(t)
t LH.S:
N : P t
. ) R.H.S:
.................. = | [kP(t)dt = k [ P(t)dt
APM)KC= kj P(t)}j >
€ ?
<olved? %; Then, how?

Innovative Ship Design - Elasticity
B T




Differential Equation and Integral Equations

(in undergraduate school)

dP(x)

dP(X) transform - kdX
Ex) Population d i
x) Population dynamics — kP(X) » Separable Variables

Billiens of people

© X In|P(x)] = kx+ ¢
e o .. N Integration!!
| Aao L : P(X) _ ekx+c
'LH.S: = Ce”
i v o : ¢>0if P(x)>0
o 2 dP(X) P C where, 1 &
dx — (X) + € <0 if P(x),0

R.H.S:

jkp(x) = kjp(x)

IP(X)}C = kjp(x)dx

solved?

Innovative Ship Design - Elasticity
B T
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Differential Equation and Inte?ral Equations

7 (in graduate school)

€, How to solve a
Differential Equation?

|élntegratlonI
Ex) Population dynamics . L
dP('[) tegra equatlon if}Then, how to solve?
dt = kP(t) ————=u(t) =k (1+ Io U(S)dS)- (1) By using decomposition methods*
for instance . . ‘
P()—kP®)=0 ,P(O)=1 | U®=2 U0 @
e . Substituting (2) into (1)
integration both sides E . (t) 2l (t) =\ (t) ki (1+ I (uo (S) +U, (S) +U, (S) + )d )
‘P(s)ds = [ i g
jo P'(s)ds = jo u(s)ds i
t ' u,(t) =k
P(t) - P(0) = | u(s)ds t G et e
t () = k[ uy(s)ds = uy(t) =k | kds =k*[s], =k’t
L P@) =1+ | u(s)ds | k® k®
i '[0 G : u,(t) = kﬁ u,(s)ds = U,(t) = kj;kzs ds = ?[32]; = ?tz

TP kP(t):O

u(t)—k(1+j0u(s)ds)=

Innovative Ship Design - Elasticity

0> u(t) =k +k -kt +k= (kt) ko (kt) +- k{l+kt+%(kt)2+%(kt)3+..}

su(t) = ke

* Wazwaz, A.M., A First Course in Integral Equations, World Scientific, 1997, ch3.2



Differential Equation and Integral Equations

Ex) Population dynamics

dP(x)

= kP(x)
for instance

P'(t)~kP(t)=0 ,P(0)=1

—

Differential Equation (Separable Variables)
dP(x)

= kax = P(x)=e"
P(0)=¢
~6=1

Integral Equation

u(t) = k(1+j;u(s)ds) — . u(t) = ke

P(t)=u(t) P'(t) = ke

integration

P(t)=€“+c

P(0)=1+c

- P(x) =e"

same solution

- P(x) =e"

Advanced Ship Desl/éqn Automation Lab.
http.//asdal.snu.ac.Kr



L0012t oo, =ﬁ [[x=er (e

Differential Equation and Integral Equations  .coyw-ro- 4 xxayeue

Example. y"+Ay=0 ,0<x<1

y(0 90, ——— u(x)+/1I:K(x,t)u(t)dt=0

let y"(x) =u(x)

integration both sides

jox y'"(t)dt = joxu(t)dt

y'(x) - y'(0) = [ u(t)dt y()=y'(0 ¥+ [ (x=tu(t)dt
Y'(9)=y'(0)+ f,u(t)t y(x) ==X, A= u(Odt + [ (x—tyutyet
[Ty @dt=["y'©yt+ [ [ut y(9) = x| uodt - x| @~ Hu(tydt + [ (x-Hutyt
y(x) = y(0) = YO[t], + [ x=tu@®dt | y(0 = [} (-x+ e+ x—tu(tyt - x] @-tu(e)dt
y()=y'© ¥+ [[(x=tudt | y00 =[xttt - x[ @ttt
@ V() + [, @-But y(9) = [ tx-Dudt + [ x(t-Hu(eyet

0=y'(0)+ j:(l—t)u(t)dt
~y'(0) =~ @-tu(tyt

Innovatlve Shlp Design - Elasticity _
oty . : N e a . A . @;S&)ﬂ @
- BN 3 e : - - =" e A : s " — == = ﬁg anc %.S}hpD kq n Automation Lab.

1 )
Y00 = [, K(xu(t)d t ,K(x,t){t;()i —1)) :<<<)t(




Integral Equations : Introduction
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Integral Equations
- Introduction

An integral equation : an equation in which a function to be determined appears under

an integral sign

‘Volterra equation’

a(X)y(x) = F(x) + [ K(x&)y(£)de

a,F,K
A,a,b
y(x)
K(x,$)

‘Fredholm equation’
a(x)y(9) = F(x)+ [ K(x.£)y(£)ds

: given functions and continuous in (a,b)
. constants
: function is to be determined which is continuous in (a,b)

: the kernel of the integral equation

Volterra equation of the first kind

F(X)+ 4] K(x,&)y(£)de =0

a=0

Fredholm equation of the first kind

F()+A[ K(x,£)y(£)ds=0

a=1 Volterra equation of the second kind

Y(X) = F(X) + A[ K(x,£)y(£)dé

Fredholm equation of the second kind

y(x) = F(x) + A]. K(x,&)y(£)d&

Innovatlve Shlp Design - Elasticity

’”‘Seou/
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Integral Equations
- Introduction

An integral equation : an equation in which a function to be determined appears under
an integral sign

‘Volterra equation’ ‘Fredholm equation’
a(X)y(x) = F(x) + [ K(x&)y(£)de a(x)y(9) = F(x)+ [ K(x.£)y(£)ds

a,F K :given functions and continuous in (a,b)
A,a,b :constants
y(X) : function is to be determined which is continuous in (a,b)

K(x,&) :the kernel of the integral equation

‘Fredholm equation’
In particular, when function () is positive through out (a,b)

Jay(x) - (X) Al %\/ ENGS

Fredholm integral equation of second kind in the unknown function ya(x)y(x) ,with modified kernel.

two-dimensional Fredholm integral equations

a(X, Y)W, Y) = F(x )+ A[[ K y;&mw(E,n)déEdy

Innovative Ship Design - Elasticity
 — -

2 Seoul
National Advanced Ship Desj fgn Automation Lab.
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Integral Equations
- Introduction

An integral equation : an equation in which a function to be determined appears under
an integral sign

‘Volterra equation’

‘Fredholm equation’
a(X)y(x) = F(x) + [ K(x&)y(£)de

a(x)y(9) = F(x)+ [ K(x.£)y(£)ds

a,F K :given functions and continuous in (a,b)
A,a,b :constants

y(X) : function is to be determined which is continuous in (a,b)

K(x,&) :the kernel of the integral equation

In general, an integral equation comprises the complete formulation of the problem, in the
sense that additional conditions need not and cannot be specified.

That is, auxiliary conditions are, in a sense, already written into the equation.*

Innovatlve Shlp Design - Elasticity

—- - Y, seou/
* Hildebrand, F.B., Methods of Applied Mathematics, Second edition, Dover, 1952, p223
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Integral Equations
- Introduction

differential equation < > integral equation

Certain integral equations can be deduced from or reduced to differential equations. It is frequently necessary to make us of the known
formula.

d
™ jA(X)F( Hde=|,

This is a generalization of the fundamental theorem of integral calculus*

d ex
—J, Fdy =F(

B(x )aF(X 5) dé: F[X B(X)]—— F[ A( )] where F, 8_F a8 d—A : continous

ox dx " dx

Proof*) . ) of
let o, fB,X)= J- y)dy and E(X, y)=F(xy)
then (1) =] jgfy )y

=[]

= £(x, (X)) - T (x,a(x))

by the total derivatives d¢ = ?dx 4+ o¢ dg _|. 8(15
X

_d_¢_%+a¢dﬂ+a¢da
Tdx ox 9B dx  Oa dx

Innovatlve Shlp Design - Elasticity

—— 2 ’”‘Seou/
* Jerry, A.J., Introduction to Integral Equations with Applications, Marcel Dekker, 1985 National

Uniyv.
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Integral Equations
- Introduction

differential equation < > integral equation

Certain integral equations can be deduced from or reduced to differential equations. It is frequently necessary to make us of the known
formula.

d
™ jA(X)F( Hde=|,

Proof) dg @dﬂ @da theorem %??ﬁ[igiif‘é’;ﬂj?e undamenta
dx |ox| |0fg)dx |Oa|dx iXF dv = F(x
- ) FOdy=F()

B(x )8F(X 5) dé: F[X B(X)]——F[ A( )] wherng—';(;—zZ—i continous

. jﬂ((x)) y)dy _j()a_F(X y)dy let f

B(x) 0
— Ha =],  FOuy)dy, 2 (6y) = F(x.y)
%}f”:%[f(x,ﬂ(x))—f(x,a(x))] afo;f) 0=F(x f) -

en
——
o¢(a, B,x) of (xa) _ Bx) Of B(x)
s :—[f(xﬂ(x)) f(xa())]=0- 2% = -F(xa) d(a, B,X) = J‘()E( VA =[G

‘V

BX) O dg da
fma—F( Ny FOp)— == F(xa) -

= £(x, A(x)) = T (X, a(x))

00 4x+ 22 45422
.'.ifﬁ(X)F(x,y)dy=jﬂ(x)aF(X’y)dy+F[X,ﬂ]i—’f—F[x,a]Z—j d¢ = B —dx + ﬂd'B+a da

dx Je() a(x)  OX

Innovatlve Shlp Design - Elasticity

M’h“"‘" 2 ’”‘Seou/
* Jerry, AJ., Introduction to Integral Equations with Applications, Marcel Dekker, 1985 Zzltf”"/ ﬁ%‘%%’ﬂ?ﬁu@?ﬁqﬂ Automation Lab.




Integral Equations
- Introduction

differential equation < > integral equation

= o Fouds = [7 D dg 4 R BOOL - FIx AL

Multiple integrals Reduced to Single Integrals

consider the differentiation of the function 1,(x) defined by the equation

1,(x) = LX(X_@H f(£)dé  where, F(x,&)=(x-&)" (&)

n: positive integer
differentiation with respect to x

dl,

=—j( X=&)" (£)d¢

1
= I:%[(X—é)”‘lf(f)]d§+[(><—§)“‘l f (é)]éx% ~[x=9)" (@) ], /%3”

- (-Df x- " F Qe +[ (-8 1)

Innovatlve Shlp Design - Elasticity

’”‘Seou/
Nt nal ac pDkthomat n Lab.



Integral Equations
- Introduction

differential equation < > integral equation

- IA(X) (X, £)dé& = IA(())aF(X §)d§ F[x, B(X)]——F[x A(x)]

Multiple integrals Reduced to Single Integrals

consider the differentiation of the function 1,(x) defined by the equation

L0 = [ (x=&)" F(E)dE  where, F(x.8)=(x-&) ' 1(8)

n: positive integer
differentiation with respect to x

e I OLE
= (-0 (x=&)"* H(OAE+[(x-&)" (9],
Hence, if n>1, there follows While if n=1, we have 0 _ 41
dl x ° dl xo : P -
—2=(n-D) (x=¢)"*F()dg +M f&],, & =0 [ = f(Ode+[(x - ()],
Jdy L
..dx_(n DI, ,n>1 ..dx_f(x)
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1) Donald E. Knuth, Two notes on notation, Amer. Math. Monthly 99 no. 5 (May 1992), 403-422, see also http://en.wikipedia.org/wiki/Exponentiation Dol AeEr e el
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Integral Equations
- Introduction

differential equation < > integral equation

B(x) OF (X,
OX

dx IA(X) (x,8)d¢ = IA 5)d§ F[x, B(x)]—_F[x A(x)]

Multiple integrals Reduced to Single Integrals

consider the differentiation of the function 1,(x) defined by the equation

0= (- (Ode Y =10

here, F(x,&)=(x=&)"*f
_( SO, n>1 where Fu)=(-9" (@)

n: positive integer

d | =0
n=1 -%i:f(m n=2 %%:42—Dh and L)
xdl, «dl,
L e ["f0)dx, S, e = [T1(x,)dx,
1,09 - 1,(a) = [ (x)dx, L) —1,(a) = [ 10)dx,
L) = [ £ 0)dx, 1,00 = [100)x,

2l 1) = [ FO)dx

L) = [ [ f0q)dxdx,
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Integral Equations
- Introduction

differential equation < > integral equation

= o Fouds = [7 D dg 4 R BOOL - FIx AL

Multiple integrals Reduced to Single Integrals

consider the differentiation of the function 1,(x) defined by the equation

W)= [ (=& F(O)de § =100 . Go=(n-Dl,, > e Fro-r o
d | =0
n=1 %:f(x) n=2 %:(2-1”1 n=3 ‘3—'_(3 DI, and 1,(@)
«dl, «dl, dly o
R S AV B ol R N L 2o 6 =2, )
Lo =L@ =] Fodx | 1,00-1,(a) = [ 1(x,)dx, 1,00 = 1,(8) =21 (%)
L) = [ £ 0)dx, 1,09 = [ 106)dx, 1,00 =2 1(x,)dx,

L) = [ f (x)dxdx,
x> %[l L0 =" [ fou)ddx, V

1,(X) =2 1] j j f (x,)dx,dx,dx,

”“b Seoul
N tional Ad vance dShp Des kqn Automation Lab.
Uniyv. http.//asdal.snu.ac.
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Integral Equations
- Introduction

differential equation < > integral equation

= o Fouds = [7 D dg 4 R BOOL - FIx AL

Multiple integrals Reduced to Single Integrals where, F(x,&)=(x—&)"f (&)

consider the differentiation of the function I (x) defined by the equation n: positive integer

X dl and | (a)=0
1,00 = [ (x=&)" £ (£)dé M = f(x) . —< Dl n>1
n=1 Z—I_f(x) n=2 %:(Z—Ml n=3 ‘;'X 3=1)l,

xdl x xdl
e ["f0)dx, = [ 10)dx, e

L0~ (@ =[] 1,00-1,@=[106)d, | 0= 1@ =2] 106)dx
L(x) = [ (4)dx 1,0 = [ 10x,)dx, 1,() = 2[ 1),

L= [ 7o), 1) =2-2[ [ [ f (x)dxdx,dx,

“olly s dx, = 2[1,(6)dx,

\V

1) = (=D [ [ [ £ ()b, --dlx, yolx,
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Integral Equations
- Introduction

differential equation < > integral equation

= o Fouds = [7 D dg 4 R BOOL - FIx AL

Multiple integrals Reduced to Single Integrals where, F(x,&)=(x—&)"f (&)

consider the differentiation of the function I (x) defined by the equation n: positive integer

x and | (a)=0
0= (- @ § =10

_( “Ol, n>1

() = (=217 [ [ £ () dxdx, - dlx, yolx,
o

.[:.[:nj:s Iaxz f (x)dx.dx,---dx__dx =

(X)

(n— 1'”

283
[T 7 £ o), - dx, ,dx, =

= _1),1( x=&)"f(&)dé

Innovative Ship Design - Elasticity
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Integral Equations
- Introduction

differential equation < > integral equation

= o Fouds = [7 D dg 4 R BOOL - FIx AL

Multiple integrals Reduced to Single Integrals

consider the differentiation of the function 1,(x) defined by the equation

where, F(x,&)=(x—&)""f (&)

| (x)= j (x— &)L (£)de o posiiveinteger

[ Ko

n-1

I LT e il GO RS
1) if you have‘ a function f / \

2) and integrate it n times 3) you have this
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Integral Equations : Relation between differential and integral
equations
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Relation between differential and integral equations

Linear second order differential equation I.V.P

d’y
2

= f (X) Initial condition : y(a) — yo’ yl(a) _ y(,)

Integrate with respect to x, over the interval (a, x)

Jo v 0a)de + [ AG)Y ()dx, + [T BO)Y(q)dx, = [ f (%)

2V
[V O, + [ AC)Y0)dx + [ B y(x)dx = [~ F0q)dx,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o X
Y'()-y'@) == A()Y0)dx - [ BOx)y0)dx + | f (x)dx

b
Y'(X) =Yg = =] ACQ)Y (x)dx, - [ BOx)Y(x)dx, + [ F(x)dx,

after integrating the first term on the right by parts,

Y'(¥) =[-AC)YODT: + [ A(x)y0)dx — [ BOGY(x)dx + [ f (x)dx, + ¥,
U

Y0 =~AXY0) + A)y(@) - [T[BOW = AG)]yO)dx, + [ f (x)dx, + v,

N’

Y'(x) = =AY () = [ [B) = A(x)Iy()d% + [ f (x,)dx + AG@)y, + s

Innovatlve Shlp Design - Elasticity




Relation between differential and integral equations

LV.P

Linear second order differential equation

d’y

X2

d
n A(X)d_;/Jr B(X)y=f(X) Initial condition: y(a) = y,, Y'(a)=Y,

Y'(¥) ==AM)Y) - [ [B(x) ~ AOQIY0)dx + [ £ (x)dx, + A@)y, + Y

Integrate again over the interval (a, x)
[} ¥ 0638 = [1-A00y00 - [TTBO) - AGIY (), + [ F o) + (AG@)y, + ys)} dx,

2V
y() - y(@)==[ A Y(x)dx - [ [*IB) = ATy (x)dxdx, + [ [ £ (x)dxdx, + (A@)y, + o) [,

U
V) = Yo ==, A Y(x)dx — [ [FIBO4) = AG)IYO)dxex, + [ [ F (x)dxx, +(A@)ys + s ) (x - a)

Innovative Ship Design - Elasticity
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Relation between differential and integral equations

Linear second order differential equation I.V.P

d’y
2

= f(X)  Initial condition: y(a) =y, y'(a)=Y,

Integrate twice over the interval (a, x)

V0O = Yo == ACQ)Y(x)dx = [ [ [B0q) = Ay () dx,dx,

[ o) dxd,

+(A@)Y, + Yo ) (x-2)

recall,

[T 1 o)dndx, -, dx, - o _1) [ (x-&r (£

and for n=2

[ f o)axax, = (211),1( o (e
=TT F oo, = (=€) f(§)dg

Y() =] A@Y(E)dE - [ (x=&)B(E) - AEIYVE)IE + [ (x=&) f (£)dE +[A@)Y, + Yo (x-a) + ¥,

L y(0) = [ {AQ) + (x= O[B(E) - AGTIVEIE + [ (x=&) f (£)dE + [A@)yY, + Yol (x-a) + ¥,

Innovatlve Shlp Design - Elasticity




Relation between differential and integral equations

Linear second order differential equation I.V.P

d? d
dXZ + A(X)d_z(l+ B(X)y = f(x) Initial condition : Yy(a) = Yo y’(a) = y(’)

/1L Integrate twice over the interval (a, X)
Y() == {AE) + (x = E)B(E) - AE)IY(E)dE + [ (x = &) F(E)IE +[A@)Y, + Yel(x—a) + Y,

U

y(x) = Iax K(x,&)y(£)dS + F(x), Where, K(x,&)=(£-x)[B(£)-A(5)]-A(S)

: a linear function of the current variable x.

FO) = [ (x=&) F(£)d& +[A@)Y, + Yl (x—a)+ Y,

This equation is seen to be a Volterra equation of the second kind.

Innovative Ship Design - Elasticity
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Relation between differential and integral equations

Linear second order differential equation Volterra integral equation of second kind
2 X
d Y A 4By = f (%) y(x) = I K(x,£)y(£)dS +F(x),
dx dx <;>
Initial condition : where, K(X’ 9&) = (‘f - X)[B(St) - A’(é)] - A(St)
y@=Yo, Y@=Yy 1V.P FO) = [ (x=&) F(EAE +[A@)Y, + Yol (x—a)+ Y,

Integrate

Example : L.V.P)
[y 00dx, ==2 ] 7 yoo)dxdx, + ] * f (x)dxdx,

y(x) _:;112(;1:% —A[ [ yOo)dxdx, + [ F O)dxdx,

YO) ==A[ [ yOu)ddx, + [ f (x)dxdx, +1

Integrate

IOX y"dx, + /IJ‘OX ydx, = j'ox f (x)dx,
recall,

X x S fodxdx, = [ (x- &) F(£)de
YOOy A=AJ] yos)d + [ F(x) L !

V() ==2[" y0)dx + [ (x)dx 2Y) = A[ (€= YEdE - [ (€ -0 T (£)dE +1




Relation between differential and integral equations

Linear second order differential equation Volterra integral equation of second kind
2 X
d Y A 4By = f (%) y(¥) = K(x,&)y(&)d&+F(x)
dx dx - :
Initial condition : where, K(X’ 9&) = (‘f - X)[B(SE) - A’(ét)] - A(SE)
y@=Yo, Y@=Yy 1V.P FO) = [ (x=&) F(EAE +[A@)Y, + Yol (x—a)+ Y,
Example : 1.V.P) check! <+
zy '
-z Ay =1(x), ¥(0) =1 y(0)=0 AX)=0, B(X)=1 ,Y,=1 Vy,=0
<L+

y00= [, € -0y(@de- [[ € - (@dg+1 | K== XIBE = A= AC)
Ly THE
¢

y(0 = [ K(x Y(@)de + F(4), F(0) =], (x= ) f(£)d¢ +[A@)Y, + Y;I(x~2) + ¥,

=—["(c-0f(&)de+1

Innovative Ship Design - Elasticity
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Relation between differential and integral equations

Linear second order differential equation B.V.P

d’y
2

= f(X) Boundary —y(3) =y , y(b) =y,

condition :

Integrate with respect to x, over the interval (a, x)

[Ty 00)dx + [ A) Y 00)dx + [ BOG) Y- )dx = [ (x)dx,

[y )]+, A(xi)y'(xl)dxi [ BO)YO)dx = [ fO)dx,
y'(x)-y'(@)+ ] A(xl)y':x}l)dxl + [T BOQY(x)dx = [ f(x)dx,
y()-y(@=- A(&)y{?kxl)dxl ~ ["BOQY(x)dx, + [ F(x)dx

after integrating the first term on the right by parts,

Y'(0) =[~AC) YOO + [ ACQ)Y0)dx, = [ BOGY()dx + [ (x)dx, + y'(a)
O
Y'(X) =—AX)Y(X) + A(a) () - [ [BOW) = AO)]yO)dx, + [ (x)dx +y'(a)

y'(x) = =AX)Y(X) - [ [B(xl) AOOTY(x)dx, + [ F(x)dx, + A@)y, +Y'(a)

Innovatlve Shlp Design - Elasticity




Relation between differential and integral equations

Linear second order differential equation B.V.P

d Zy dy f Boundar
dx? " A(X)&—i_ BOJy = T(x) conditiox: y(a) = Yar y(b) = Yo

Y' () ==A)Y() — [ TBOG) ~ AOQly0)dx, + [ T 0q)dx, + A@)y, + Y'(a)
Integrate again over the interval (a, x)

[}y 0638 = [1-A00y00 - [[TBO) - ATy () + [ F0)ae + (A@)y, +y'(@) d,
U
yO) - y(@) == AC)YO)dx — [ [*IBOG) — ACQly0)dxdx, + [ £ (x)dxdx, + (A@)y, + y'(@)[x,];
24
YO) -, == A YO — [ *[B() = AC)TYOq)dxdi, + [ £ (x)dxdx, + (A@)y, + y'(a)) (x—a)

Innovative Ship Design - Elasticity
_——— . g
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Relation between differential and integral equations

Linear second order differential equation B.V.P

d’y
2

= f(X) Boundary — y(q) =y , y(b) =y,

condition :

Integrate twice over the interval (a, x)

V0=, ==, A YO~ [ [ [B0g) - ATy dxdx,

X axz f (x))dx,dx, {F(A(a) y, + y’(a))(x —a)

recall,

A B R e A
and for n=2 .
J J2 T, = o= =9 ()

[T F oo, = (k=€) f(§)dg

YO) ==[. AE)Y(E)dE - [ (x- OIB(E) - AEY(E)dE + [ (x=&) f(£)dE +[A@)y, + Y @](x—a) +Y,

L y(X) == [ {AEQ) + (x- IB(E) - AEODVE)IE + [ (x— &) F ()dE +[A@)Y, +Y(@)](x-2) + Y,

Innovatlve Shlp Design - Elasticity




Relation between differential and integral equations

Linear second order differential equation B.V.P

d”y dy
dx? dx =T ey, Y@ =Y., yO) =V,

/1L Integrate twice over the interval (a, X)

L Y(X) = [ {AE) + (x- OIB() - AETIVEE + [ (x= &) f (£)dE +[A@)Y, + y'(@)](x—2) + Y,

[ {AE©) + (b~ DIB(E) - KOIYEE + [ (- &) T ()AE +[A@)Y, +y(@)](b-2) + Y,
b
= ["EAE) + (b~ S)IB() - KODE + [ (- F ()dE +[A@)Y, + Y (@](b-2) + Y,

b
[A@)y, +Y'(@)](b-2) = [ {AE) +(b-EIB(E) - AEBY(E)dE - j: (b- &) (£)AE+ (Y, - Va)
b
(yb a)
A(a)ya+y(a)—Fj {A@)+(b- ) b_ ) SOUGL A
y()—ﬁj {A@)+(b-)IB() - ARV (E)dE ——— (b_ il [ - f)f(é)d§+(zt’ y;) A@)y,

Innovatlve Shlp Design - Elasticity
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Relation between differential and integral equations

Linear second order differential equation B.V.P
d?y

dy
AN FBO)Y=f(x)  Bondey - y(@)=y,, y(b) =,

/1L Integrate twice over the interval (a, X)

L y() =] {AE) + (x- O)[BE) - AEODYE)IE + [ (x- &) F(E)dE +[A@)Y, + Y (@1(x-2) +Y,

) | ) (Yo —Ya) _
y'(a) = —(b_ [{A©) + b-OIBE) - AODY(E)dE b_ =il = ["(b-&)f()de +2 Y] ta

A(@)y,

y(X)=—I:{A(<§)+(X—§)[B(§)—A’(?)]}y(é’)df
+[[ (=91 (©)de +[A@)Y, + [ A + (b~ HIBE) - AEODY(E)IE -——
O

[o-a1@as 50 @y -2 +y,

b—) b—)

y(X)=—fax{A(§)+(X—§)[B(§)—A’(?)]}y(é)dé
[x-Df (@dE+[— J{A<§)+<b )B(E) - AN(&)dE -

+ Y.

(Vs = Ya)
b-¢&)f(&)d
o (b_)j( $f (g +=p—3x-a)

Innovatlve Shlp Design - Elasticity
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Relation between differential and integral equations

V(¥ =~ [ {AE) + (x - IB(&) - AE)T()dé

+[ (x-¢ )f(f)d5+[(b_ i [[tA©) + b-9IBE) - A(é)]}y(é)dé—ﬁj (b- 5)f(§)d§+(zg_y))]( a)

+Y.

(x-a)
(b—a)-

: (x-a)
C?+L(x—5)f(é)d§—(b_ )f (b—&) f(OdE+y, +

Y(x) =~ [ {AE) + (x~ O)[B(&) - A(EOV(E)E +-+— ['{AE) + (b~ )[B() - A’(é)]}y(i)da

(x-2a)
(b-a)

—— (Yo = Ya)

Innovatlve Shlp Design - Elasticity




Relation between differential and integral equations

(x-a)
(b—

y(x) = —I:{A(f) +(x=S)[B(S) - A (DI} y(S)dS + I {A(S) +(b-2)[B(S) - A’(é)]}y(cf)d%

o _(x-a) (x=a),
C% [ (x=&)t(©)de e [[b-51(©)ade +y,+ bay Yo%)
®
—LX{A(é)+(X—§)[B(<§)—A’(e‘)]}y(é)d§+E;(_a; [[tAE©) + b SIBE) - A(EDY(E)dE

= ~[0A©)+ (- DB - AEDYEZ+ =) [ (A + (0~ IB(E) - NADYE)IE + 5 [ 1AE) + (0~ [BE) - KEy(Eae
=—L*{A(§):1 g_fﬂ {( -5 é)}[B(f) AEDY(EE+ (=2 [ A + - DIBE) - KDy
=—LX{A@):b_(Z:;;a}{(X‘g’(b"z‘g:g‘a)(b‘é)}[e(ﬁ)—A’(é)]}y(f)d&g_a; [EAE) + (b-E)[B() - AEy(©)de

—JL () X || AR O D - Ay + oo [ (A + (b= )[B) - Ay
~JLa@ o | PR D e (@ [ea@) 1 |+ -0 X2 o) - Ay

—Jiance g Jo | 20000 ra - wamycera+ a1+ C-20=2 o) - ey

Innovatlve Shlp Design - Elasticity
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Relation between differential and integral equations

(x-a)
(b—

Y(9) =~ {AE) + (x- O)[B() - AE)D(E)dé +

I{A(§)+(b 5)B(S) - A’(f)]}Y(é)da

-Y.)

< (x-a) (x—a)
C?+ja(x - = )j(b TS +y, + i

D [1A0) + (- DIBEO - KO+ 0 [{AE)+ (- B - KOz
—- {A@)(b Xj _a(b_xgii(b_x)}[B(é)—A(é)]}y(f)dg‘Jr jx{A(f)( j [(X 20 ﬂ[s@) AETIY(E)dE

S (g)(b Xj+ (b_s)_(z_f)}[B(é)—A’(i)]}y(cf)d§+ fxb{A(é)(;(::J{(X_s)_(z_g)}[B(f)—A’((S)]}y(é)dé

- [¢a (5)(X bj+ e LGRG) G {A(é)[x Zj+ =022 () - Ay(©)ds

- ['¢A (5)(X bj E=0D) g aemy(ede + [ {A(é)(x aj— 02D g ey - aemy(©)de

b-a e

X—b (x—h)(& —-a) .
:J.:K(X’f)Y(f)df, K(x,&) = A(g)(b aj [ l;—a }[B(‘f) A , &<x
o =2 Dm0 - mcen. x<s

Innovative Ship Design - Elasticity
e - -
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Relation between differential and integral equations

y(X)=—j:{A(§)+(X—§)[B(§)—A’(é)]}y(é)d§+(E_a; [[tA© +b-5B() - A'(é)]}y(é)dﬂ
<o _(x-23) (x=a),
_________ p i = it =L N
@ ¥\ _(x-23) (x=a),
[ (x=9)t(©)de i [[b-51(©)de +y, + oY)

= [ x=O @422y =ya= [, 0= D1 () +v,

Innovatlve Shlp Design - Elasticity




Relation between differential and integral equations

V() = [ {AE) + (x - HIB(E) - AEy(E)de + X2 j {A&) + (b~ &)[B() - A’(é)]}y(é)d%

(b—a)
x (x—a) (x—a)
@%L(x—é)f(é)dé— — )j(b TS +y, + = (%~ %.)
“““““““““““““““““““““““““““ b (D) o LT
AS) [B(E)-A(5)] , &<x
O pPruay@s  Kws (b‘aj [ .

A(@)@:Zj—[“‘f)_(z‘a) [BE) - A, x<¢

2o = [ 0= 1)+,
_a a

A(é)(x‘zj— e 6 D |B&)- K@), £<x

Dy = [ KEAOYEOAE+F(o,  Kxe)=

b-a

A(g)(x aj— (E=DX=8) gy - a(e)], x<&

This equation is seen to be a Fredho/m _
equation of the second kind.* F(x) = L (x=&)f(5)dg +

%=L -0 1) +y,

Innovative Shlp Design - Elasticity
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Relation between differential and integral equations
Fredholm equation of the second kind.
y(9) = [ K(x.EYE)dE +F(x),

A(é)(x_bj{(x_b)@_a)}[B(f)—A’(cf)] L E<x
K(x&) =

Linear second order differential equation
d’y
dx?
Boundary condition :

y(@) =Y., y(0) =Y,

+A(x)%+ B(x)y = f(x) B.V.P

i

b-a b-a

x—aj_[@—b)(x—a)
b-a

A(g')( }[B(f) A x<£

b-a

FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,

Example : Boundary Value Problem ) ) )
2 yox, = 1| -2, y0u)dx + y'(0) |ox
d )2/+/1y:0,, y(=0 fo 2 jo fo 2
dx X Xy X,
V() ~y(0) = A, [[* y(x)debe, + [y’ (O)dx,

I I i
y"dx, + A| ydx, =0 i recall, " x
Jo | L Io | ; j j f (x,)dx,dx, :L (x=4&)f(5)de
[yl

Y(¥) = =4[, (x=E)YEAE +Y (O)[x];

' —V(0)=-A X d X
V()= y'(0) ==, y(x)dx Y(X) = =4[ (x=&)Y(E)AE +y'(0) X

Innovative Ship Design - Elasticity
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Relation between differential and integral equations

Linear second order differential equation
2
Loadeseoy-1w  B.VMPJ
X dx
Boundary condition : NY
y(@) =Y., yb)=y,

Fredholm equation of the second kind.

FO) =[x~ 5)f(§)d§+

y(0) = [ K(xE)Y(E)dE +F(x),

(5)(2 bj [(X‘b)(f‘a)}[s(f)—/x(é)] L E<x
a bh-a

(5)( -2)- {(5‘?_(“")}[5@)—A'<5)], (<

2%y [ 0-0 1 e+,

Example : Boundary Value Problem y(X)——/"tJ (X — g)y(é)d§+FJ (1-8)y(&)dé

d’y

y(x) =2 IOX(X—é)y(é)d§+ Y'(0) -

Y0 =2-2[ 0@z y )

0=-2[ (1I-&)y(©)dE +y(0)
BIORNERNELE

Innovatlve Shlp Design - Elasticity

Y00 =],
Y0 =-A[
Ly ==4],

0<§W@m54”1(|fW@Mf—{(Ifwwm%

(x—@—fﬂ—fﬂy@ﬂ§+—5fa—@y@M§

—§+«4y@N§+——jG £)y(&)dé

y(x)=zj0§<l —X)y(é)d§+/1fxl—(l - )y(£)dg

Y00 = A[ K(x&)y(§)dé




Relation between differential and integral equations

Fredholm equation of the second kind.

y(9) = [ K(x.EYE)dE +F(x),
A(é)[;:ZJ—[(X‘E)_(i‘a)}[s(f)—A'(é)] CE<x

A(;')(g::j—[(f ‘kf)_(;‘a)}[sw)—A'(é)] x<e

Linear second order differential equation
d’y
dx?
Boundary condition :

y(@) =Y., y(0) =Y,

+A(x)%+ B(X)y = f (x) B.V.P| .
N

K(x,&) =

FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,

Example : Boundary Value Problem check! ~~
d2y A(x)=0,B(x)=1,y,=0,y,=0,a=0,b=1, f(x)=0
" +Ay=0,y(0)=0, y()=0
ol <:/\ Z£(|—X),§<X
S y(x) =4) Kx,6)y(s)ds K8 = L
y i 2X0-ex<e
= (- h
,K(X,g):<|( X) when & <X F() =0
TX(l—g) when &> x
Ly = [ K(x.&)y(§)dé




Relation between differential and integral equations

Fredholm equation of the second kind.

Linear second order differential equation

S B.V.P

dx?
Boundary condition :

y(@) =Y., y(0) =Y,

+ A(x)g—i+ B(x)y=f(x)

y(0) = [ K(xE)Y(E)dE +F(x),

Example : Boundary Value Problem

d2
Y Ay=0,y(0)=0, y(l)=0

2

Ly =4[ K(x,)y(&)dé
5

I—(I—x) when & < x

KX, &) =1

TX(I—cf) when & > x i

Innovative Ship Design - Elasticity
B T

1IN
N (5)(X bj [(X‘b)(f‘a)}[s(f)—/x(é)]  E<x
b-a b-a
AT (xa) [E-b-a)
I R a] CORONES
FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,

from the example, by direct integration.

What we did is

d’y

to transform D.E of B.V.P into L.E

What we had was

d 2

—+ A(x)—+ B(x)y = f(x)

in case 0 fA(x) =0, B(x)

-1, f(x)=0

What we have is

V(¥ = A K(x.&)Y()dé

é(I —X) when &<x

we express y in terms of ‘Kernel’ ,K(x,&)=

*When does this mean?

—&) when &>x
'!':

e

X
I

what kind of properties?

if we find a ‘kernel’ of some properties,
we can express y of a D.E as an ‘integral’ form
which can be a solution or an equation

y.:]i%’i Y - L Advanced Ship Desi kqn Automation Lab.
B 3 http.//asdal.snu.ac.



Relation between differential and integral equations

Fredholm equation of the second kind.

Linear second order differential equation ( ) J~bK( 5) (f)df F( )

: y(x) = | K(x,&)y(£)dé +F(x),

9 4 A Y4By = f(x) B.V.P} . :

dx dx . x—bY) [(x-b)(&-a) ,
Boundary condition : A(f)(b_aj{ b2 }[B(f)—A(s‘)] <X

K(x,8) =
y(@) =y, yb)=y, A@)@‘aj—[“ ‘s)(x“"‘)}[sw)—A'(é)], x<&
-a -a

FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,

Example : Boundary Value Problem

@Hp:o +B/C # Y()=[G(x&P(&)ds

equivalent A

_d dy ) _
xy= dx(p(x) dxj a0y

<
_d dy) d?y 2(-x) when &< x
%y—dx(p(x)dxj axy | Ay =0 S y00 =;K(x,§§)d§ K =)

Iﬁ(l —&) when &> x

== ,y(0 90, y(I)=0
d’y _dy i(1—52) when x < &
m:%(p(x)%j—q(x)y & o i T _1)y=0E>Y(X) = :G(X,f)éy(i)dé G(x,€) = Zf
,y(0 90, y@®)=0 1 —(1-x*) when x>¢,
p =X, 0|=—i 42 d@ 1 | | &
B Ex—¥+—y—— }wixyzo
dx® dx x

Innovative Ship Design - Elasticity
* Greenberg, M.D., Application of Green’s Functions in Science and Engineering, Prentice-Hall, 1971, p8 : adjoint operator & consists of the differential operator plus boundary conditions which are such that
the boundary terms, arising through the integration by parts, all vanish.




Relation between differential and integral equations

Fredholm equation of the second kind.

Linear second order differential equation ( ) Ib K( 5) (f)df F( )
2 Y(X)= X,6)Y + X),
IY a0 Y By = £ (x) B.V.P], . :
dx dx — x=b) | (x=b)(-a) '
Boundary condition : A(f)(b_aj{ b2 }[B(f)—/\(s‘)] <X
K(x,8) =
y(@) =y, yb)=y, A@)@‘aj—[(‘f _;)(X_a)}[B(f)—A’(f)], x<&
-a -a

FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,

'!':
what kind of properties? Cet

Example : Boundary Value Problem v'Properties of kernel of the example

2
_Z +Ay=0,y(0)=0, y()=0| : - continuous :when ¢ =X two expressions are equivalent
dx '
i £ X
| 20-x)| =<0-8)
g’ 5 T

Ly = A[ K(x&)y(&)dé
9

—X) when £ <X

KX, &) =1

TX(I—cf) when & > x i

Innovative Ship Design - Elasticity
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Relation between differential and integral equations

Fredholm equation of the second kind.
Linear second order differential equation ( ) Ib K( 5) (g)df F( )
2 Y(X) = X,q)Y + X),
Y a0 ay=10  BMPJ
e K x—b) [(x—b)(-a)
Boundary condition : NY (5)(b aj { - }[B(f)—/\'(s‘)] , E<X
— _ K(x,8) =
y@) =Y. yb) =Yy, O Rl CORNC
FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,
s
. what kind of properties? Cet
Example : Boundary Value Problem v'Properties of kernel of the example
2
M +Ay=0,y(0)=0, y(I)=0 - continuous :when & = X two expressions are equivalent
: - discontinuous first derivative (finite jump) at &£ = X
O i d (¢ ;
! —=(-%x) |=—=
; dx( { )j |
ol !
Ly(x) =4 OK(X,f)Y(‘f)dg | i(fa_et)j: s
' i dx I |

fé(l—x) when & < x

K=, e S0-0)-{F0-0)--E-ref o
T(I—cf) when &>x |

Innovative Ship Design - Elasticity

She Seoul
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Relation between differential and integral equations

Fredholm equation of the second kind.

y(0) = [ K(xE)Y(E)dE +F(x),

Linear second order differential equation

9Y AP 4By = () B.V.P| ,

dx dx . x-b) [ (x-b)(—a) '

Boundary condition : A(f)(b_aj{ b2 }[B(f)—/\(s‘)] <X
K(x,8) =

FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,

'!':
what kind of properties? Cet

Example : Boundary Value Problem v'Properties of kernel of the example
2
d_zl +Ay=0,y(0)=0, y(I)=0 - continuous :when & =X two expressions are equivalent
X - discontinuous first derivative (finite jump) at &£ = X
< - linear function of x:
Y i 52K (X, &)
Sy =4 K(x,&)y(g)de 67:0

flé(l —X) when £ <X
K (X, &) =1

TX(I—cf) when & > x i

Innovative Ship Design - Elasticity

- = = —
o ey . EEmee s B 35, Seou SDAL
Py 4 % R —— P ey e . - y National Advanced Ship Desl/éqn Automation Lab.
s i = - : ol et R X Univ. http.//asdal.snu.ac.Kr




Relation between differential and integral equations

Linear second order differential equation

S B.V.P

dx?
Boundary condition :

y(@) =Y., y(0) =Y,

+ A(x)g—i+ B(x)y=f(x)

AN

Example : Boundary Value Problem

d’y

dx®

+Ay=0,y(0)=0, y(I)=0

2

Ly =4[ K(x,)y(&)dé
.

—X) when £ <X

KX, &) =1

TX(I—cf) when & > x i

Innovative Ship Design - Elasticity

Fredholm equation of the second kind.

y(9) = [ K(x.EYE)dE +F(x),

A(f)(S:Zj—[(X‘E)_(i _a)}[B(f)—A'(é)] CE<x

A(;')(g::j—[(‘f ‘kf)_(;‘a)}[sw)—A'(é)] x<e

K(x,&) =

FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,

what kind of properties?

(%

v'Properties of kernel of the example
- continuous :when & =X two expressions are equivalent
- discontinuous first derivative (finite jump) at &£ = X
- linear function of x:
- satisfying B/C

=0

x=0

K(o,@:lf(l—«:)

s
|

X< E

=0

K{1,&)==(-x)

, & <X

X

Natliana/ @ Advanced Ship Desl/éqn Automation Lab.
X Univ. http.//asdal.snu.ac.Kr




Relation between differential and integral equations

Fredholm equation of the second kind.

y(9) = [ K(x.EYE)dE +F(x),

Linear second order differential equation

9Y AP 4By = () B.V.P| ,

dx dx . x-b) [ (x-b)(—a) '

Boundary condition : A(f)(b_aj{ b2 }[B(f)—/\(s‘)] <X
K(x,8) =

FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,

'!':
what kind of properties? Cet

Example : Boundary Value Problem v'Properties of kernel of the example
2
_Zl +Ay=0,y(0)=0, y(I)=0 - continuous :when & = X two expressions are equivalent
dx - discontinuous first derivative (finite jump) at &£ = X
< - linear function of x: 70 can we always get
| the kernel of these
| ! - satisfying B/C C;.; properties?
y(X) - 2’_0 K(x,f)y(é)di E - symmetry : K (X, 5) — K(g’ X)

( K(x ,¢) is unchanged if x and ¢ are interchanged
é(I—x) when & < X
K(x&)=1

TX(I —¢&) when & > x

Innovative Ship Design - Elasticity
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Relation between differential and integral equations

Fredholm equation of the second kind.

Linear second order differential equation ( ) IbK( 5) (f)df F( )

: y(x) = | K(x,&)y +F(x),

IY a0 Y By = £ (x) B.V.P], . :

dx dx — x=b) | (x=b)(-a) '
Boundary condition : A(f)(b_aj{ b2 }[B(f)—/\(s‘)] <X

K(x,8) =
y(@) =y, yb)=y, A@)@‘aj—[(‘f ‘s)(x“"‘)}[sw)—A'(é)], x<&
-a -a

FOO=[ (=0 T @de +3=2{y, =y, [ 0-9) (e |+,

a
a

'!':
what kind of properties? Cet

Example : Boundary Value Problem v'Properties of kernel of the example

2

9 Ay =0,y(0)=0, y(I) =0

— - continuous :when & =X two expressions are equivalent
dx

- discontinuous first derivative (finite jump) at &£ = X

- linear function of x: 70 can we always get
the kernel of these

- satisfying B/C properties?

- symmetry

2

Ly =4[ K(x,)y(&)dé

f the kernel so obtained usually is discontinuous at f = X in the more general
2(I1-x) when £<x second order equation
I
) K(X,g) =9 however(!), a kernel which is continuous can be obtained, in general

TX(I —¢&) when & > x

» “Green Function”

Innovative Ship Design - Elasticity
——— :

3
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Physical Meaning of Green Function

Ex) Rotating String dzy
ST — + pw’y =0
dx
2
%Jr/lyzo,y(O) =0, y(I)=0

(3

(1-x) when &<x

S y(x) = /1!; K(XE)Y(E)dE ke -

X —

p : string density
w : string angular velocity
7 : magnitude of tension

I—(I —¢&) when &> x

Green function

y(X+AXx) T |
i displacement can be occurred with no

external force and homogeneous B/C ?

in this example, string’s angular velocity are causing the
displacement. If tension is zero, this equation is not valid. With
non zero tension, displacement is affected by the string's
angular velocity and in the equation it is A .

1
1
H \;l X+ AX Even in the case of homogeneous B/C and no external force
\‘ ! (actually, it means the nonhomogeneous term in the equation),
v/ there could be ‘a source’ causing ‘motion’ of the system in the
\ 4

equation *

Innovative Ship Design - Elasticity

-Hill, 1953, p791~p793

N7

* this statement is just writer’'s no
. __

pnced Ship Desl/éqn Automation Lab.
p.//asdal.snu.ac.kr



Relation between differential and integral equations

Example : Boundary Value Problem

2 . To recover differential equation from integral equation, differentiate

d-y
: Y00 = Af, S0 -XyEdE + 2[ X0 - &)y

LY =A[ KXOYEE | Y58 ey g i L[ X gyeyae
odxdxo dx x|

é(l —X) when &< x

| ! X
e Ii(l—é) when &> x by using d_ a F(i8)de= .[A((X))aF(X é)df +FIx, B(X)]——F[ ,A(X )]—
Y2 ey(@) de+xU-xy()+ [0 -Oy(E)dE-x0 -y
-2 [ ey@e+ [ a-oyee]
d? A
=T [x0 - (1-0 Y] = -2 y()

Innovatlve Shlp Design - Elasticity
- z s - e = a 2 Ay 4 2 Seoul
i .':.:_‘ - — 1 | e e ' i ol e : e, = - . @N tio /@Ad dShpD kq n Automation Lab.
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Integral Equations : The green’s function

Inn\(ative Ship Design - Elasticity
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The green’s function

Linear second order differential equation Fredholm integral equation of second kind
d*y dy b
S HA—+BO)Y = f () y(x) = L K(x,&)y(&)d<E + F(x),
Initial condition : <::‘> F ,K :given functions and continuous in (a,b)
y(a) =Y,, y’(a) — y(’) Y(X): function is to be determined which is continuous in (a,b)
. . In order to obtain a convenient reformulation of this problem, we first attempt
ﬂcons'der this form the determination of a Green'’s function G which, for a given number ¢,
LYy+®d(x)=0 o G:{Gl(X) when x<¢&
,where (%:&[p&]+q:pﬁ+d—s&+q G,(x) when x>¢&

which has the four following properties.

, D (X) = d(X, (X)) 1. The function G; and G, satisfy the equation £G=0 in their intervals of
definition; that is, XG;=0 when x<¢ , and XG,=0 when x>¢.

homogeneous boundary conditions
2. The function G satisfies the homogeneous conditions prescribed at the end

ay+ 'Bd_y =0 points x=a and x=b; that is, G, satisfies the condition prescribed at x=a, and G,
dx that corresponding to x=h.

For some constant values of o and B, which are 3. The function G is continuous at x=& that is, G,(&)=G,(¢)
imposed at the end points of an interval a<x<b.

4. The derivative of G has a discontinuity of magnitude -1/p(¢) at the point x=¢&
that is, G,(¢)-G/(5)=-1/p(¢)

When the function G(x,&) exists, the original formulation of the problem can be transformed to the relation

" solution : if ® = d(x) . then how to get G?
y(x) = _[a G(x.8)@(c)deg integral equation : if ® = d(X,y) (F? | T

Innovative SAIp Design - Elasticity
iy = o
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The green’s function

1. The function G; and G, satisfy the equation XG=0 in their intervals of
%y + (D(X) =0 B/C: ay+ﬁ%= definition; that is,lét‘,’G1=02whenf)>:<§ , and XG,=0 when x>¢.
2
‘where £ = i( pij +q= pd_ d_pi +q 2. The function G satisfies the homogeneous conditions prescribed at the
dx dx® dx dx end points x=a and x=b; that is, G; satisfies the condition prescribed at x=a,
and G, that corresponding to x=bh.
,D(x) = ¢(x, y(x)) o : :
1 3. The function G is continuous at x=¢& that is, G,(£)=G,(¢)

4. The derivative of G has a discontinuity of magnitude -1/p(¢) at the

b
Y(X) — Ia G(X; §)®(§) d§ point x=¢& that is, G,(£)—G/(§) =-1/p(<) 1

(.e_\ then, how to get G?

For the purpose of determining G, }t)

let y=u(x) be a nontrivial solution of the associated equation Xy=0 which satisfies the prescribed
homogeneous condition at x=a, and

let y=v(x) be a nontrivial solution of that equation which satisfies the condition prescribed at x=b.

If we write G,=c,u(x) and G,=c,v(x), condition 1 and 2 are satisfied.

_Jeu(x)  when x<¢,
~le,v(x) when x> ¢

Condition 3, determine c; and c, in terms of the value of ¢ since condition 3 requires that

C,v(s) —cu(s) =0

Innovative Ship Design - Elasticity

2 Seoul
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The green’s function

. _ dy 1. The function G; and G, satisfy the equation XG=0 in their intervals of
%y + (D(X) — O ,B/C: OtY+ﬁ&= definition; that is, XG;=0 when x<¢ , and XG,=0 when x>¢.

2
where X=—| p— d +0=p—s _pi +q 2. The function G satisfies the homogeneous conditions prescribed at the
’ dx | = dx dx 7 ¥ dx dx end points x=a and x=b; that is, G; satisfies the condition prescribed at x=a,

and G, that corresponding to x=bh.
 O(x) = (%, y(x))

1 3. The function G is continuous at x=¢& that is, G,(£)=G,(¢)
b 4. The derivative of G has a discontinuity of magnitude -1/p(¢) at the
y(x) =I G(x,&)d(&E)dE it e ot o Slea Bl kL
a (.e_\ then, how to get G?
from condition 1, 2 :
G- cu(x) when x<&, }t}
c,v(X) when x>¢&,
iti : _ —0... 0
from condition 3 : c,V(E) —cu(é) =0 (a) {—u(é) vie) e, i :
for condition 4 : C,V cu =——-+(b -u'(§) V(&) c VN
@@= -0) ) |55
We can get the value of c,C, as |:C1:| 1 {V'(f) _V(f;)} 0
= , 1
C, | —U(EV'(E)+U'(Sv(E)[u'(E) —u(f) PG
only when —U(&)V'(&) +U'($)V(E) # 0 means the functions u and v are linearly independent
?e how to get G when
<’; they are linearly
dependent?*

Innovative Ship Design - Elasticity

! 2 e w'.S'eau/
* Hildebrand, F.B., Methods of Applied Mathematics, Second edition, Dover, 1985, p300 Zﬁf{f’"a/@f;g;";’/gi‘gj’;’ﬁugiskq”A”"”""”"” Lab.




The green’s function

XY +®d(x)=0

,Where %zi(p d
dx

dx

,B/C:ay+ﬁﬂ
) dx

jq pdz

dp d

dx dx

1. The function G; and G, satisfy the equation XG=0 in their intervals of
definition; that is, XG;=0 when x<¢ , and XG,=0 when x>¢.

2. The function G satisfies the homogeneous conditions prescribed at the
end points x=a and x=b; that is, G; satisfies the condition prescribed at x=a,

and G, that corresponding to x=bh.

3. The function G is continuous at x=¢& that is, G,(£)=G,(¢)

 D(X) = p(X, y(X))

1

y(x) = [, G(x, &) D(&)d&

4. The derivative of G has a discontinuity of magnitude -1/p(¢) at the
point x=¢& that is, G(¢)-Gi(¢)=-1/()

1
(.e_\ then, how to get G?

X

from condition 1, 2 : . {Clu(x) when x<¢&,

c,v(x) when x>¢,

from condition 3 : ¢, V(&) —cu(é) = 0...(3) “u(@) v 0
tion 4 1w ) e V'(é)}{cl} T-—
for condition 4 : c,V' (&) —cu'(&) = (5) --(b) ) o(2)
We can get the value of C,C, as |:Cl:| - 1 {V'(g) —v(§)}
C,] —UEV(E+UEVE ) -u()

G

only when U(&)V'(E)—-U'(&)v(E) #0 means the functions u and v are linearly independent

>}

by the condition 1, XG,=(pcu’)'+qcu=0—(pu’)+qu=0
G,=(pc,V) +qcy=0—(pVv) +qv=0
atx=¢

Elasticity

Innovative Shi Design -

2 Seoul
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The green’s function

XG, =(pcu’) +qcu=0—(pu’) +qu=0

by the condition 1, %G, = (pey) +qey =0 (pV'Y +qv=0

at x=¢
@ .
(pu’) +qu=0---(a) u-(b)-v-(a):
(pv)' +qv=0---(b) u(pv’)' —v(pu’) =0
Q Up,V,‘FUp\y—Vp,U’—VpU”:O

p'(Uv' —u'v) + p(uv” —vu") =0
p'(uv' =uv)+p(uv’+uv —vu'-vu") =0
p'(uv' —uv)+p[(uv’) - (vu)]=0

v-(@): v(pu’) +vqu=0
u-(b): u(pv) +uqv=0

p'(uv' —u'v) + p[uv'—vu']' -0
[p(uv'—vu)]' =0

204
sop(uv' —wvu')=A, A:const

S U(V(8) — V(o (5)—@ "

Innovative Ship Design - Elasticity
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The green’s function

. _ dy 1. The function G; and G, satisfy the equation XG=0 in their intervals of
%y + (D(X) - O B/C: ay+ﬁ&= 0 definition; that is, XG;=0 when x<¢ , and XG,=0 when x>¢.
2
where £ = i pi +q= pd_ n d_pi +q 2. The function G satisfies the homogeneous conditions prescribed at the
’ dx dx® dx dx end points x=a and x=b; that is, G; satisfies the condition prescribed at x=a,
and G, that corresponding to x=bh.
,D(x) = ¢(x, y(x)) o : :
1 3. The function G is continuous at x=¢& that is, G,(£)=G,(¢)

4. The derivative of G has a discontinuity of magnitude -1/p(¢) at the

b
y(X) = Ia G(x,&)D(&)dE point x=& that is, 6¢)-6(0)=-1/p(0)

7
(.é_\ then, how to get G?

from condition 1, 2 : - cu(x) when x<¢, }t)
c,v(x) when x>¢,

from condition 3 : cV(&)—cu(é)=0---(a) —u&) v©)]fc ¢
ops . ' Ay __L... b |:—U'(§) V'(gg):||:cl:|= _i
for condition 4 : c,V'(&) —cu'($) = 0(2) (b) ? p(é)
We can get the value of c,,C, as {cl} - 1 {v'(cf) —V(f)} 0
e ] —UEVE+UEVELIE) )] -

only when U(&)V'(E)—-U'(&)v(E) #0 means the functions u and v are linearly independent

by the condition 1, XG,=(pcu’)' +qcu=0— (pu’)+qu=0 U(EW (E) = VIEW' (&) = L A const
XG, =(pcV) +qcv=0— (pV) +qv=0 > UGVi(s) -vgu(e) p(¢) ’ .
at x=¢
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The green’s function

. d 1. The function G; and G, satisfy the equation XG=0 in their intervals of

%y + (D(X) =0 B/C: ay+ﬁd—i= definition; that is,IXG1=02when x<¢ , and £G,=0 when x>¢.

where % — i 0 d fq=pL d? %iJr q 2. The function G satisfies the homogeneous conditions prescribed at the

’ dx | = dx dx?> dx dx end points x=a and x=b; that is, G; satisfies the condition prescribed at x=a,
and G, that corresponding to x=bh.
,D(x) = ¢(x, y(x)) o : _ : _
1 3. The function G is continuous at x=¢& that is, G,(£)=G,(¢)
b 4. The derivative of G has a discontinuity of magnitude -1/p(¢) at the
y(x) = I G(x,&)d(&E)dE point x=¢ that is, G(0-6(0--1/7() 7’
a (.e_\ then, how to get G?
from condition 1, 2 : G- cu(x) when x<¢, }t)
“le,v(x) when x> ¢
from condition 3 : — —0... 0
c,v(&) —cu($) =0 (a) {—u(ﬁ) V@) fe]_ :
for condition 4 : C,V cu'(&)=———---(b —u'(¢&) V()| c —
(&) —cu'() = ( 5 -+(b) 2 o)
We can get the value of C,cC, as |:C1:| 1 {V'(g) _V(g)}
C,] —UEWV'(E)+U(EV(E) () -u(S) )
0 V) | [ w&)
{Cl} _ P {V’(é) —V(é)} Lo P@I PO || A only when U(é)V’(f)—U’(é)V(é) #0
C, u'(g) —u() NG A lu@) | | _u@) _
p(&) A u(EV' (&) —v(EU'(6) = (5) » A:const
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The green’s function

1. The function G; and G, satisfy the equation XG=0 in their intervals of

— : dy
%y + (D(X) — O ,B/C: OtY+ﬁ&= definition; that is, XG;=0 when x<¢ , and XG,=0 when x>¢.
2
where £ = i p— d +0=p—s _pi +q 2. The function G satisfies the homogeneous conditions prescribed at the
’ dx\ = dx dx 7 ¥ dx dx end points x=a and x=b; that is, G; satisfies the condition prescribed at x=a,
and G, that corresponding to x=bh.
,D(x) = ¢(x, y(x))

1 3. The function G is continuous at x=¢& that is, G,(£)=G,(¢)

4. The derivative of G has a discontinuity of magnitude -1/p(¢) at the

b
y(X) = Ia G(X,5)D(&)dE point x=¢ that is, G&)-6(&=-1/7(&

1
(.e_\ then, how to get G?

from condition 1, 2 : G- cu(x) when x<¢, }t)
“le,v(x) when x> ¢
iti : _ —0... 0
from condition 3 : c,v(&) —cu(&) =0 (a) {_u(gg) vie) le, i
for condition 4 : C,V cu'(&)=———---(b —u'(¢&) V()| c —
(&) -cu'($) = ( 5 -+(b) 2 o)
, 0 _v(©)
We can get the value of C,C, as |:Cl:| il {v 3 _V(g)} c 5
= ’ ' / 1 1:| =
C, | —U(EV(S)+u'(EV(S)Lu'(E) —u(s) C,] | _u)
(&) A
—iu(x)v(g) when x<¢&
LG(E) = ’1* only when U()V/(&) ~U/()v() # 0
\—Zv(x)u(g) when x> ¢& U(§)V’(§)—V(§)U’(§):%§), A const
where A is a constant, independent of X, &
Innovative Shi_-p Design - Elasticity a
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The green’s function

Linear second order differential equation Fredholm integral equation of second kind

d’y dy b

Y a0 2+ 8oy = 0 y(x) = [ K(x,&)y(E)dé +F(x)
Initial condition : <::‘> F ,K :given functions and continuous in (a,b)

, , ) . : L : :
y(@) =y, y'@)=y, Y(X): function is to be determined which is continuous in (a,b)
ﬂconsider this form When the function G(x,$) exists, the original formulation of the
<):‘> problem can be transformed to the relation

d@fy + CD(X) =0 ) b solution : if @ = ®(X)
,Where %z%(p%)+q: p%+j—i%+q y(X) = -L G(X,f)q)(é)df {integral equation :if ® =d(x,y)
LD (x) = @(X, y(X)) in explicit form 1 ’ ;
homogeneous boundary conditions y(x) = _K[Ia U(Zj)V(X) @(5) d E+ JX U(X)V(Zj)@(f) df :|
ay+ 'Bg_y =0 —%u(x)v(f) when x<¢&
X ~G(x &)=

For some constant values of o and B, which are = s B

Iinjpretee 21 e el el e e el ot 1. The function G, and G, satisfy the equation XG=0 in their intervals of
definition; that is, XG;=0 when x<¢ , and £G,=0 when x>¢.

2. The function G satisfies the homogeneous conditions prescribed at the end
points x=a and x=b; that is, G, satisfies the condition prescribed at x=a, and G,
that corresponding to x=h.

3. The function G is continuous at x=¢& that is, G,(&)=G,(¢)

4. The derivative of G has a discontinuity of magnitude -1/p(¢) at the point x=¢
that is, G;($)-G/(5)=-1/p(¢)
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1
d( dj d> dpd —Su()v(é) when x<¢&

’ 1 L=—|Pp—|+q=Pp—F+——+0 GxH={ *
The green’s function A T2 {%vm”@

A= p(&)[u(@)V'(&) -v(EU'(S)]
Linear second order differential equation When the function G(X:¢) exists, the original formulation of the
. problem can be transformed to the relation
sy =0 PO =4 (x, y()) b solution : if @ = d(x)
e | YOO =[[BUDPEAE i o o0
y

homogeneous B/C ay + ,Bj— =0
X

y(x)———[j UV D(E)dE + | u(x)v(e:)@(é)daf}

Show that y(x) = [ G(x,£) D(£)d&

implies the differential equation %y + (I)(x) =0

()aF(x &)

A(X)

dé+F[x, B(><)]——F[  AX )]

differentiate by using —XJA(X) (x,8)d& = J

Y00 =4 [ VOO D) dé + [[UOuEE)dé |
> POV = [ POV U@ @) dé + [ pu (x)v(é)@(é)dé}
V(== [V U@ @S + [ W (VEPE)E | - V(U0 U (VIP(0)

p(x)

S PO9Y'0) == [ POV @) dé + [ pOdu (v |- P v(xu00 -u0ve01e(0)
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’”‘Seou/
Nt nal Ad dShpDkthmat n Lab.
http: // dal.



d (p d j 0= p d? dp d iy —%u(x)v(f) when x<¢
T el Py N2 v Ay ,G(x,&) =
2 e o’ d dx —%V(X)U(é) when x>¢&

The green’s function

A= p(E)[UEV'(&) - V(' ()]
Linear second order differential equation When the function G(X:¢) exists, the original formulation of the

problem can be transformed to the relation
LY+ @(X) =0 o) =p(x y(x)

<:> y(x) =JbG(X,§)(D(§)d§ { solution':ifCI_D:CD(x)

integral equation : if ® = ®(X,y)

homogeneous B/C ay + ﬂj—y =0
X

y(x)———U UV D(E)dE + | u(x)v(é)@(é)df}

In particular, ®(x) = Ar(x)y(x) - f(x)
ZY(X)+Ar()y(x) = f(x) <& y0=4[[6x M@ y@de-[ G(x &) F(E)de (4 0

where G is relevant Green'’s function.

Kernell K(x,&) | is actually the product G(x,&)r(&), and is not

symmetric unless r(x) is a constant. However if we write /r(x)y(x) =Y (x)

Under the assumption that r(x) is nonnegative over (a,b), the equation can be written in

the form
Y00 =2 R(x&)Y@de - [ R(x,8) f((?) ¢

Where K is defined by the relation K (X, &) =Jr(x)r(&) G(x,&)

Hence possesses the same symmetry as G. (K(X.f) = K(gg,x))

Innovative Ship Design - Elasticity
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' I ‘%zi(pi}rq:pd—zﬁ%iw G(x,&) = TRUONME) e x<¢
The green S funCtlon CANE & ehink —%v(x)u(é) when x> ¢&

A= p(E)[UEV'(&) - V(' ()]
Linear second order differential equation When the function G(X:¢) exists, the original formulation of the

problem can be transformed to the relation
LY+ @(X) =0 o) =p(x y(x)

<::‘> y(x) — J‘:G(X1§)(D(§)d§ { solution : if ® = d(x)

integral equation : if ® = ®(x,y)

dyO

homogeneous B/C ay+IBd_ =
X

Y(x) = —%[ [CuE@veye(&)de+ jfu(x)v(e:)cb(é)dg}

In particular, ®(x) = Ar(x)y(x) - f(x)
ZY(X)+Ar()y() = f(x) <& y0 =4[ 6xHM@ @ de-[ G &) F(E)de (4 0

where G is relevant Green'’s function.

In the special case when the operator X and the associated end conditions are such that

" S _ (
£y=Yy", y(0 9y()=0 =1-9)  (x<¢)
it is readily verified that the relevant Green’s function Gis identified ~ G(X,&) =1 £
with the kernel K defined by 2(l —x X > &).
U0

Thus, in particular, the solution of the problem

y'=f(x) &y =-[6(x.8 f(&)de,
y(0) = y(1) =0

Innovative Ship Design - Elasticity
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1
d d d> dpd ——u(x)v(§) when x<¢&
=) { f:

The green’s function A T2 Tuome) whn 5o

A= p(E)[UEV'(&) - V(' ()]
Linear second order differential equation When the function G(X:¢) exists, the original formulation of the

problem can be transformed to the relation
LY+ @(X) =0 o) =p(x y(x)

<::‘> y(x) — J‘:G(X1§)(D(§)d§ { solution : if ® = d(x)

integral equation : if ® = ®(x,y)

&,
dx

homogeneous B/C ay+ f3

Y(x) = —%[ [CuE@veye(&)de+ jfu(x)v(e:)cb(é)dg}

In particular, ®(x) = Ar(x)y(x) - f(x)
ZY(X)+Ar()y() = f(x) <& y0 =4[ 6xHM@ @ de-[ G &) F(E)de (4 0

where G is relevant Green'’s function.

whereas(!) the problem

y"+Ary = f(x), y(0)=y()=0 Zy=y", y(0 y()=0

Thus, in particular, the solution of the problem

y'=1(x),y(0)=y()=0

is equivalent to the integral equation

Y(x) =4[, G(x,&)r(&)y(&)ds - [ G(x.&) f(§)de

y(x) =—[ 6(x.&) F(&)de,

=)
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Zy+0(x)=0 < y®=[6x&HP()d
d( d d> dpd
xw(p&j”:pmma*q

homogeneous B/C ay+ f3

The green’s function

In particular, ®@(x)=Ar(x)y(x) - f(x) izo
LYy +Ar()y(x) = f(x) <& y0=4["6xar@ y@dé- [ 6(x.&) H(EdE (4 0

where G is relevant Green'’s function.

When the prescribed end condition are not homogeneous, (y(a) = f(x), y(b) = g(x))
a modified procedure is needed.

In this case,

we denote by G(x,£) the Green’s function corresponding the associated homogeneous end conditions,
and attempt to determine a function P(x) such that the relation

y(x) = P(x) + [ G(x,&)D(£)dE

is equivalent to the differential equation

XY(X)+Dd(x)=0

together with the prescribed nonhomogeneous end conditions.

The requirement imply %( P(X) + J-:G(X, f)(l)(f)df) + (D(X) =0

ZP(X) + X[ G(x,E)P(E)dE +D(x) =0

iy zero with homogeneous end condition

X P(X) =0 nonhomogeneous end condition

Innovative Ship Design - Elasticity
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Zy+0(x)=0 < y®=[6x&HP()d

d( d d> dpd
X=—| p— |+qQ=Pp—+——+
dx(pdj : IOdx2 dx dx :

The green’s function
In particular, D(x) = Ar(x)y(x) — f(x) homogeneous B/C ay—i-ﬂd—i 0

LYy +Ar()y(x) = f(x) <& y0=4["6xar@ y@dé- [ 6(x.&) H(EdE (4 0

where G is relevant Green'’s function.

example) y"+xy=1, y(0) =0, y(I)=1 ré(l —x) (E<X)
. G(x,&) = )'(

attempt to adetermine, . —(1-¢) (£>X)
y(X) = P(¥)+ [ G(x H)@()dE .

with Green function to the homogeneous end conditions Y(0 =)0, y(I)=0

and P(X) satisfying the nonhomogeneous end conditions

in the problem, @ (x) =xy(x)-1, Ly=y"

XY+ D(x)=0

ZP(X) + X[ G(x,E)P(E)dE +D(x) =0

v zero with homogeneous end condition

X P(X) =0 nonhomogeneous end condition —. P"(x)=0, P(0)=0, P(l) =1,
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, . Zy+0(x)=0 < y®=[6x&HP()d
The green’s function 838 e

dx IOd : Iod2 dxddx :
In particular, D(x) = Ar(x)y(x) — f(x) homogeneous B/C ay—i-ﬂ—i 0

LYy +Ar()y(x) = f(x) <& y0=4["6xar@ y@dé- [ 6(x.&) H(EdE (4 0

where G is relevant Green'’s function.

example) y"+xy=1, y(0) =0, y(I)=1 ré(l —x) (E<X)
. G(x,&) = )'(

attempt to adetermine, . —(1-¢) (£>X)
y(X) = P(¥)+ [ G(x H)@()dE .

with Green function to the homogeneous end conditions Y(0 =)0, y(I)=0

and P(X) satisfying the nonhomogeneous end conditions
in the problem, ®(x) =xy(x)-1, Xy=Yy"
P"(x)=0, P(0)=0, P(l)=1,

P'(x)=¢, ="
) by the B/C [) 1 L LPX)=
|

P(x)=cX+¢, C, =
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The green’s function

In particular, @(x)=Ar(x)y(x)— f(x)

d d> dpd
X=—| p— |+qQ=Pp—+——+
dx(pdj : Iodx2 dx dx :

Zy+0(x)=0 < y®=[6x&HP()d
d

homogeneous B/C ay—i-ﬂd—y 0
dx

LYy +Ar()y(x) = f(x) <& y0=4["6xar@ y@dé- [ 6(x.&) H(EdE (4 0

where G is relevant Green'’s function.

example) y"+xy =1, y(0) =0, y(l)=1

attempt to determine,

y(x) = P(x) + [ G(x.&)D(£)dE

P(x) =T

D(x) = xy(x) -1,

Ly =+ [[G(GOIE Y(E) -1dé

and reduces to the form

Y0 =7-20-x)+[[ G HEYEUE where G(x,&)=1

Innovative Ship Design - Elasticity
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