
1

Asynchronous Pipelines:
Concurrency Issues

Arvind
Computer Science & Artificial Intelligence Lab

h f h l

September 22, 2009 http://csg.csail.mit.edu/korea L07-1

Massachusetts Institute of Technology

Synchronous vs
Asynchronous Pipelines

In a synchronous pipeline:y p p
typically only one rule; the designer
controls precisely which activities go on in
parallel
downside: The rule can get too complicated
-- easy to make a mistake; difficult to make
changes

In an asynchronous pipeline:

September 22, 2009 L07-2http://csg.csail.mit.edu/Korea

y p p
several smaller rules, each easy to write,
easier to make changes
downside: sometimes rules do not fire
concurrently when they should

2

Synchronous Pipeline

f1 f2 f3

rule sync-pipeline (True);
if (inQ.notEmpty())
begin sReg1 <= Valid f1(inQ.first()); inQ.deq(); end
else sReg1 <= Invalid;
case (sReg1) matches

x

sReg1inQ

f1 f2 f3

sReg2 outQ

September 17, 2009 L06-3http://csg.csail.mit.edu/korea

case (sReg1) matches
tagged Valid .sx1: sReg2 <= Valid f2(sx1);
tagged Invalid: sReg2 <= Invalid;

case (sReg2) matches
tagged Valid .sx2: outQ.enq(f3(sx2));

endrule

Asynchronous pipeline
Use FIFOs instead of pipeline registers

f1 f2 f3

x

fifo1inQ

f1 f2 f3

fifo2 outQ

rule stage1 (True);
fifo1.enq(f1(inQ.first());
inQ.deq(); endrule

rule stage2 (True);
fifo2 enq(f2(fifo1 first())

Consider rules stage1
and stage2:
N fli d

Can all three rules
fire concurrently?

September 17, 2009 L06-4http://csg.csail.mit.edu/korea

fifo2.enq(f2(fifo1.first());
fifo1.deq(); endrule

rule stage3 (True);
outQ.enq(f3(fifo2.first());
fifo2.deq(); endrule

-No conflict around
inQ or fifo2.

3

What behavior do we want?

f1 f2 f3

If inQ, fifo1 and fifo2 are not empty and fifo1,
fifo2 and outQ are not full then we want all
three rules to fire
If i Q i t fif 1 d fif 2 t t

x

fifo1inQ

f1 f2 f3

fifo2 outQ

If inQ is empty, fifo1 and fifo2 are not empty
and fifo2 and outQ are not full then we want
rules stage2 and stage3 to fire
…

September 22, 2009 L07-5http://csg.csail.mit.edu/Korea

The tension
If multiple rules never fire in the same
cycle then the machine can hardly be cycle then the machine can hardly be
called a pipelined machine
If all rules fire in parallel every cycle
when they are enabled, then wrong
results can be produced

September 22, 2009 L07-6http://csg.csail.mit.edu/Korea

4

some insight into

Concurrent rule firing

Rules Ri Rj Rk rule
Rules

HW clocks

steps

Ri

Rj

Rk

• There are more intermediate states in the rule

September 22, 2009 L07-7http://csg.csail.mit.edu/Korea

semantics (a state after each rule step)

• In the HW, states change only at clock edges

Parallel execution
reorders reads and writes

Rules rule
d it d it d itd itd it

HW
clocks

steps

• In the rule semantics, each rule sees (reads) the

reads writes reads writes reads writesreads writesreads writes

reads writes reads writes

September 22, 2009 L07-8http://csg.csail.mit.edu/Korea

effects (writes) of previous rules

• In the HW, rules only see the effects from previous
clocks, and only affect subsequent clocks

5

Correctness

Rules Ri Rj Rk rule
Rules

HW clocks

steps

Ri

Rj

Rk

• Rules are allowed to fire in parallel only if the net
state change is equivalent to sequential rule

September 22, 2009 L07-9http://csg.csail.mit.edu/Korea

state change is equivalent to sequential rule
execution

• Consequence: the HW can never reach a state
unexpected in the rule semantics

The compiler issue
Can the compiler detect all the conflicting
conditions?conditions?

Important for correctness

Does the compiler detect conflicts that do not
exist in reality?

False positives lower the performance
The main reason is that sometimes the compiler
cannot detect under what conditions the two rules
are mutually exclusive or conflict free

September 22, 2009 L07-10http://csg.csail.mit.edu/Korea

are mutually exclusive or conflict free

What can the user specify easily?
Rule priorities to resolve nondeterministic choice

6

Implementing FIFOs

September 22, 2009 http://csg.csail.mit.edu/korea L07-11

module mkFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegU();
R #(B l) f ll kR (F l)

One-Element FIFO

Reg#(Bool) full <- mkReg(False);
method Action enq(t x) if (!full);
full <= True; data <= x;

endmethod
method Action deq() if (full);
full <= False;

endmethod
method t first() if (full);

n

not full rdy
enab

enab

en
q

February 17, 2009 L06-12http://csg.csail.mit.edu/arvind

return (data);
endmethod
method Action clear();
full <= False;

endmethod
endmodule

not empty rdy
enab

de
q

FI
FO

m
o
d
u
le

7

module mkFIFO (FIFO#(t));
Reg#(t) d0 <- mkRegU();
R #(B l) 0 kR (F l)

Two-Element FIFO

d1 d0Reg#(Bool) v0 <- mkReg(False);
Reg#(t) d1 <- mkRegU();
Reg#(Bool) v1 <- mkReg(False);
method Action enq(t x) if (!v1);
if v0 then begin d1 <= x; v1 <= True; end

else begin d0 <= x; v0 <= True; end endmethod
method Action deq() if (v0);
if v1 then begin d0 <= d1; v1 <= False; end

i 0

Assume, if there is only
one element in the FIFO
it resides in d0

d1 d0

February 17, 2009 L06-13http://csg.csail.mit.edu/arvind

else begin v0 <= False; end endmethod
method t first() if (v0);
return d0; endmethod

method Action clear();
v0<= False; v1 <= False; endmethod

endmodule

module mkFIFO (FIFO#(t));
Reg#(t) d0 <- mkRegU();
R #(B l) 0 kR (F l)

Two-Element FIFO
another version

d1 d0Reg#(Bool) v0 <- mkReg(False);
Reg#(t) d1 <- mkRegU();
Reg#(Bool) v1 <- mkReg(False);
method Action enq(t x) if (!v1);
v0 <= True; v1 <= v0;
if v0 then d1 <= x; else d0 <= x; endmethod

method Action deq() if (v0);
v1 <= False; v0 <= v1; d0 <= d1; endmethod

i i 0

Assume, if there is only
one element in the FIFO
it resides in d0

d1 d0

February 17, 2009 L06-14http://csg.csail.mit.edu/arvind

method t first() if (v0);
return d0; endmethod

method Action clear();
v0<= False; v1 <= False; endmethod

endmodule

8

RWire to rescue
interface RWire#(type t);

method Action wset(t x);method Action wset(t x);
method Maybe#(t) wget();

endinterface

Like a register in that you can read and write it but unlike a
register

- read happens after write
- data disappears in the next cycle

February 17, 2009

module mkLFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegU();
Reg#(Bool) full <- mkReg(False);

One-Element Pipeline FIFO
not full rdy

enab

d
enab

en
q

q

or

!full

Reg#(Bool) full < mkReg(False);
RWire#(void) deqEN <- mkRWire();
Bool deqp = isValid (deqEN.wget()));
method Action enq(t x) if

(!full || deqp);
full <= True; data <= x;

endmethod
method Action deq() if (full);
full <= False; deqEN wset(?);

not empty rdy de
q

FI
FO

m
o
d
u
le

February 17, 2009 L06-16http://csg.csail.mit.edu/arvind

full <= False; deqEN.wset(?);
endmethod
method t first() if (full);
return (data);

endmethod
method Action clear();
full <= False;

endmethod endmodule

9

FIFOs

Ordinary one element FIFOOrdinary one element FIFO
deq & enq conflict – won’t do

Pipeline FIFO
first < deq < enq < clear

Bypass FIFO

September 22, 2009 L07-17http://csg.csail.mit.edu/Korea

yp
enq < first < deq < clear

Takeaway
FIFOs with concurrent operations are quite
difficult to design though the amount of difficult to design, though the amount of
hardware involved is small

FIFOs with appropriate properties are in the
BSV library

Various FIFOs affect performance but not
correctness

f h h l lFor performance, concentrate on high-level
design and then search for modules with
appropriate properties

September 22, 2009 L07-18http://csg.csail.mit.edu/Korea

10

IP lookup

next time

September 22, 2009 http://csg.csail.mit.edu/korea L07-19

