Asynchronous Pipelines:
Concurrency Issues

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

September 22, 2009 http://csg.csail.mit.edu/korea LO7-1

Synchronous vs
Asynchronous Pipelines

@ In a synchronous pipeline:

= typically only one rule; the designer
controls precisely which activities go on in
parallel

= downside: The rule can get too complicated
-- easy to make a mistake; difficult to make
changes

€ In an asynchronous pipeline:

= several smaller rules, each easy to write,
easier to make changes

s downside: sometimes rules do not fire
concurrently when they should

September 22, 2009 http://csg.csail.mit.edu/Korea LO7-2

Synchronous Pipeline

_@ -

inQ sRegl sReg2 outQ

rule sync-pipeline (True);
if (inQ.notEmpty())

else sRegl <= Invalid;

case (sRegl) matches

tagged Valid .sx1: sReg2 <= Valid f2(sx1);

tagged Invalid: sReg2 <= Invalid;

case (sReg2) matches

tagged Valid .sx2: outQ.enq(f3(sx2));
endrule

begin sRegl <= Valid f1(inQ.first()); inQ.deq(); en

September 17, 2009 http://csg.csail.mit.edu/korea LO6-3
Use FIFOs instead of pipeline registers
7
X
inQ fifol fifo2 outQ
rule stagel (True); Can all three rules
Ffifol.enq(F1L(inQ.First()); fire concurrently?
inQ.deq(); endrule Consider rules stagel
rule stage2 (True); and stage2:
fifo2.enq(F2(Fifol.first()); No conflict around
fifol.deq(); endrule inQ or fifo2.
rule stage3 (True);
outQ.enq(F3(fifo2.first());
fifo2.deq(Q; endrule
September 17, 2009 http://csg.csail.mit.edu/korea LO6-4

What behavior do we want?

et

inQ fifol fifo2 outQ

€ If inQ, fifol and fifo2 are not empty and fifol,
fifo2 and outQ are not full then we want all
three rules to fire

€ If inQ is empty, fifol and fifo2 are not empty
and fifo2 and outQ are not full then we want
rules stage2 and stage3 to fire

& .

September 22, 2009 http://csg.csail.mit.edu/Korea LO7-5

The tension

@ If multiple rules never fire in the same
cycle then the machine can hardly be
called a pipelined machine

@ If all rules fire in parallel every cycle
when they are enabled, then wrong
results can be produced

September 22, 2009 http://csg.csail.mit.edu/Korea LO7-6

some insight into
Concurrent rule firing
Ri ,Rj Rk rule
RUlES eocl—f eoe bbb Aeee Fob—b—d— eocb—f—b—loes sthph
| = |
Rk
HW I oee I I clocks
- Ri :
e There are more intermediate states in the rule
semantics (a state after each rule step)
< In the HW, states change only at clock edges
September 22, 2009 http://csg.csail.mit.edu/Korea LO7-7
Parallel execution
reorders reads and writes
7
Rules . . rule
'refdj/mm\wi'js'rfa%mmmes&wm[; steps
reads writeslreads writes
HW | clocks
* In the rule semantics, each rule sees (reads) the
effects (writes) of previous rules
* In the HW, rules only see the effects from previous
clocks, and only affect subsequent clocks
LO7-8

September 22, 2009 http://csg.csail.mit.edu/Korea

Correctness

e
Ri . Rj Rk rule
RUlES eocl—f eoe bbb Aeee Fob—b—d— eocb—f—b—loes step;l
| - | |
Rk
HW I oo I I clocks
Ri
~
e Rules are allowed to fire in parallel only if the net
state change is equivalent to sequential rule
execution
e Consequence: the HW can never reach a state
unexpected in the rule semantics
September 22, 2009 http://csg.csail.mit.edu/Korea LO7-9

The compiler issue

Can the compiler detect all the conflicting
conditions?
[] Important for correctness

Does the compiler detect conflicts that do not
exist in reality?
= False positives lower the performance

= The main reason is that sometimes the compiler
cannot detect under what conditions the two rules
are mutually exclusive or conflict free

€ What can the user specify easily?
= Rule priorities to resolve nondeterministic choice

September 22, 2009 http://csg.csail.mit.edu/Korea LO7-10

Implementing FIFOs

September 22, 2009 http://csg.csail.mit.edu/korea LO7-11

One-Element FIFO

module mkFIFO1 (FIFO#(t));
Reg#(t) data <- mkRegUQ);
Reg#(Bool) full <- mkReg(False);
method Action enq(t x) if (1full);

full <= True; data <= x;
endmethod
method Action deq() if (full);

full <= False; \n
endmethod enab

method t first() if (full); notm"‘jﬁlﬁ;;ﬁ
return (data); enab |
endmethod not empty <14y |
method Action clear();
full <= False;
endmethod
endmodule

FIFO
module

[|ldea]feng |

February 17, 2009 http://csg.csail.mit.edu/arvind L06-12

Two-Element FIFO

module mkFIFO (FIFO#(t)); [][J
Reg#(t) d0 <- mkRegUQ: — -
Reg#(Bool) vO <- mkReg(False); di do
Reg#(t) dl <- mkRegUQ); Assume, if there is only
Reg#(Bool) vl <- mkReg(False); one element in the FIFO
method Action enq(t x) if (lvl); it resides in dO
if vO then begin dl <= x; vl <= True; end
else begin dO <= x; vO <= True; end endmethod
method Action deq() if (vO);
if vl then begin dO <= dl1; vl <= False; end
else begin vO <= False; end endmethod
method t first() if (vO);
return dO; endmethod
method Action clear();
vO<= False; vl <= False; endmethod
endmodule
February 17, 2009 http://csg.csail.mit.edu/arvind L06-13

Two-Element FIFO

another version

7

February 17, 2009 http://csg.csail.mit.edu/arvind L06-14

module mkFIFO (FIFO#(t)); [][J
Reg#(t) do <- mkRegUQ; I -
Reg#(Bool) vO <- mkReg(False); di do
Reg#(t) dl <- mkRegUQ): Assume, if there is only
Reg#(Bool) vl <- mkReg(False); one element in the FIFO
method Action enq(t x) if (lvl); it resides in dO

vO <= True; vl <= vO0;

if vO then dl <= x; else dO <= x; endmethod
method Action deq() if (vO);

vl <= False; vO <= vl1; dO <= d1; endmethod
method t first() if (v0);

return dO; endmethod
method Action clear();

vO<= False; vl <= False; endmethod

endmodule

RWire to rescue

interface RWire#(type t);

endinterface

Like a register in that you can read and write it but unlike a
register

- read happens after write

- data disappears in the next cycle

February 17, 2009

method Action wset(t x); e
method Maybe#(t) wget(); N A

One-Element Pipeline FIFO

“modulle mKLFIFO1 (FIFO#(t)); enab |g| Mfull
Reg#(t) data <- mkRegUQ): not full é:gb 121 or %
Reg#(Bool) full <- mkReg(False); =
RWire#(void) deqEN <- mkRWire(); notempty /% &

Bool degp = isvValid (degEN.wget())); @
method Action enq(t x) if - 8 E
(1full || degp):; i B
full <= True; data <= X; - E
endmethod
method Action deq() if (full);
full <= False; degEN.wset(?);
endmethod
method t first() if (full);
return (data);
endmethod
method Action clear();
full <= False;
February 17??0%31eth0d endmodu !netp://csg.csail.mit.edu/arvind L06-16

FIFOs

@®Ordinary one element FIFO
» deq & enq conflict — won’t do

@ Pipeline FIFO

» first < deq < enq < clear
®Bypass FIFO

m eng < first < deq < clear

September 22, 2009 http://csg.csail.mit.edu/Korea LO7-17

Takeaway

@ FIFOs with concurrent operations are quite
difficult to design, though the amount of
hardware involved is small

s FIFOs with appropriate properties are in the
BSV library

@ Various FIFOs affect performance but not
correctness

@ For performance, concentrate on high-level
design and then search for modules with
appropriate properties

September 22, 2009 http://csg.csail.mit.edu/Korea LO7-18

IP lookup

next time

September 22, 2009 http://csg.csail.mit.edu/korea

LO7-19

10

