Tutorial: Lab 4 Again

Nirav Dave

Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

AN

N

Only one instruction at a time

CGe
> epoch | a l
PCGen

What you’ve been given

|

RFile

ICache

DCache

June 3, 2008

First Task: Pipelined CPU

S
RFile
pred
@ Exec WB
ICache DCache

June 3, 2008

Isolate Tasks to stages

N

€ Initially writeback and execute
both write to the register file

€ This will cause a conflict between
the two stages

= Need to all delay register file writes to
the writeback stage

June 3, 2008

Add Interstage Buffering

N

€ Problem: Multiple stages
read/write the same stage

€ Only one stage should
m read each data element
s Write each data element

June 3, 2008

Stage stage usage

N

® PC Gen:
s PC/epoch: read
= IMem: request
s pc2execQ (enq)
€ Execute
PC/epoch: write
pc2execQ: (first/deq)

IMem: response
DMem: request
exec2wbQ(enq)
rf (read)
€ Writeback
n exec2wbQ: (first/deq)
= DMem: response
s rf:write

June 3, 2008

N

WWb
wLd
WSt
WNop

Add Stalling Logic:

€ We can’t read if there is data in the WB stage
waiting to be executed

€ Data in exec2wbQ SFIFO:

{.dst, .val}
{.dst}

void

void

@ Stall execute if we need to read one of those

registers

June 3, 2008

Now we can allow exec & WB

N

June 3, 2008

to happen concurrently

€ No longer go to the Writeback
stage. Go straight to PCGen stage

Speculation of PC

N

@®\We want PCGen and Exec to
happen concurrently but:

= pcGen reads PC/epoch
s Exec writes PC/epoch

®Have PCGen guess the next PC
m Pass guess to exec to verify

June 3, 2008 9

Original Rules

N

rule pcgen(stage == PCGen);
imem.req(pc);
pc2execQ.enq(tuple2(pc, epoch));
stage <= Execute;

endrule

rule exec(!Istall(exec2wbQ) && stage == Execute);
match {.pc, .epoch} = pc2execQ.first();
pc2execQ.deq();
let inst <- imem.response();
Addr nextPC = epc + 4;
case (inst) matches ...

pc <= nextPC;
endrule

June 3, 2008 10

New Rules

rule pcgen(True);

imem.req(pc);

let predPC = pc + 4;

pc <= predPC;

pc2execQ.enq(tuple2(pc, predPC, epoch));
endrule

4
Y

match {.epc, .predPC ,.eepoch} = pc2execQ.first();
rule exec(!stall(exec2wbQ) && eepoch == execEpoch);

pc2execQ.deq();

let inst <- imem.response();

Addr nextPC = epc + 4;

case (inst) matches ...

if (nextPC !'= predPC)

begin pc <= nextPC; epoch <= epoch+1;
execEpoch <= execEpoch+1; end

endrule
rule discard(eepoch = execEpoch);

pc2execQ.deq(); let inst <- imem.response();
endrule

June 3, 2008

11

Getting Performance

N

@ Expected Order per cycle
» WB < Exec < PCGen

®Requires:

» I'f: write < read

m exec2wbQ: first,deq < enq
pc2execQ: first,deq <
epoch: write < r
pc: write < read < write

June 3, 2008

Write from exec,
then read & write
from pcGen

12

The new PC module

. module mkPCReg(ExtendedReg#(a));
Reg#(a) r <- mkReg(0);
RWire#(a) rwl <- mkRWire();
RWire#(a) rw2 <- mkRWire();
rule doWrite(isJust(rwl.wget) || isJust(rw2.wget));
r <= fromMaybe(rw2.wget, fromMaybe(rwl.wget, ?));
endrule
method Action writel(x);
rw.wset(x);
endmethod
method a read();
return fromMaybe(rwl.wget, r);
endmethod
method Action write2(x);
rw2.wset(x);
endmethod
endmodule

N

June 3, 2008 13

N

June 3, 2008 14

N

New Instruction can start
before the first finishes

" pc |
[_epoch |

Need more
buffering

First Task: Pipelined CPU

RFile

Exec

W8

ICache

June 3, 2008

DCache

15

N

pc <= pc + 4;
otherActions;

endrule

June 3, 2008

Branch Prediction

rule pcGen (True);

€ Pipeline has simple speculation

Simplest prediction:
Always not-taken

16

Branch Prediction

N

interface BranchPredictor; Make prediction

method Addr getNextPC(Addr pc);
method Action update (Addr pc,
Addr

rect _next pc);

endinterface

rule pcGen (True);
pc <= pred.getNextPC(pc);
otherActions;

endrule

rule execute ..
iT (nextPC != correctPC) pred.update(curPc, nextPC);

Update predictions

case (instr) matches ..
BzTaken: 1f (mispredicted) ..

endrule
June 3, 2008

17

