
Dynamic Priority Scheduling

Overview

• EDF
– optimality (Done!)
– schedulable utilization bound
– time demand analysis

Dynamic-priority scheduling

• How to assign Priorities? – we already proved
that assigning priority based on the absolute
deadline is optimal

• How to check the schedulability?

Utilization Bound Check
• For a given algorithm A, we are interested in finding its

schedulability bound (e.g., the schedulability bound of EDF is 1)

Processor utilization factor

• More formally, we want to find the least upper bound Ulub(A) of
the processor utilization factor

),(min)(
 lub AUAU ub Γ=

Γ

• For example, considering the RM algorithm, Ulub(RM) = n (21/n – 1). Now, we know
how it can be derived.

• Quiz: what is the value of Uub(Γ, EDF)?

Schedulability of EDF

• Theorem: given a set of n (independent) periodic tasks,
each deadline will be met if and only if the total utilization
of the tasks is no greater than 1. That is:

• How in the world can we prove that?

1 2

1 2

. . . 1n

n

ee e
p p p

+ + + ≤

Proving Steps

• Necessity: Schedulable →Total Utilization ≤ 1
– Total Utilization > 1 → Not Schedulable: easy!
– How prove?

• Sufficiency: Total Utilization ≤ 1 → Schedulable
– Prove that if a job misses deadline, then Total

Utilization >1
– Two cases

• Easy Case
• Difficult Case

Counting Execution Times (Easy Case)

At the deadline of T22 at t, the deadline of T13 is before t and the total
execution of each task can be expressed neatly

Suppose a job (T22) misses the deadline ⇒ “sum of executions prior to t ” > t

Hint: We know that the completion time of a job is the sum of its own execution time
plus the interference due to other jobs with earlier deadline. So let’s count them.

We need to count all the executions of jobs prior to t. The execution time of jobs with
deadlines prior to t is easy to count. So are the execution times of jobs of T2 by time t.

θ1

t 0
0

2
2

21
1

1
1 : ;: e

p
tTe

p
tT ⎥

⎦

⎥
⎢
⎣

⎢
⎥
⎦

⎥
⎢
⎣

⎢ −θ

Getting a foothold
If a job (T22) misses the deadline ⇒ “sum of executions prior to t ” > t

θ1

t 0
0

1

 " prior to executions of Sum"

2

2

1

1

2
2

1
1

2
2

1
1

2
2

1
1

1

>+

>+

>⎥
⎦

⎥
⎢
⎣

⎢
+⎥

⎦

⎥
⎢
⎣

⎢

>⎥
⎦

⎥
⎢
⎣

⎢
+⎥

⎦

⎥
⎢
⎣

⎢ −
=

p
e

p
e

te
p
te

p
t

te
p
te

p
t

te
p
te

p
tt θ

If a job (T22) misses the deadline ⇒ Total Utilization > 1

Counting Execution Times (Difficult Case)

When T22 is sandwiched by the release time and deadline of T12, we do not have neat
expression of jobs of T1 in terms of t.

…
t …

*

0

θ2

θ3

 : ;: *;: 3
3

3
32

2

2
21

1
1 e

p
tTe

p
tTe

p
tT ⎥

⎦

⎥
⎢
⎣

⎢ −
⎥
⎦

⎥
⎢
⎣

⎢ −
+⎥

⎦

⎥
⎢
⎣

⎢ θθ

• Can we still prove the followings?
– If a job (T22) misses the deadline ⇒ “sum of executions prior to t ” > t

– “sum of executions prior to t” > t ⇒ Total Utilization > 1

When you have a hammer

• There is who has a hammer. To him, everything looks like
a nail. He uses the hammer for everything.

• If you have neat result, call it a lemma (hammer?!). Next,
work hard and transform new situations to one that looks
like a nail, so that you can hammer it with your lemma.

• Question: We have a special pattern and we’ve got a neat
result. What should we do when we have a new pattern
with *?

• Answer: Transform the new pattern into one that we can
hammer it with our lemma. (Remove *)

Key Facts: Idle Interval Lemma

…
…

0

t

• An idle interval is terminated by the first arrival of a job labeled here
as t. The schedulability of jobs after t is not affected by jobs before t,
since jobs before t cannot delay the execution of jobs after t.

• Thus, we can choose t as the time 0 for studying the schedulability of
jobs after t.

I

Key Facts: Busy Interval
•Suppose that we suspect that some job of T2 may miss its deadline at time t. To
keep the time line short and thus things simple, we shall invoke the Idle Time
Lemma.

•From release time of this suspected job, we scan the timeline towards
START_TIME. When we find the last idle interval, I (if any), between
[START_TIME, t], we pick the end of I as the time origin, 0 for schedulability
analysis.

•This interval is known as the (latest) busy interval. All the scheduling history prior
to this busy interval is irrelevant. The notion of (latest) busy interval is very useful
in studies concerning with time line, including scheduling theory and queuing
theory.

t θ10
START_TIME 0

B(latest busy interval)Idle

Transform Difficult One to Easy One

•The fact that * can be executed implies that all jobs with deadlines shorter than t have
been completed before ta. (Why?) ---- Idle Interval

•After ta, when the first job with deadline shorter than t shows up, we consider it as
“new 0”. The scheduling history prior to “new 0” can now be ignored. ---- Latest
Busy Interval

•So we get back to the old pattern.

…
t …

0 (new)

*

0 (origin)

θ2

θ3

ta

Transform Difficult One to Easy One

So, the scheduling history prior to “new 0” can now be ignored. So we get back to the old
pattern.

…
t …

0 (new)

*

0 (origin)

θ2

θ3

 : ;: ;Ignored! 0: 3
3

32
2

2
21

1

1
1 e

p
tTe

p
tTe

p
tT ⎥

⎦

⎥
⎢
⎣

⎢
⎥
⎦

⎥
⎢
⎣

⎢ −
<⎥

⎦

⎥
⎢
⎣

⎢ − θθ

ta θ1

θ2

How about N tasks?

• Theorem: Given N independent periodic
tasks with deadline at the end of the period,
every job can meet its deadline provided
that the total utilization is no more than 1.

• Proof:……

Time-Demand Analysis
(Alternative way for schedulability check)

• Check if Time-Demand is smaller than
Time-Supply at all the times.

• Can we check this
– For all possible arrival patterns?
– Infinitely?

Worst-case pattern with EDF

• When EDF is used to schedule a set of tasks on a
processor, if there is an overflow for a certain
arrival pattern, then there is an overflow without
idle time prior to it in the pattern in which all tasks
are released synchronously.

• Proof:….

Worst-case pattern with EDF

• Quiz: what is the difference between the worst-case pattern of
EDF and the critical instance theorem for static priority
scheduling algorithms?

deadline miss!

deadline miss!

Finite Check
• The schedulability of a task set scheduled according to

EDF can be checked by analyzing the worst-case
pattern (synchronous release times) and verifying if
any deadline is missed within [0, min(idle time,
Hyperperiod)]

• Why?

Time-demand approach
• A set of periodic tasks is schedulable by EDF if and only if for all L, 0 ≤ L

≤ min[idle time, Hyperperiod],

i

n

i i

e
p
LLDL ⋅⎥
⎦

⎥
⎢
⎣

⎢
=≥ ∑

=1
],0[

• Quiz:do we really need to check the processor demand “for every L”?

Processor demand within [0, L]

deadline miss!

Class exercise 1
• Suppose that we have 3 tasks with the following periods and execution

times:
– {T1 (p1 = 7, e1= 2), T2 (p2 = 4, e2 = 3), T3 (p3 = 14, e3 = 2)}

– The task set utilization is U=1.18 > 1
– Let’s apply the processor demand approach!

– L = 4 D[0, 4] = 3 < L
– L = 7 D[0, 7] = ⎣7/7⎦*2 + ⎣7/4⎦*3 + ⎣7/14⎦*2 = 5 < L
– L = 8 D[0, 8] = ⎣8/7⎦*2 + ⎣8/4⎦*3 + ⎣8/14⎦*2 = 8 = L
– L = 12 D[0, 12] = ⎣12/7⎦*2 + ⎣12/4⎦*3 + ⎣12/14⎦*2 = 11 < L
– L = 14 D[0, 14] = ⎣14/7⎦*2 + ⎣14/4⎦*3 + ⎣14/14⎦*2 = 15 > L
– We got D[0, 14] > 14 we found the deadline miss!

deadline miss!
T1

T2

T3

t =14

Time-demand approach (proof)
• Proof:

The theorem is proved by showing that the processor demand equation is
equivalent to the classical schedulability condition:

Hence, first of all, we prove that:

If U ≤ 1, then for all L (L ≥ 0),

∑∑ ⋅⎥
⎦

⎥
⎢
⎣

⎢
≥⇒≤=

= i
i

i

n

i i

i e
p
LL

p
eU

1

1

∑∑
==

⋅⎥
⎦

⎥
⎢
⎣

⎢
≥=≥

n

i
i

i

n

i
i

i

e
p
Le

p
LULL

11

∑∑ ⋅⎥
⎦

⎥
⎢
⎣

⎢
≥⇔≤=

= i
i

i

n

i i

i e
p
LL

p
eU

1
1

Processor demand approach
Then, we prove that:

we prove it by contradiction; hence, suppose that U > 1, there exists a L ≥ 0 such that
L < D[0, L]

if U > 1, then for L = lcm(p1,p2,…,pn),

∑∑
==

⋅⎥
⎦

⎥
⎢
⎣

⎢
≥⇐≤=

n

i
i

i

n

i i

i e
p
LL

p
eU

11

1

∑∑
==

⋅⎥
⎦

⎥
⎢
⎣

⎢
==<

n

i
i

i

n

i
i

i

e
p
Le

p
LULL

11

Why time-demand analysis is useful ?
• The processor demand approach is an alternative way for checking the

schedulability of a task set under EDF.

• Well, we already have the U ≤ 1 as schedulability condition; way do we
need another equivalent test?

• Answer: the processor demand approach is more powerful and it allows to
determine the schedulability when the classical condition cannot be applied.

• An example: task sets with deadlines less then periods!

J11

θ1 d11 θ1+p1 d12 θ1+2*p1 d13 θ1+3*p1

J12 J13

0

(Power On)

EDF with deadlines less than periods
• How can we compute the processor demand D[0, L] when Di < pi?

J11 J12 J13

0

J14

• Quiz: is it correct to use the already known formula? i

n

i i

e
p
LLD ⋅⎥
⎦

⎥
⎢
⎣

⎢
=∑

=1
],0[

L=29
8 10 18 20 28 30 38 40

p=10

D=8

EDF with deadlines less than periods

J11 J12 J13

0

J14

• First step: we shift the interval origin by a D amount. So we get:

L=29
8 10 18 20 28 30 38 40

p=10

D=8

0 (new)0 (origin)

i

n

i i

i e
p

DLLD ⋅⎥
⎦

⎥
⎢
⎣

⎢ −
=∑

=1
],0[

• However, the first task instance remains outside of the processor demand;
we fix it by adding 1

EDF with deadlines less than periods

J11 J12 J13

0

J14

L=29
8 10 18 20 28 30 38 40

p=10

D=8

0 (new)0 (origin)

i

n

i i

i e
p

DLL ⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎦

⎥
⎢
⎣

⎢ −
≥∑

=1
1

• A set of periodic tasks with deadlines less than periods is schedulable by
EDF if and only if for all L, 0 ≤ L ≤ min[idle time, Hyperperiod],

Class exercise 2
• Suppose that we have 2 tasks with the following periods, relative deadlines and

execution times:
– {T1 (p1 = 4, D1=3, e1= 2), T2 (p2 = 6, D2=5 e2 = 3)}

– The task set utilization is U=1
– Is the task set schedulable?
– Let’s apply the processor demand approach!

– L = 5 D[0, 5] = (⎣(5-3)/4⎦ +1)*2 + (⎣(5-5)/6⎦ +1)*3 = 5 = L
– L = 7 D[0, 7] = (⎣(7-3)/4⎦ +1)*2 + (⎣(7-5)/6⎦ +1)*3 = 7 = L
– L = 11 D[0, 11] = (⎣(11-3)/4⎦ +1)*2 + (⎣(11-5)/6⎦ +1)*3 = 12 > L
– We got D[0, 11] > 11 we found a deadline miss!

deadline miss!

0 5 6 11 12

Summary
• All of the above schedulability check works only under limited

conditions
– Preemptable at any time
– Context switch overhead is negligible
– Scheduling decision is made immediately upon jobs release and

completion
• Practical Issues

– What if the deadline is earlier than the period?
– What if there is a non-preemptable code section (e.g., system call)?
– What if the context switch overhead is not negligible?
– Tick scheduling?

EDF with deadlines less than periods
• Quiz: can you find an easy but sufficient schedulability

condition for a task set with deadlines less than periods?

period decrease ;1

timeexecution increase ;1

1

1

≤

≤
−+

<

∑

∑

=

=

n

j j

j

n

j j

jjj

ii

D
e

p
Dpe

pD

Non-preemptable code section

• a non-preemptable code section (NPS) of a low priority
task blocks high priority task
– How to take this into account in utilization bound check?

 tasks)all(for check single ;1max

)for task (only check by task task ;1

/* if /*max

 deadline relativeshorter with job ablock can
 deadline relativelonger with jobOnly :

11

1

1

≤+

≤+

<<=

==

=

+=

∑

∑

j

j
n

j

n

j j

j

i

i
n

j j

j

kij

n

iji

ii

kk

p
b

p
e

i
p
b

p
e

kiDDNPSb

DJ
DJTheorem

Earlier deadline and Non-
preemptable code section

 tasks)all(for check single ;1
),min(

max
),min(

)for task (only check by task task ;1
),min(),min(

11

1

≤+

≤+

==

=

∑

∑

ji

j
n

j

n

j jj

j

ii

i
n

j jj

j

pD
b

pD
e

i
pD

b
pD

e

Static Priority Scheduling vs. EDF

• Which one is more popular in the real-time market?
• You can’t beat 100% schedulability, can you? Strangely

enough, static priority scheduling algorithm with
schedulability significantly less than 100% has taken over
the world of real-time computing. Why?

• What prevents EDF becoming popular?
– 1) EDF has small marketing budget and it loses the marketing war.

Sometimes inferior technology wins, isn’t it?
– 2) There is a dark side of EDF.

The Stability Problem

There is a dark side (serious problem) with EDF.

• When a system becomes overloaded and not all the tasks can meet
their deadlines, it is important to keep meeting deadlines of critical
tasks. This is an easy problem for fixed priority scheduling.
Unfortunately, there is no low complexity solution for this problem
under EDF since each job’s priority is changing and it is expensive to
keep track the execution states during runtime.

• Fortunately, in certain applications, the penalty of missing a deadline
can be lessened by application level measures, for example, dropping a
B frame in video is ok. Even in feedback control, there are new results
that “soften” the deadline. So EDF will become more popular.

