Dynamic Priority Scheduling

Overview

e EDF
— optimality (Done!)
— schedulable utilization bound
— time demand analysis

Dynamic-priority scheduling

How to assign Priorities? — we already proved
that assigning priority based on the absolute

deadline is optimal
How to check the schedulability?

Utilization Bound Check

o For agiven algorithm A, we are interested in finding its
schedulability bound (e.g., the schedulability bound of EDF is 1)

YES ; ¥ NO

|
i

Processor utilization factor

« More formally, we want to find the least upper bound U, (A) of
the processor utilization factor

Uy (A) = mrin U, A)

For example, considering the RM algorithm, U, ,(RM) = n (2¥" — 1). Now, we know
how it can be derived.

Quiz: what is the value of U (/; EDF)?

Schedulability of EDF

 Theorem: given a set of n (independent) periodic tasks,
each deadline will be met if and only if the total utilization
of the tasks Is no greater than 1. That Is:
e, e

el+ + ..+ n_< 1]
pl p2 pn

 How in the world can we prove that?

Proving Steps

* Necessity: Schedulable —Total Utilization <1
— Total Utilization > 1 — Not Schedulable: easy!
— How prove?

 Sufficiency: Total Utilization <1 — Schedulable

— Prove that if a job misses deadline, then Total
Utilization >1
— Two cases

e Easy Case
» Difficult Case

Counting Execution Times (Easy Case)

Suppose a job (T,,) misses the deadline = *“sum of executions priortot” >t

Hint: We know that the completion time of a job is the sum of its own execution time
plus the interference due to other jobs with earlier deadline. So let’s count them.

We need to count all the executions of jobs prior to t. The execution time of jobs with
deadlines prior to t is easy to count. So are the execution times of jobs of T, by time t.

el] I | II |] I |]

p———

0 >

At the deadline of T,, at t, the deadline of T,5 is before t and the total
execution of each task can be expressed neatly

() t
T :{ 0 1Jel; T, :L{)—ZJe2

Getting a foothold

If a job (T22) misses the deadline = “sum of executions priortot” >t

: : t—6 t
"Sum of executions prior tot" = L 1Je1 - {—Jez >t

t t
—e +—¢e, >t

P, P2
&+e—2 >1
P P

If a job (T22) misses the deadline = Total Utilization > 1

ell] I |] I |] I |]

— | — —

A t

0 >

Counting Execution

Imes (Difficult Case)

I L

ol

When T,, is sandwiched by the release time and deadline of T,,, we do not have neat

expression of jobs of T, in terms of t.

t
T, :{EJeﬁ*; T, :{

=9 Jez; T,: L—t _p63 Je3
3

» Can we still prove the followings?

— Ifajob (T,,) misses the deadline = “sum of executions priortot” >t

— “sum of executions prior to t” >t = Total Utilization > 1

When you have a hammer

There is who has a hammer. To him, everything looks like
a nail. He uses the hammer for everything.

If you have neat result, call it a lemma (hammer?!). Next,
work hard and transform new situations to one that looks
like a nail, so that you can hammer it with your lemma.

Question: We have a special pattern and we’ve got a neat
result. What should we do when we have a new pattern
with *?

Answer: Transform the new pattern into one that we can
hammer it with our lemma. (Remove *)

Key Facts: Idle Interval Lemma

» An idle interval is terminated by the first arrival of a job labeled here
as t. The schedulability of jobs after t is not affected by jobs before t,
since jobs before t cannot delay the execution of jobs after t.

» Thus, we can choose t as the time 0 for studying the schedulability of
jobs after t.

Key Facts: Busy Interval

*Suppose that we suspect that some job of T2 may miss its deadline at time t. To
keep the time line short and thus things simple, we shall invoke the Idle Time
Lemma.

*From release time of this suspected job, we scan the timeline towards
START_TIME. When we find the last idle interval, I (if any), between
[START_TIME, t], we pick the end of I as the time origin, 0 for schedulability
analysis.

*This interval is known as the (latest) busy interval. All the scheduling history prior
to this busy interval is irrelevant. The notion of (latest) busy interval is very useful
in studies concerning with time line, including scheduling theory and queuing
theory.

s . > t
START _TIME

Idle : B(latest busy interval)

Transform Difficult One to Easy One

fa
0, | | —[
) . . |
0 (origin) >0 (new)

*The fact that * can be executed implies that all jobs with deadlines shorter than t have
been completed before t,. (Why?) ---- Idle Interval

After t,, when the first job with deadline shorter than t shows up, we consider it as

“new 0”. The scheduling history prior to “new 0” can now be ignored. ---- Latest
Busy Interval

*S0 we get back to the old pattern.

Transform Difficult One to Easy One

L. 0,

N
N

6, | —————

v

0 (origin) 0 (new)

So, the scheduling history prior to “new 0” can now be ignored. So we get back to the old

pattern.
T,: {ﬂJel <O0lgnored!; T,: LﬂJez; T,: LLJ%
Py P, Ps

How about N tasks?

 Theorem: Given N independent periodic
tasks with deadline at the end of the period,
every job can meet its deadline provided
that the total utilization is no more than 1.

Time-Demand Analysis
(Alternative way for schedulability check)

e Check iIf Time-Demand i1s smaller than
Time-Supply at all the times.

e Can we check this
— For all possible arrival patterns?
— Infinitely?

Worst-case pattern with EDF

e When EDF is used to schedule a set of tasks on a
processor, if there is an overflow for a certain
arrival pattern, then there is an overflow without

Idle time prior to it in the pattern in which all tasks
are released synchronously.

Worst-case pattern with EDF

L S SO S T B

| deadline miss!

| | —F

I
N | | | | I|

deadline miss!

] I_I | [T ||—| | |
I | | I

e Quiz: what is the difference between the worst-case pattern of
EDF and the critical instance theorem for static priority
scheduling algorithms?

Finite Check

* The schedulability of a task set scheduled according to
EDF can be checked by analyzing the worst-case
pattern (synchronous release times) and verifying if
any deadline is missed within [0, min(idle time,
Hyperperiod)]

e Why?

Time-demand approach

A set of periodic tasks is schedulable by EDF if and only if forall L, 0 <L
< min[idle time, Hyperperiod],

Processor demand within [0, L]
| L
L > D[0, L] = ZL_J'G‘
i-1 | P

—=2—deadline miss!

I_I 1] 111 1

v v

v

Quiz:do we really need to check the processor demand “for every L”?

Class exercise 1

Suppose that we have 3 tasks with the following periods and execution
times:

- {T,(p,=7,¢=2), T,(p,=4,6,=3), T3 (p; =14, e;=2)}

— The task set utilization is U=1.18 > 1
— Let’s apply the processor demand approach!

~ L=4>D[0,4]=3<L

— L=7D[0, 7] =772+ 7143+ 7/114%2=5< L

— L=8->DI[0,8] =8/72+|8/43+]8/14*2=8=L

— L=129D[0, 12] = 12/7 2 + [12/4*3 + | 12/14 P2 =11 < L
— L=14>DI[0, 14] =[14/7*2 + | 14/4*3 + [14/14*2 = 15 > L
— We got DJ0, 14] > 14 =» we found the deadline miss!

‘Wdeadline‘[niss!
TlT — T 1] T

) S [SN e S

v

v

v

Time-demand approach (proof)

* Proof:
The theorem is proved by showing that the processor demand equation is
equivalent to the classical schedulability condition:

U=Y%<1 o LZZ‘&JE‘

i1 P

Hence, first of all, we prove that:

U =Zn:i31 = LzZ{LJ-ei

i—1 P i

If U<1,thenforall L (L>0),

LZULzziei > {LJ-ei

i1 P; i1 | P

Processor demand approach

Then, we prove that:

U=Y%<1 = in[ﬂ-ei
i-1 | P;

i1 P;

we prove it by contradiction; hence, suppose that U > 1, there exists a L > 0 such that
L < D[O, L]

if U> 1, then for L = lcm(p,,p,,....Pp,),

L<UL=Zn:£ei=Zn:[LJ-ei

i—1 P i—1 F.

Why time-demand analysis 1s useful ?

The processor demand approach is an alternative way for checking the

schedulability of a task set under EDF.

Well, we already have the U < 1 as schedulability condition; way do we

need another equivalent test?

Answer: the processor demand approach is more powerful and it allows to

determine the schedulability when the classical condition cannot be applied.

An example: task sets with deadlines less then periods!

I

‘]11

a

‘]12

i

‘]13

i

[
»

0
(Power On)

6,

dy; 0,+py

dy, 0,+2%p,

di3 0,+3*p,

EDF with deadlines less than periods

* How can we compute the processor demand D[0, L] when D; < p;?

sl v I I I e O B v I e

.. L
-« Quiz: is it correct to use the already known formula? D[O0,L] = Z{FJ-ei
i=1 | Mi

EDF with deadlines less than periods

e I v 0 O I e I B v

3 10 18 20 28 | 30 38 40

O (origin) 6 (new)

First step: we shift the interval origin by a D amount. So we get:

D[o,L]:zn:LL‘DiJ.ei

=) i

However, the first task instance remains outside of the processor demand;
we fix it by adding 1

EDF with deadlines less than periods

e I v 0 O I e I B v

3 10 18 20 28 | 30 38 40

O (origin) 6 (new)

o A set of periodic tasks with deadlines less than periods is schedulable by
EDF if and only if forall L, 0 <L < min[idle time, Hyperperiod],

352

Class exercise 2

e Suppose that we have 2 tasks with the following periods, relative deadlines and
execution times:

{T,(p,;=4,D,=3,¢,=2), T, (p,=6,D,=5e,=3)}

The task set utilization is U=1
Is the task set schedulable?
Let’s apply the processor demand approach!

L =5=> D[0, 5] = (L(5-3)/4] +1)*2 + (L(5-5)/6] +1)*3=5=L
L =7 D[0, 7] = (L(7-3)/4] +1)*2 + ((7-5)/6] +1)*3=7 =L
L =11 DI[0, 11] = (L(11-3)/4] +1)*2 + (L(11-5)/6] +1)*3=12> L
We got D[0, 11] > 11 =>» we found a deadline miss!
deadline miss!

‘ T I 1

g ™
b
o
|_A
|_A
N>

Summary

« All of the above schedulability check works only under limited
conditions

— Preemptable at any time
— Context switch overhead is negligible

— Scheduling decision is made immediately upon jobs release and
completion

» Practical Issues
— What if the deadline is earlier than the period?
— What if there is a non-preemptable code section (e.g., system call)?
— What if the context switch overhead is not negligible?
— Tick scheduling?

EDF with deadlines less than periods

* Quiz: can you find an easy but sufficient schedulability
condition for a task set with deadlines less than periods?

D, <p,
ne;+p;—D
= P;
ne. _
> —L<1; decrease period
m D

L <1: increase execution time

Non-preemptable code section

* a non-preemptable code section (NPS) of a low priority
task blocks high priority task

— How to take this into account in utilization bound check?

Theorem : Only job J, with longer relative deadline D,
can block a job J; with shorter relative deadline D,

b, =max NPS, /*D, < D, if i <k*/

j=i+1

> Ly b 1; task by task check (only for task i)
i1 P B

n @ n b :
Z_J +max—- <1; single check (for all tasks)
I

Earlier deadline and Non-
preemptable code section

Z b <1; task by task check (only for task i)
Jlmln(D p) min(D,, p,)

e. n b.
Z ’ +max —— <1: single check (for all tasks)
i min(D;, p;) = min(D;, p;)

Static Priority Scheduling vs. EDF

« Which one is more popular in the real-time market?

e You can’t beat 100% schedulability, can you? Strangely
enough, static priority scheduling algorithm with
schedulability significantly less than 100% has taken over
the world of real-time computing. Why?

* What prevents EDF becoming popular?

— 1) EDF has small marketing budget and it loses the marketing war.
Sometimes inferior technology wins, isn’t it?

— 2) There is a dark side of EDF.

The Stability Problem

There is a dark side (serious problem) with EDF.

When a system becomes overloaded and not all the tasks can meet
their deadlines, it is important to keep meeting deadlines of critical
tasks. This is an easy problem for fixed priority scheduling.
Unfortunately, there is no low complexity solution for this problem
under EDF since each job’s priority is changing and it is expensive to
keep track the execution states during runtime.

Fortunately, in certain applications, the penalty of missing a deadline
can be lessened by application level measures, for example, dropping a
B frame in video is ok. Even in feedback control, there are new results
that “soften’ the deadline. So EDF will become more popular.

