Chapter 6. Single-parameter Disaggregated Models

Nguyen Minh Y

Contents

- 6.1. A model with discrete types
- 6.2. Model with one-dimensional types
- 6.3. Two-part tariffs
- 6.4. Multipart tariffs
- 6.5. Nonlinear tariff
- 6.6. Examples

- Gross benefit: $U_i(q)$
- Net benefit: $U_i(q) P(q)$
- Firm's profit contribution

Profit Contribution =
$$\sum_{i=1}^{m} f_i \cdot [P(q_i) - C(q_i)]$$

Constraints

- \square Participation constraint $U_i(q_i) P(q_i) \ge U_i(0) P(0) \equiv 0$.
- □ Compatibility constraint

$$U_i(q_i) - P(q_i) \ge U_i(q_j) - P(q_j),$$
 for each $j \ne i$.

- Characterization of an optimal tariff
 - 1. If P_i ; $q_i \ge 0$, type i is an active customer. Then:

$$v_i(q_i) - c(q_i) = \sum_{j \neq i} \lambda_{ji} \frac{f_j}{f_i} [v_j(q_i) - v_i(q_i)],$$

2. If type i's net benefit is positive, participation constraint is not binding. Then:

$$f_i = \sum_{j \neq i} [\lambda_{ij} f_i - \lambda_{ji} f_j].$$

- Assumption: an active customer type i only binding incentive-compatibility constraint is the one for type j=i-1
- OR: λ_{ij} is positive only for j=i -1

■ Def.

$$\hat{\lambda}_i = f_i \lambda_{i,i-1}$$

$$\hat{\lambda}_i - \hat{\lambda}_{i+1} = f_i \,, \qquad \text{and} \qquad \hat{\lambda}_{m+1} = 0 \,,$$

$$\hat{\lambda}_i = \bar{F}_i$$
, where $\bar{F}_i \equiv \sum_{j \geq i} f_j$.

■ Then:

$$v_i(q_i) = c(q_i) + \frac{\bar{F}_{i+1}}{f_i} [v_{i+1}(q_i) - v_i(q_i)].$$

Other form:

$$P_i = P_{i-1} + U_i(q_i) - U_i(q_{i-1}),$$

$$[v_i(q_i) - c(q_i)]\bar{F}_i = [v_{i+1}(q_i) - c(q_i)]\bar{F}_{i+1}.$$

 $p_i = v_i(q_i)$ is optimal marginal price

M

6.1. A model with discrete types

Extension to a continuum of types

$$v(q(t), t) = c(q(t)) + \frac{\bar{F}(t)}{f(t)} \cdot \frac{\partial v}{\partial t}(q(t), t).$$

- Marginal cost : c = 0
- Hazard rate: $f(t)/\bar{F}(t)$ is increasing
- $v_t(q,t)/v(q,t)$ is decreasing in t but increasing in q.

6.2. Model with one-dimensional types

■ Net benefit:

$$U_i(q) - P(q)$$

6.2. Model with one-dimensional types

Connection to the demand-profile formulation

$$N(p,q) = \#\{t \mid v(q,t) \ge p\} = \#\{t \mid D(p,t) \ge q\},\$$

- Customer's rank: r = F(t)
- Refer to section 4. Condition for profit-maximizing

$$N(p,q) + N_p(p,q) \cdot [p-c] = 0$$

Equivalent condition is expressed:

$$\tilde{F}(t) - [f(t)/v_t(q,t)][v(q,t)-c] = 0$$
,

- Uniform price + fixed fee
- Def. t* is lowest type of customer among subscriber. (market penetration)
- Profit contribution

$$PS = P \cdot \bar{F}(t_*) + [p - c] \cdot \int_{t_*}^{\infty} D(p, t) dF(t).$$

Customer's surplus

$$\int_{p}^{\infty} D(\pi,t) d\pi - P.$$

In type t^* , CS = 0 then:

$$P = \int_{p}^{\infty} D(\pi, t_*) d\pi.$$

- Profit maximizing monopoly
 - □ Condition for optimal choice of price

$$\frac{p-c}{p} = \frac{1}{\bar{\eta}(p, t_*)} \left[1 - \bar{F}(t_*) \frac{D(p, t_*)}{\bar{D}(p, t_*)} \right].$$

■ Where

$$\bar{D}(p,t_*)=\int_{t_*}^{\infty}D(p,t)\,dF(t)$$
 and
$$\bar{\eta}(p,t_*)=-p\bar{D}_p(p,t_*)/\bar{D}(p,t_*)$$

□ Ordinary uniform pricing

$$\frac{p-c}{p} = \frac{1}{\bar{\eta}(p, t_*)}$$

Regulated monopoly

Objective fun =
$$CS + [1 + \lambda]PS$$
,

□ Condition for optimal choice of price

$$\frac{p-c}{p} = \frac{\alpha}{\bar{\eta}(p, t_*)} \left[1 - \bar{F}(t_*) \frac{D(p, t_*)}{\bar{D}(p, t_*)} \right].$$

□ Ordinary uniform pricing

$$\frac{p-c}{p} = \frac{\alpha}{\bar{\eta}(p,t_*)} \,,$$

■ Exp. 6-1

Demand fun. D(p,r) = r.[A-p]/B. then

$$P = \frac{r_*}{2B}[A - p]^2$$
 so $r_*(P) = 2BP/[A - p]^2$

Profit =
$$\frac{1}{2}[p-c][A-p][1-r_*(P)^2] + P[1-r_*(P)]$$
.

The two-part tariff that maximizes this profit is:

 $p = c + \frac{1}{2}[1 - r_*][A - c],$ and $P = \frac{r_*}{2B}[A - p]^2,$ where $r_* = \frac{5}{4} - \sqrt{17/16} \approx 1 - 0.78078$.

Table 6.1 Example 6.1: Optimal Two-Part Tariffs

c/A	p/A	$10 \times PB/A^2$	Pft/A^2
.00	.39	.407	.15
.10	.45	.330	.12
.20	.51	.261	.09
.30	.57	.200	.07
.40	.63	.147	.05
.50	.70	.102	.04
.60	.76	.065	.02
.70	.82	.037	.01
.80	.88	.016	.01
.90	.94	.004	.00
1	1	0	0

$$P = \frac{r_*}{2B}[A - p]^2,$$

- The optimality condition as an average
 - ☐ The optimality condition for the marginal price

$$\int_{t_*}^{\infty} \left[[p-c] \cdot D_p(p,t) + \alpha \frac{\bar{F}(t)}{f(t)} \cdot D_t(p,t) \right] dF(t) = 0.$$

☐ The optimality condition for the marginal types

$$\int_{p}^{\infty} \left[\left[\pi - c \right] \cdot D_{p}(\pi, t_{*}) + \alpha \frac{\bar{F}(t_{*})}{f(t_{*})} \cdot D_{t}(\pi, t_{*}) \right] d\pi = 0,$$

- Equivalent to the menu of optional two-part tariffs
- n-1 two-part tariffs, in order $P_i < P_{i+1}$ and $p_i > p_{i+1}$ ($P_0 = 0$ and $p_0 = \inf$.)

$$PS_i(t) = [p_i - c] \cdot D(p_i, t) + P_i, \qquad CS_i(t) = \int_{p_i}^{\infty} D(p, t) dp - P_i,$$

Aggregates:

$$PS = \sum_{i=1}^{n-1} \int_{t_i}^{t_{i+1}} PS_i(t) dF(t), \qquad CS = \sum_{i=1}^{n-1} \int_{t_i}^{t_{i+1}} CS_i(t) dF(t).$$

Condition that type t_i is indifferent between the tariff i or i+1, is $CS_i(t_i) = CS_i(t_{i+1})$. Then

$$P_i - P_{i-1} = \int_{p_i}^{p_{i-1}} D(p, t_i) dp$$
.

$$P_i = P_o + \sum_{j \le i} \int_{p_j}^{p_{j-1}} D(p, t_j) dp$$

Fig. 6.7 A block-declining price schedule. Due to the increment $P_i - P_{i-1}$ in the fixed fee, type t_i is indifferent between the two-part tariffs $\langle P_{i-1}, p_{i-1} \rangle$ and $\langle P_i, p_i \rangle$.

Ramsey pricing: Objective fun.

$$\sum_{i=1}^{n-1} \left\{ \int_{t_i}^{t_{i+1}} \left(\int_{p_i}^{\infty} D(p,t) \, dp + [1+\lambda][p_i - c] \cdot D(p_i,t) \right) \, dF(t) + \lambda \tilde{F}(t_i) \int_{p_i}^{p_{i-1}} D(p,t_i) \, dp \right\} \, .$$

□ Condition for the optimal marginal price p_i

$$\int_{t_i}^{t_{i+1}} \left\{ [p_i - c] \cdot D_p(p_i, t) + \alpha \frac{\bar{F}(t)}{f(t)} \cdot D_t(p_i, t) \right\} dF(t) = 0.$$

 \square Condition for the optimal boundary type t_i

$$\int_{p_i}^{p_{i-1}} \left\{ [p-c] \cdot D_p(p,t_i) + \alpha \frac{\bar{F}(t_i)}{f(t_i)} \cdot D_t(p,t_i) \right\} dp = 0.$$

■ Exp.6-2

- D(p,t) = t[1-p], type uniformly distributed
- $\alpha = 1$: c = 0. Then $p_i = 1 [t_i + t_{i+1}]/2$ and $t_i = 1 [p_i + p_{i-1}]/2$.
- Boundary condition: $t_n = 1$; $p_0 = 1$. Then

$$t_i = \frac{i - .5}{n - .5}$$
 and $p_i = 1 - \frac{i}{n - .5}$. so.3

$$P_i = \frac{1}{3} \cdot \frac{[i - .5]i[i + .5]}{[n - .5]^3} .$$

$$PS(n) = \frac{1}{6} \cdot \left[1 - \frac{1}{4(n-.5)^2} \right].$$

Fig. 6.8 The optimal nonlinear, 5-part, and two-part tariffs for Example 6.2.

- A demand-profile formulation
 - □ Consumer's surplus is in section 5. Producer's surplus:

$$\mathrm{PS} = \sum_{i=1}^{n-1} \left\{ N(p_i, q_i) \cdot \int_{p_i}^{p_{i-1}} q(p; p_i, q_i) \, dp + [p_i - c] \cdot \int_{q_i}^{r_i} q \, dN(p_i, q) \right\} \, ,$$

 \square Condition for the optimal marginal price p_i

$$\int_{q_i}^{r_i} \{ \alpha N(p_i, q) + N_p(p_i, q) \cdot [p_i - c] \} dq = 0,$$

 \square Condition for the optimal boundary type t_i

$$\int_{p_i}^{p_{i-1}} \left\{ \alpha N(p, q_i) + N_p(p, q(p; p_i, q_i)) \cdot [p - c] \right\} dp = 0,$$

6.5. Nonlinear tariff p(t)

Producer's surplus

$$PS = \int_0^\infty [p(t) - c] \cdot D(p(t), t) dF(t) - \int_0^\infty \overline{F}(t) \cdot D(p(t), t) dp(t),$$

- $\mathbf{p}(t)$ is the limit of the price \mathbf{p}_i
- \bullet t_i is the limit of market segment boundary t_i .
- Customer's surplus

$$W(p,t) = \int_{p}^{\infty} D(p,t) dp$$

6.5. Nonlinear tariff p(t)

- Ramsey pricing problem:
 - □ Objective fun.

$$\int_{0}^{\infty} \{ [W(p(t), t) + [1 + \lambda][p(t) - c] \cdot D(p(t), t)] f(t) - \lambda \bar{F}(t) \cdot D(p(t), t) p'(t) \} dt,$$

 \square Euler necessary condition for the optimal p(t)

$$[p(t) - c] \cdot D_p(p(t), t) f(t) + \alpha \bar{F}(t) \cdot D_t(p(t), t) = 0,$$

6.6. Some example