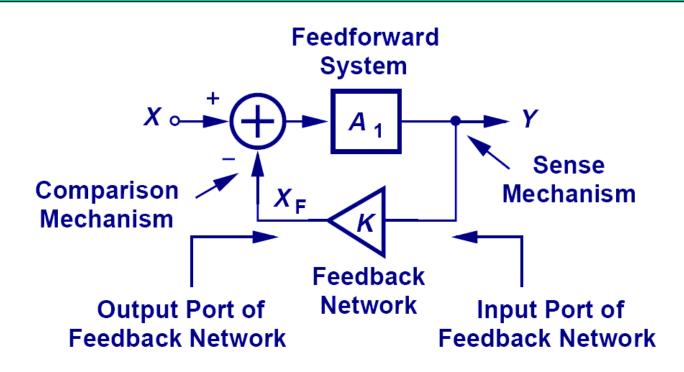
Chapter 12 Feedback

- **12.1 General Considerations**
- 12.2 Properties of Native Feedback
- > 12.3 Types of Amplifiers
- 12.4 Sense and Return Techniques
- > 12.5 Polarity of Feedback
- > 12.6 Feedback Topologies

- > 12.7 Effect of Finite I/O Impedances
 - **12.8 Stability in Feedback Systems**

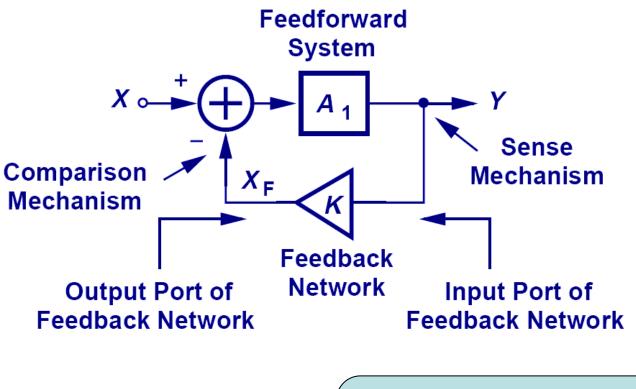
Negative Feedback System



- > A negative feedback system consists of four components:
- 1) feedforward system
- 2) sense mechanism
 - 3) feedback network
 - 4) comparison mechanism

 $\mathbf{\mathbf{b}}$

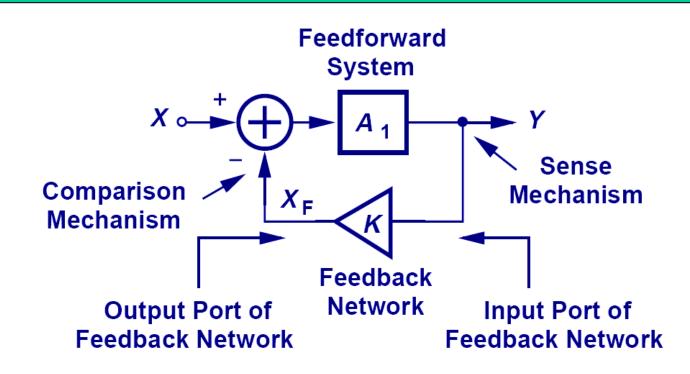
Close-loop Transfer Function



$$\left(X_{F} = KY \right)$$

$$Y = A_1(X - X_F)$$
$$= A_1(X - KY)$$

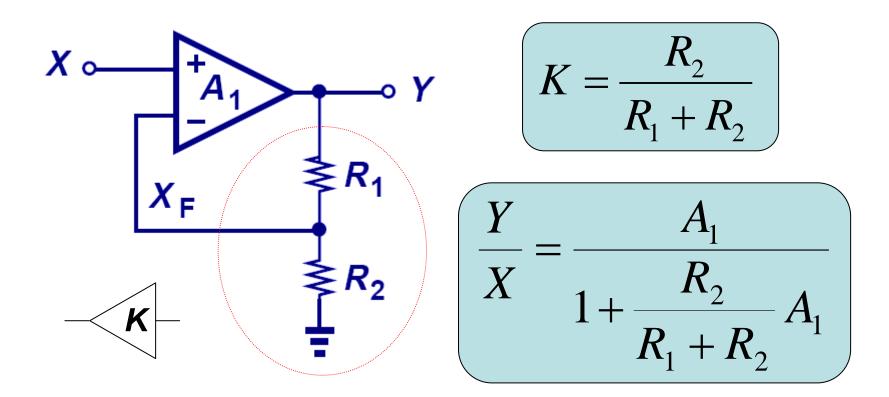
Close-loop Transfer Function



$$Y = A_1(X - KY)$$
$$Y + A_1KY = A_1X$$

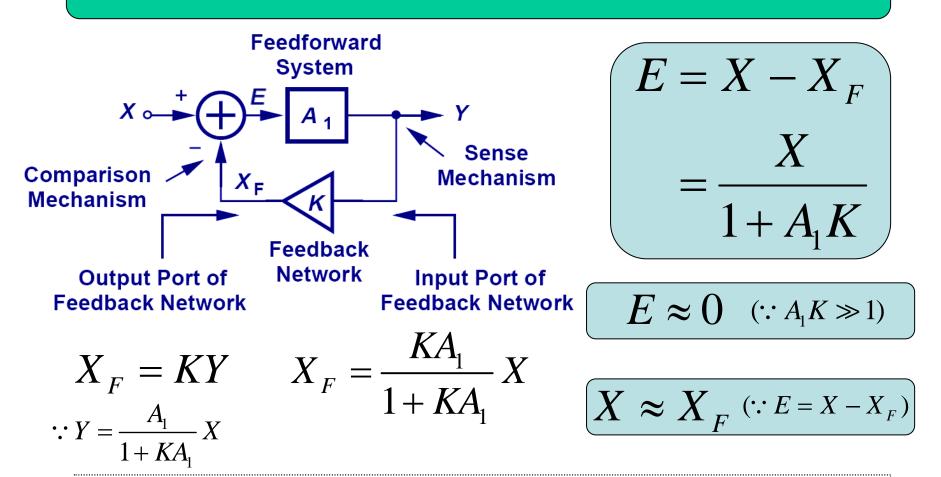
$$\boxed{\frac{Y}{X} = \frac{A_1}{1 + KA_1}}$$

Example 12.1: Feedback



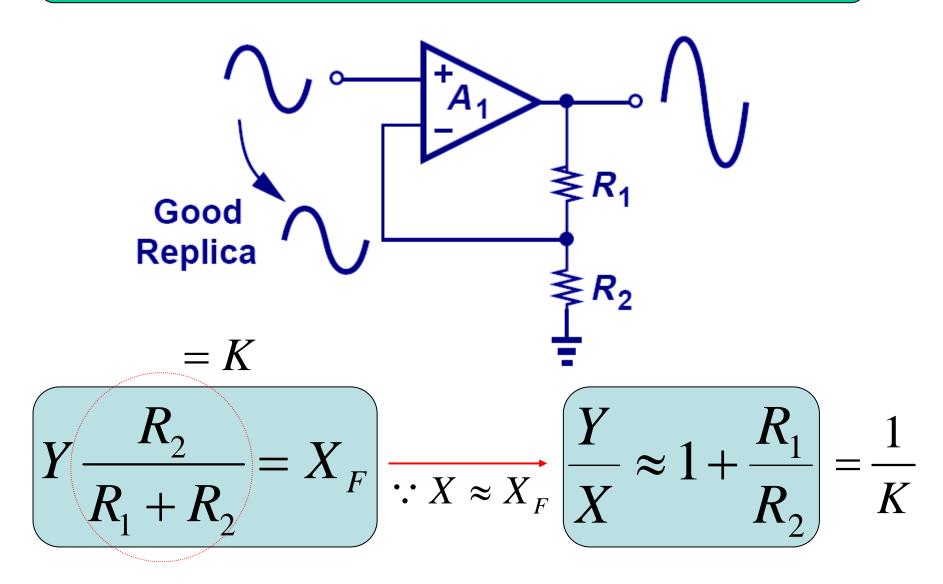
A₁ is the feedforward network, R₁ and R₂ provide the sensing and feedback capabilities, and comparison is provided by differential input of A₁.

Comparison Error

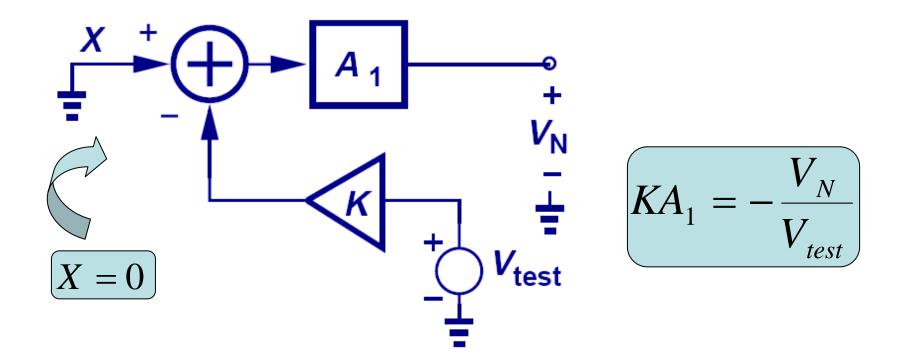


As A₁K increases, the error between the input and feedback signal decreases. Or the feedback signal approaches a good replica of the input.

Comparison Error

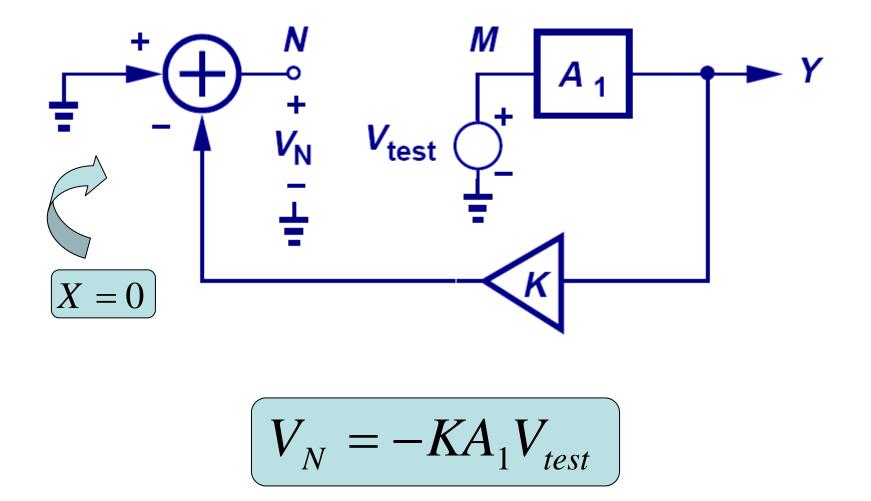


Loop Gain

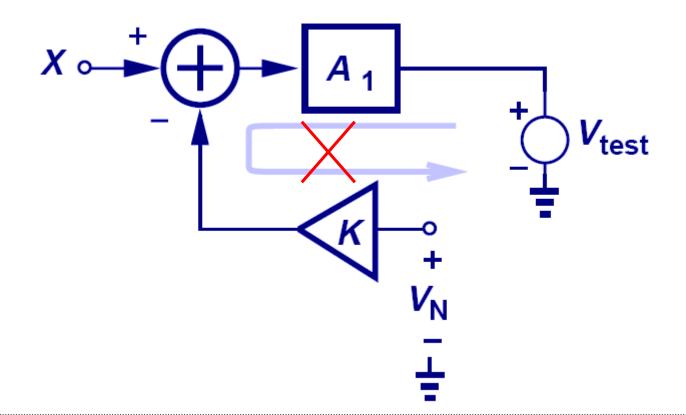


When the input is grounded, and the loop is broken at an arbitrary location, the loop gain is measured to be KA₁.

Example 12.3: Alternative Loop Gain Measurement

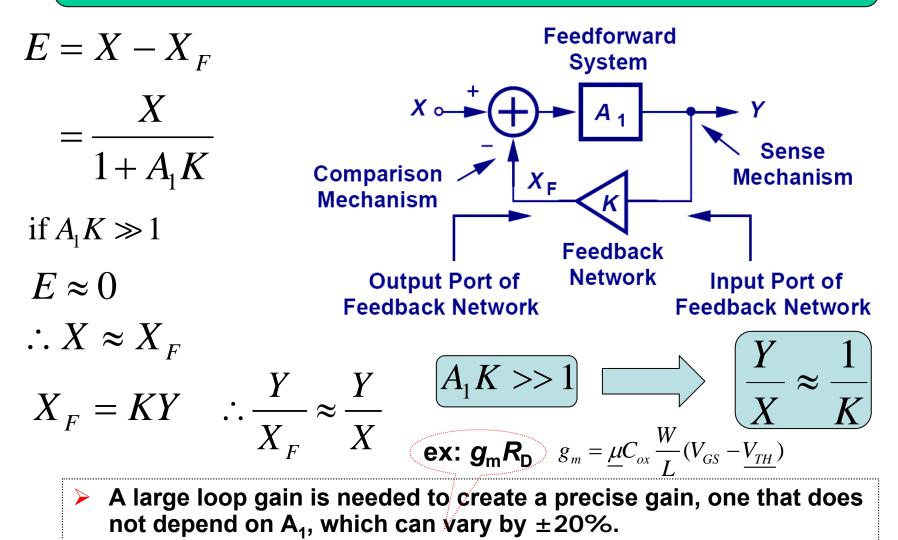


Incorrect Calculation of Loop Gain



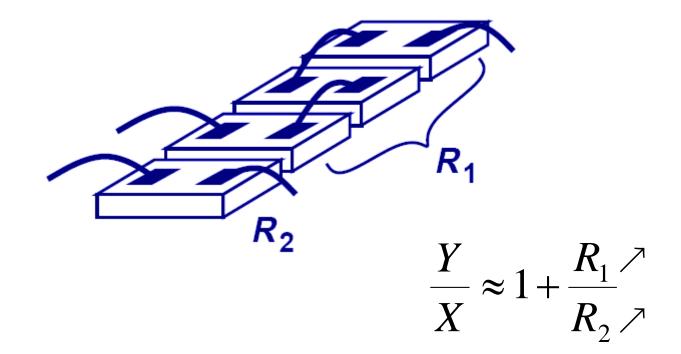
Signal naturally flows from the input to the output of a feedforward/feedback system. If we apply the input the other way around, the "output" signal we get is not a result of the loop gain, but due to poor isolation.

Gain Desensitization



Fabrication process and temperature give some effect on the gain.

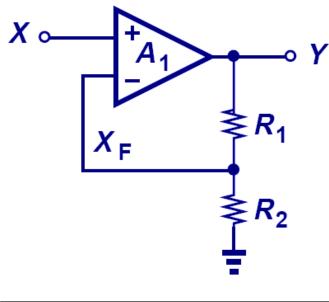
Ratio of Resistors



When two resistors are composed of the same unit resistor, their ratio is very accurate. Since when they vary, they will vary together and maintain a constant ratio.

Example 12.4: Gain Desensitization

> Determine the actual gain if A_1 =1000. Determine the percentage change in the gain if A_1 drops to 500.



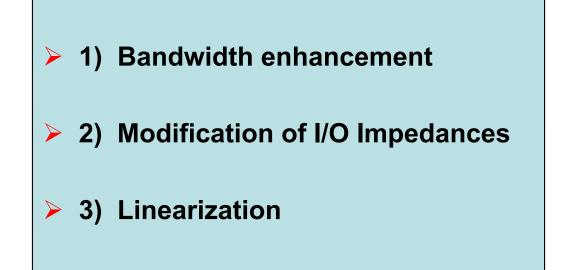
Nominal gain
$$\frac{1}{K} = 4$$

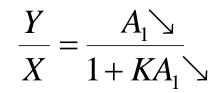
$$\frac{Y}{X} = \frac{A_1}{1 + A_1 K}$$

$$\frac{Y}{X} = 3.984 \ (A_1 = 1000)$$

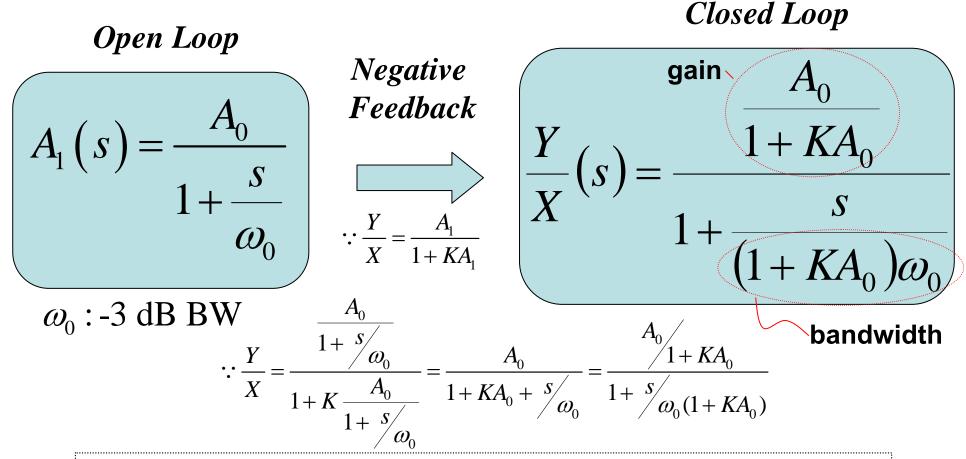
$$\left(\frac{Y}{X} = 3.968 \ (A_1 = 500) \\ -0.4\% \ drop \right)_{13}$$

Merits of Negative Feedback



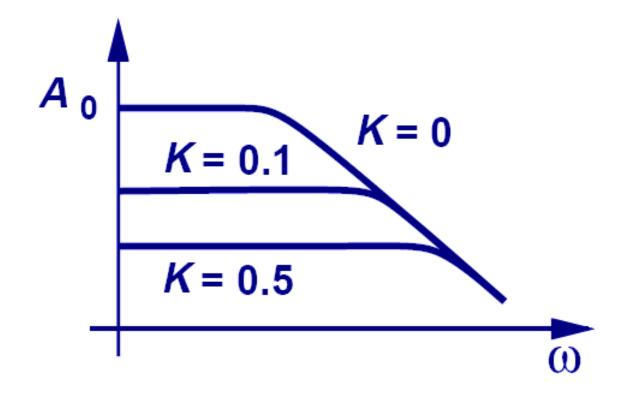


Bandwidth Enhancement



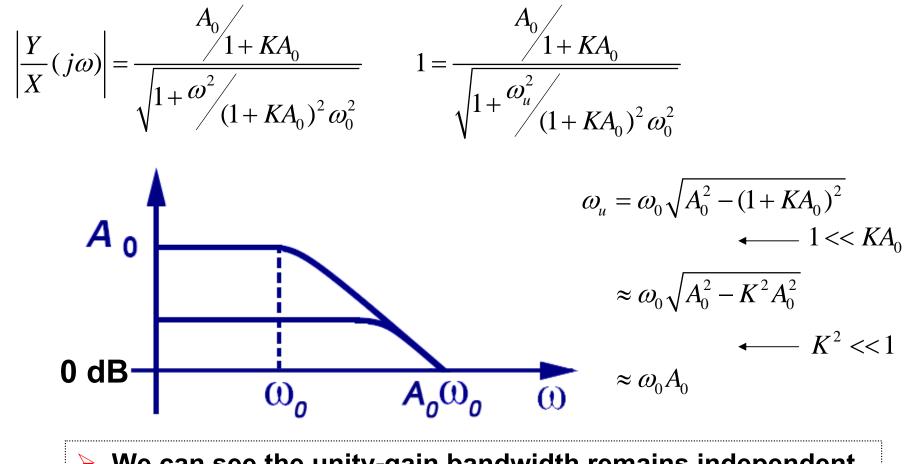
Although negative feedback lowers the gain by (1+KA₀), it also extends the bandwidth by the same amount.

Bandwidth Extension Example



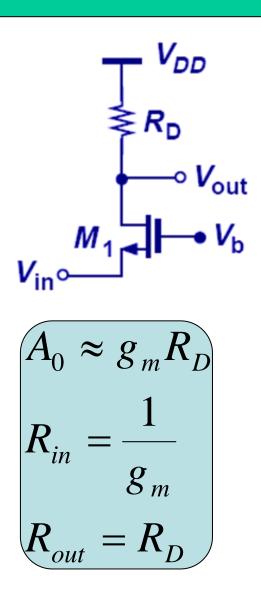
As the loop gain increases, we can see the decrease of the overall gain and the extension of the bandwidth.

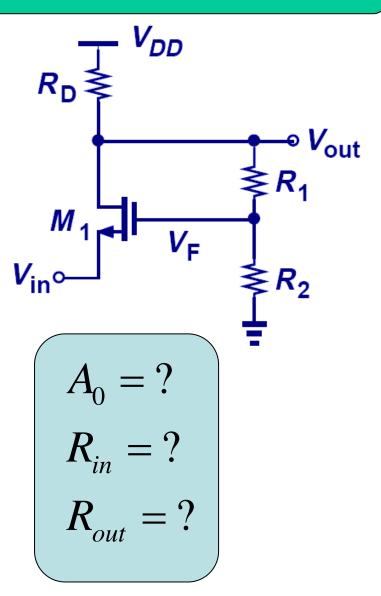
Example 12.6: Unity-gain bandwidth



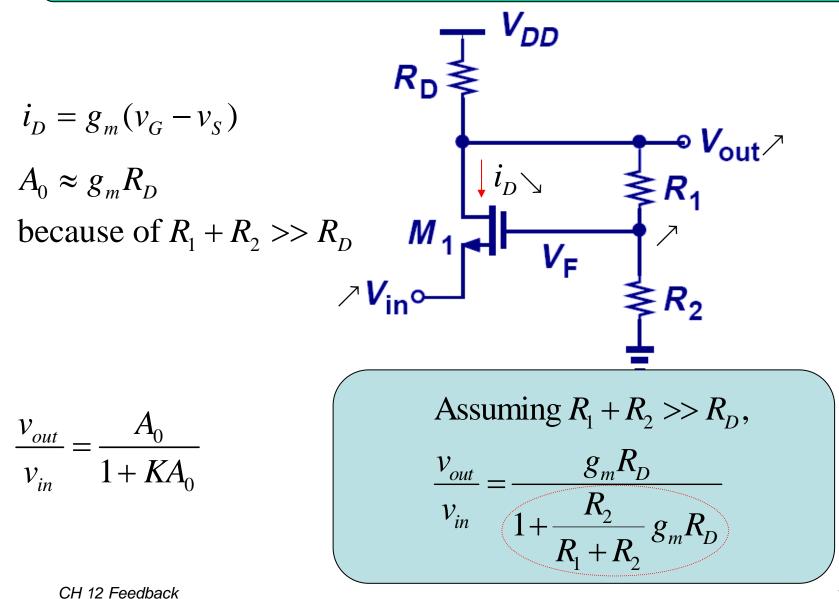
We can see the unity-gain bandwidth remains independent of K, if KA₀ >>1 and K²<<1</p>

Example12.7: Open Loop Parameters

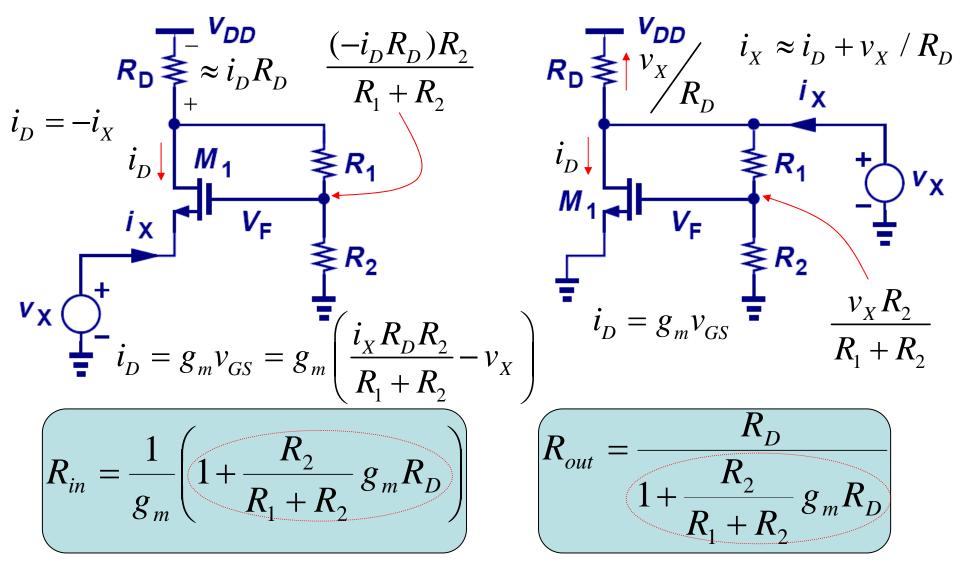




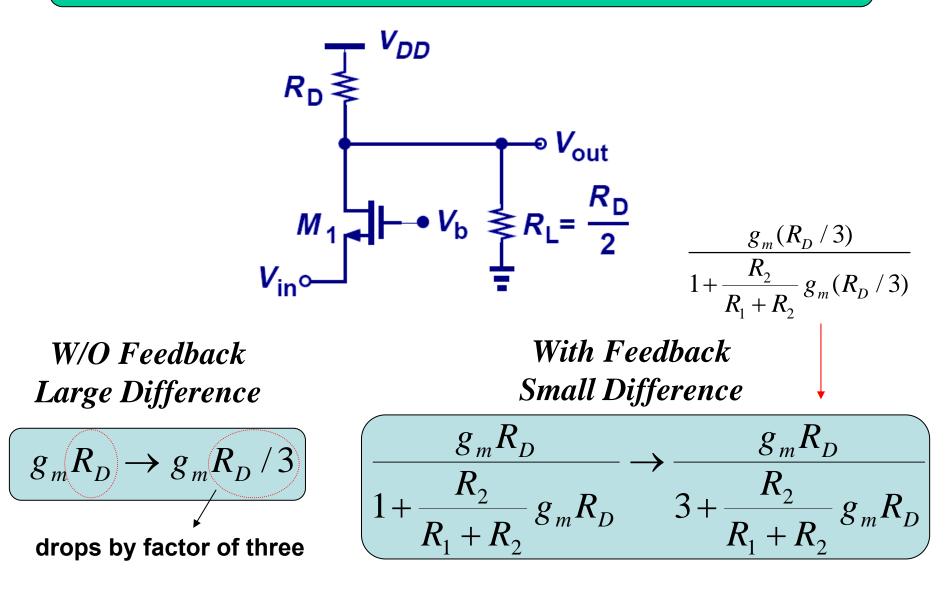
Example12.7: Closed Loop Voltage Gain



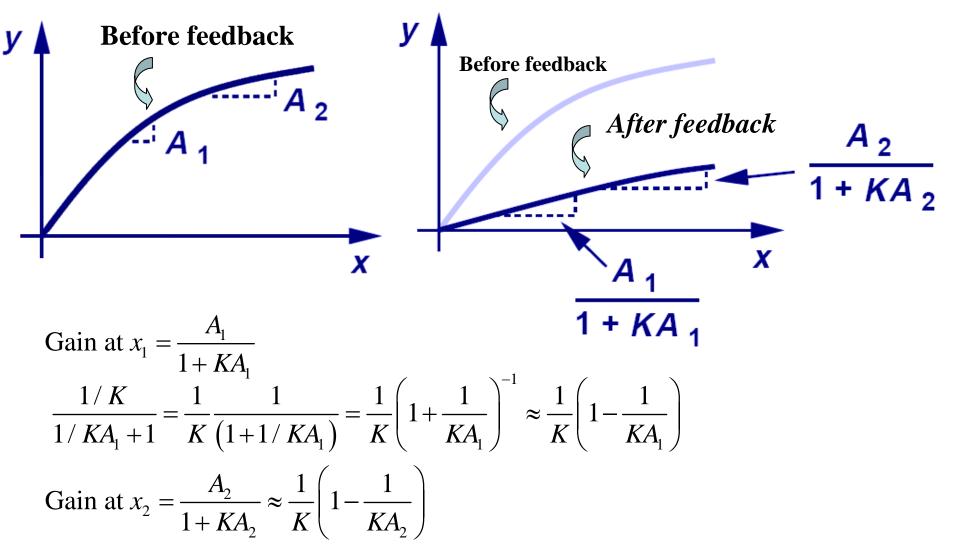
Example12.7: Closed Loop I/O Impedance

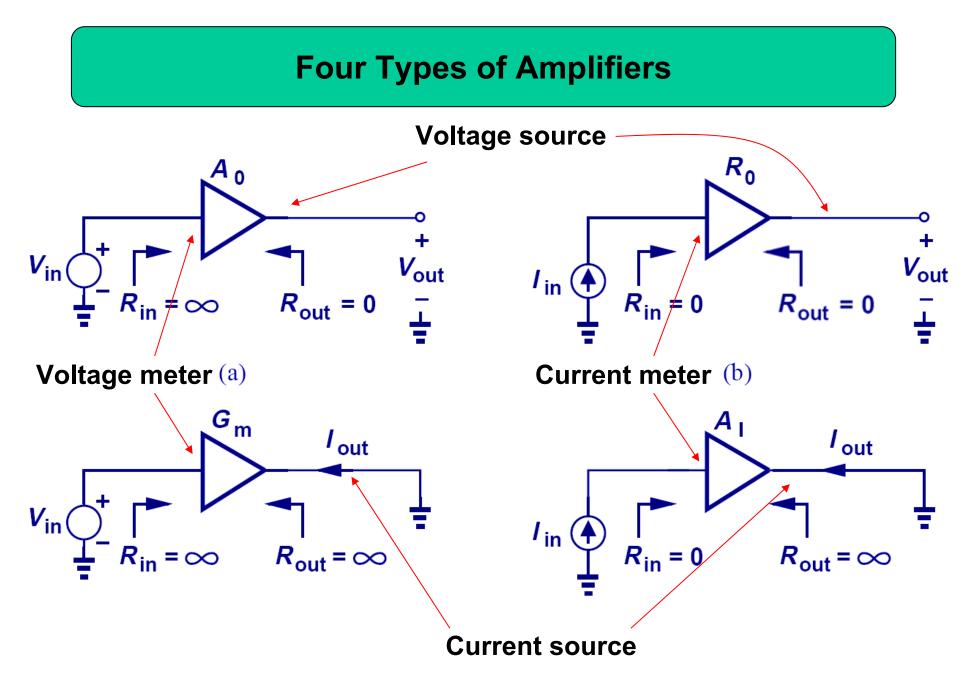


Example: Load Desensitization

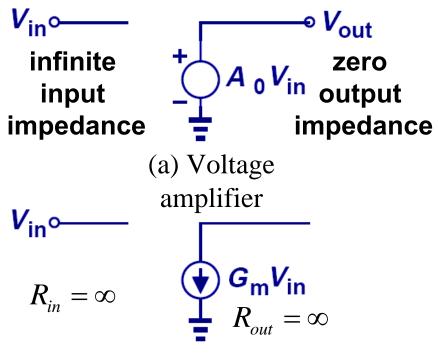


Linearization

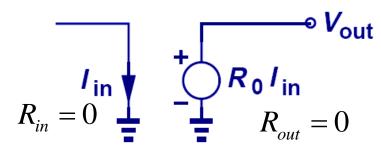




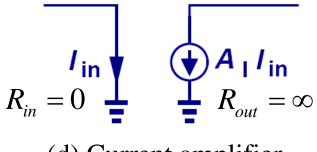
Ideal Models of the Four Amplifier Types



(c) Transconductance amplifier

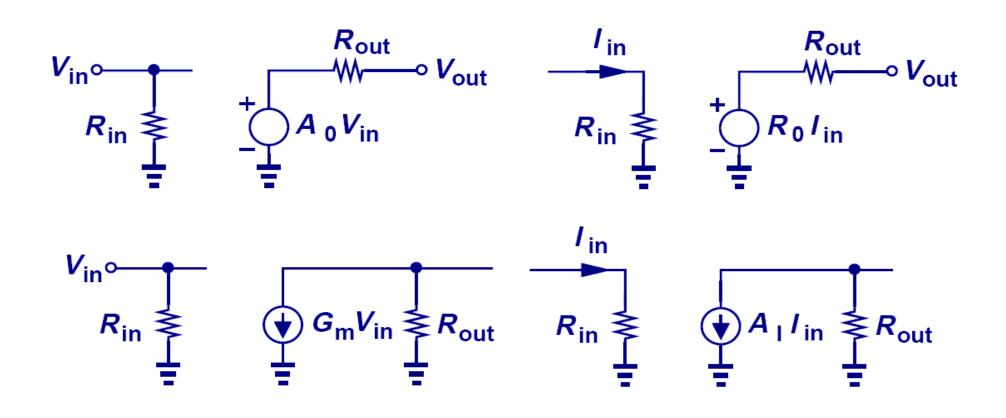


(b) Transresistance amplifier

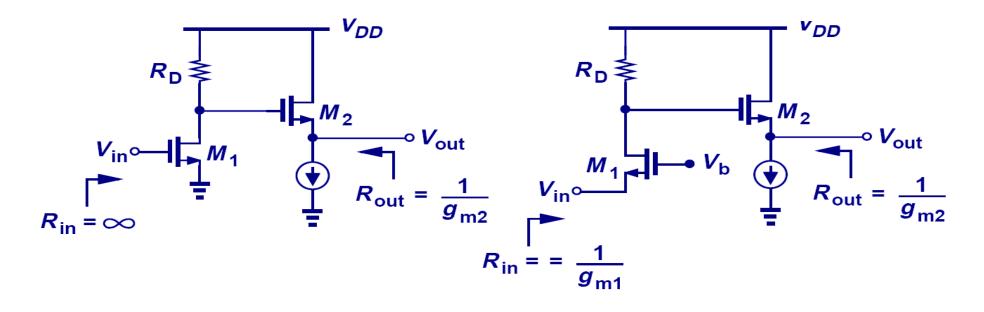


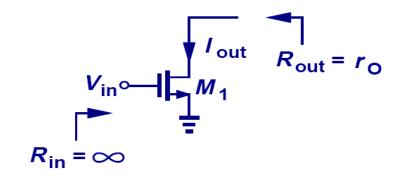
(d) Current amplifier

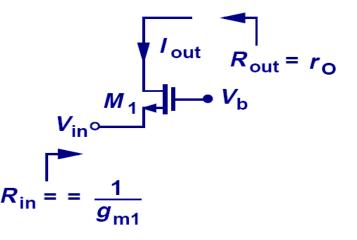
<u>Realistic</u> Models of the Four Amplifier Types



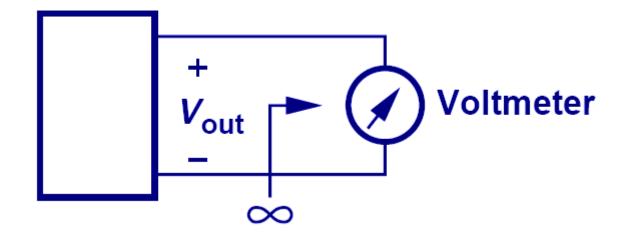
Examples of the Four Amplifier Types





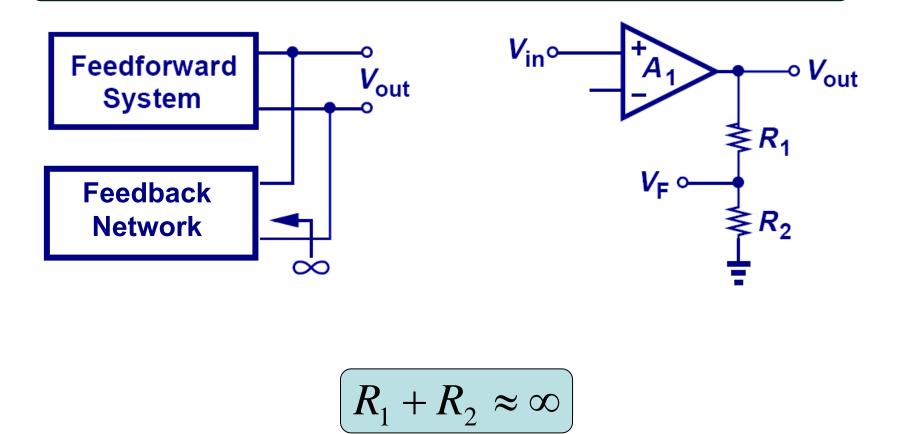


Sensing a Voltage



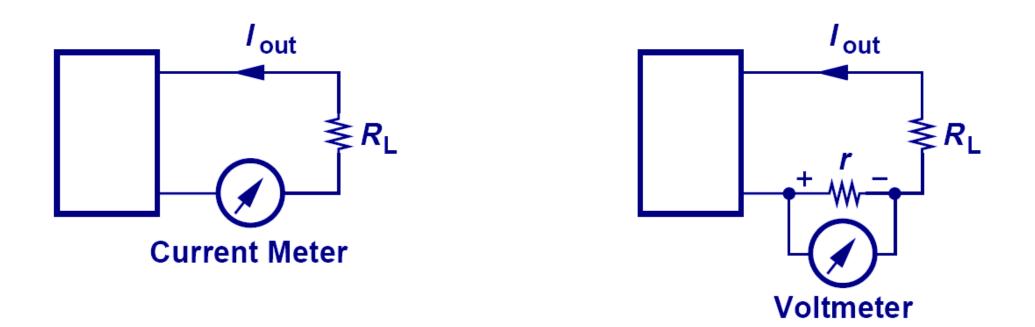
In order to sense a voltage across two terminals, a voltmeter with ideally infinite impedance is used.

Sensing and Returning a Voltage

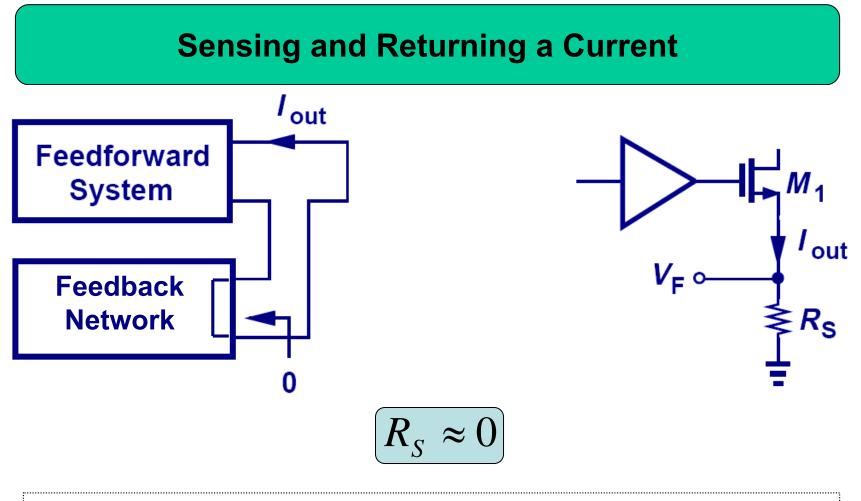


Similarly, for a feedback network to correctly sense the output voltage, its input impedance needs to be large.
 R₁ and R₂ also provide a means to return the voltage.

Sensing a Current

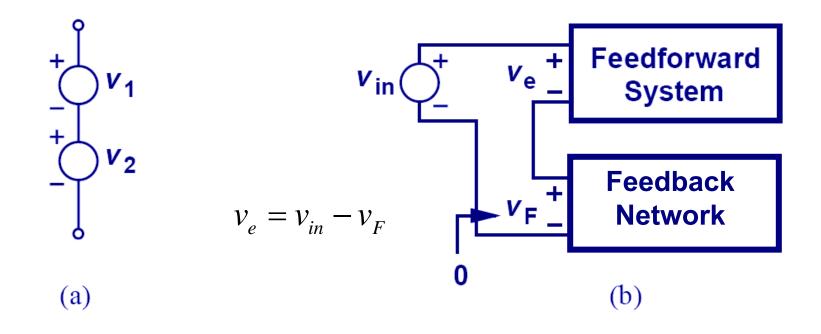


- A current is measured by inserting a current meter with ideally zero impedance in series with the conduction path.
- The current meter is composed of a small resistance r in parallel with a voltmeter.



- Similarly for a feedback network to correctly sense the current, its input impedance has to be small.
- R_S has to be small so that its voltage drop will not change I_{out}.

Addition of Two Voltage Sources

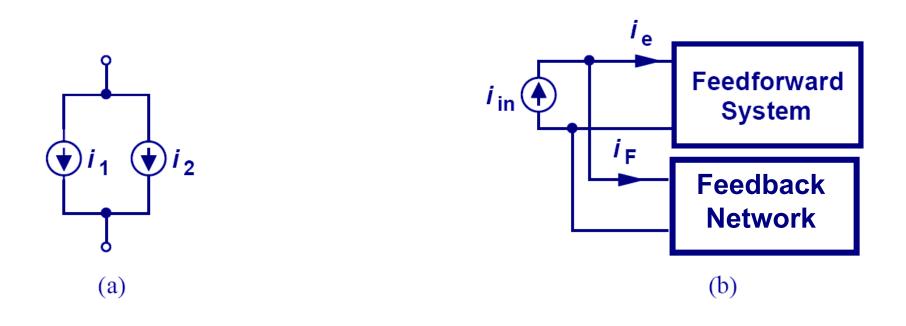


In order to add or substrate two voltage sources, we place them in series. So the feedback network is placed in series with the input source.

Practical Circuits to Subtract Two Voltage Sources

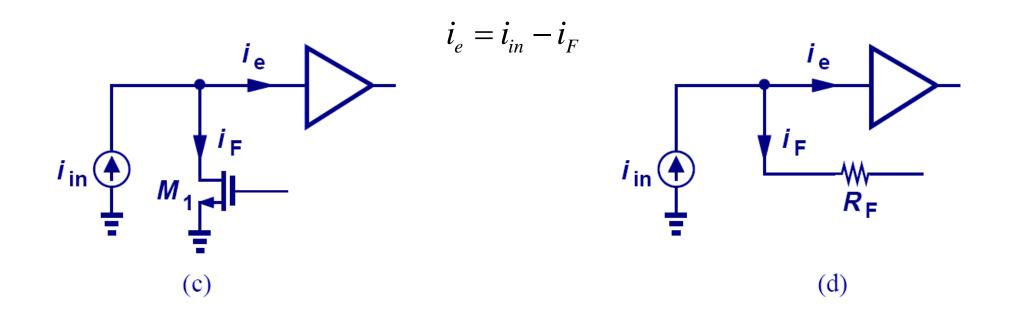
Although not directly in series, V_{in} and V_F are being subtracted since the resultant currents, differential and single-ended, are proportional to the difference of V_{in} and V_F.

Addition of Two Current Sources



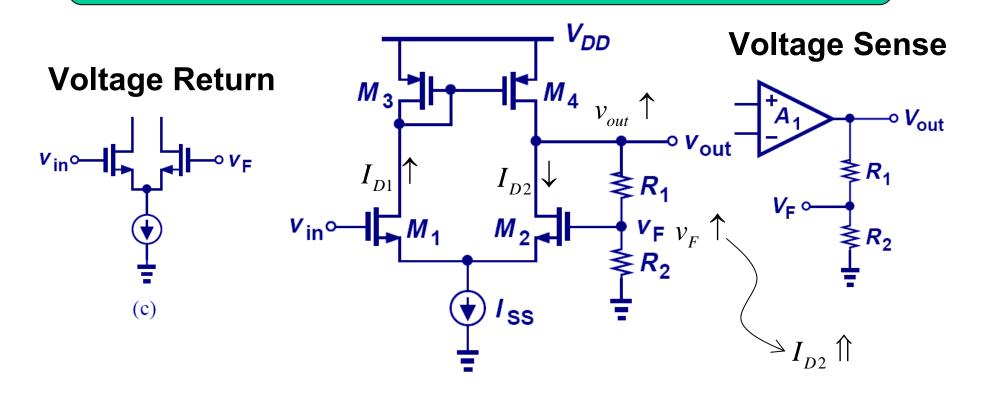
In order to add two current sources, we place them in parallel. So the feedback network is placed in parallel with the input signal.

Practical Circuits to Subtract Two Current Sources



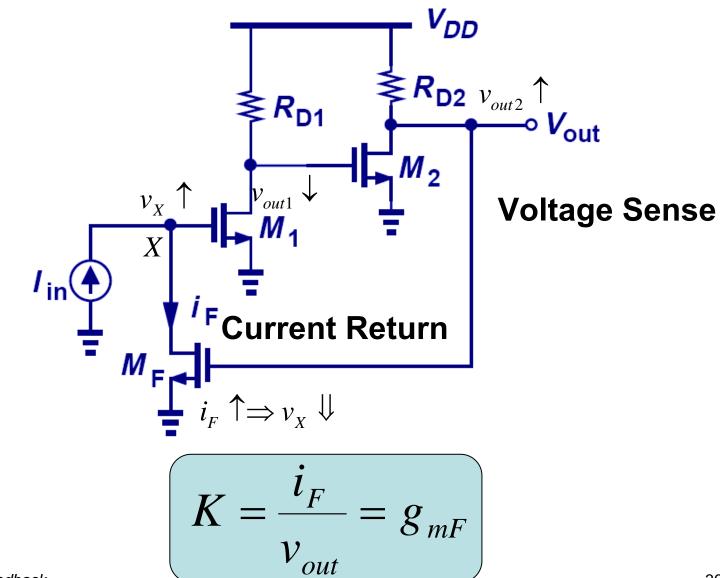
Since M₁ and R_F are in parallel with the input current source, their respective currents are being subtracted. Note, R_F has to be large enough to approximate a current source.

Example 12.10: Sense and Return



R₁ and R₂ sense and serve as the feedback network.
 M₁ and M₂ are part of the op-amp and also act as a voltage subtractor.

Example 12.11: Feedback Factor



Topics in Last and Today's Lectures

> 12.3 Types of Amplifiers

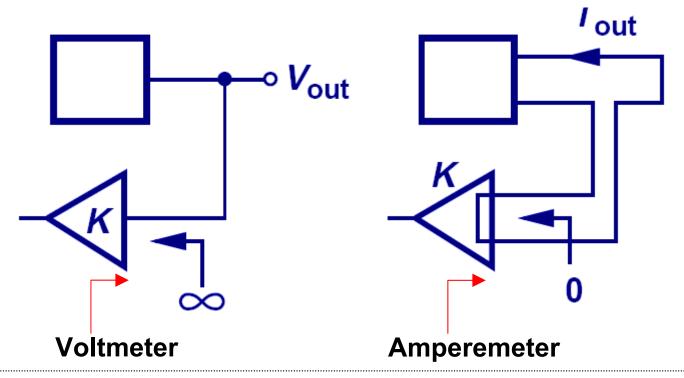
- Simple Amplifier Models
- Examples of Amplifier Types
- 12.4 Sense and Return Techniques

> 12.5 Polarity of Feedback

> 12.5 Feedback Topologies

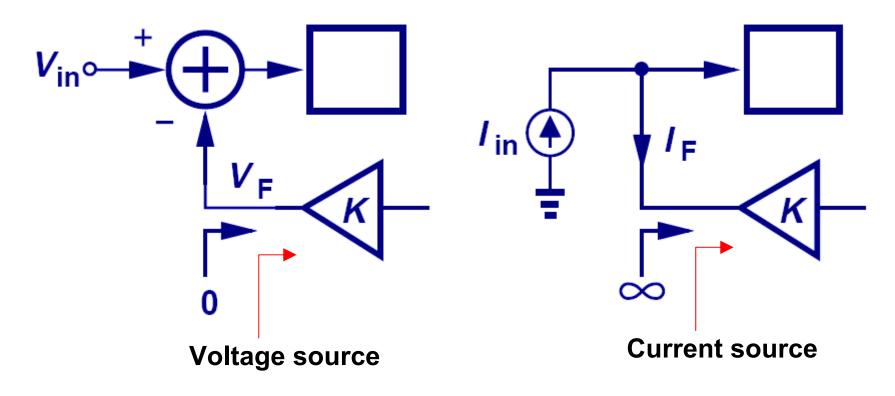
- Voltage-Voltage Feedback
- Voltage-Current Feedback
- Current-Voltage Feedback
- Current-Current Feedback

Input Impedance of an Ideal Feedback Network



- To sense a voltage, the input impedance of an ideal feedback network must be infinite.
- To sense a current, the input impedance of an ideal feedback network must be zero.

Output Impedance of an Ideal Feedback Network



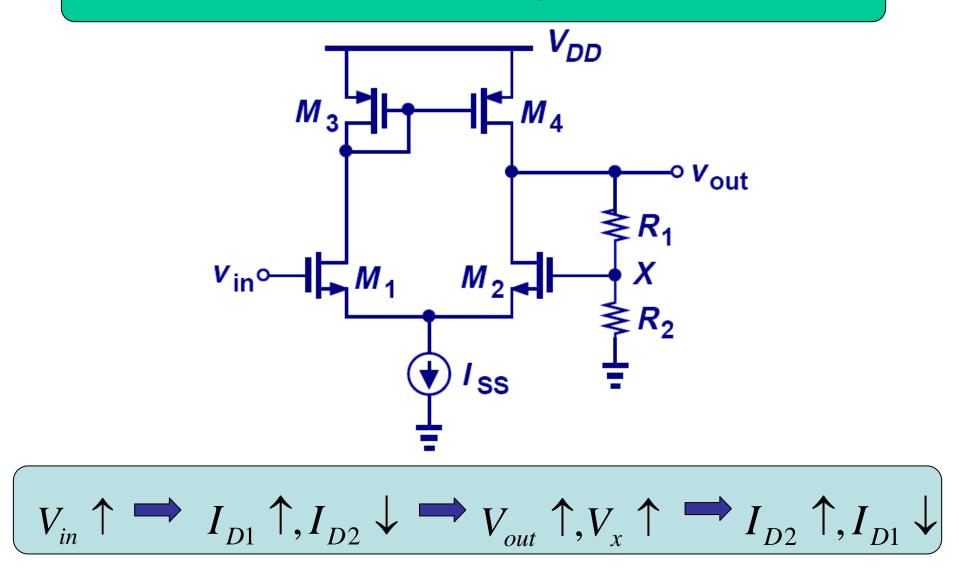
- To return a voltage, the output impedance of an ideal feedback network must be zero.
- To return a current, the output impedance of an ideal feedback network must be infinite.

Determining the Polarity of Feedback

- > 1) Assume the input goes either up or down.
- > 2) Follow the signal through the loop.
- 3) Determine whether the returned quantity enhances or opposes the original change.

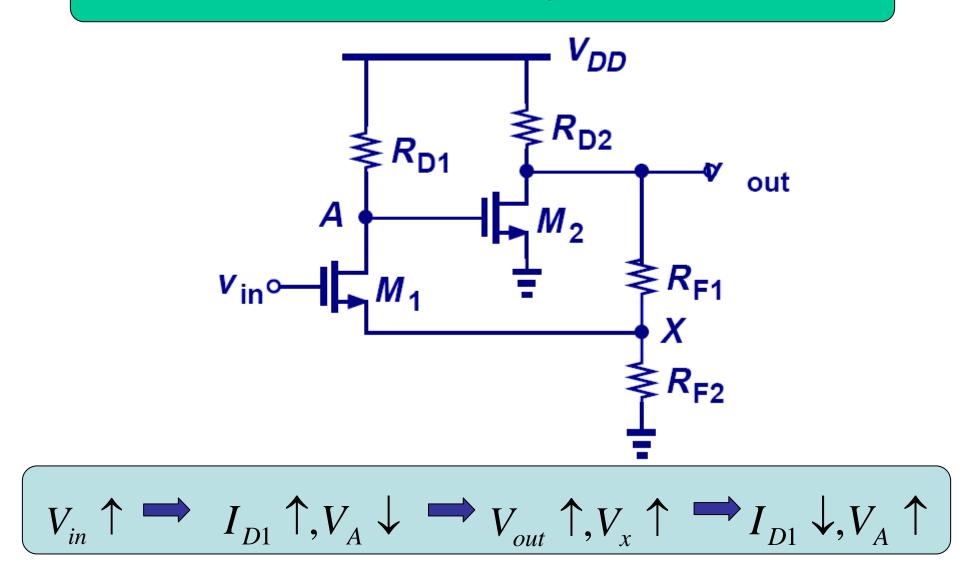
Positive feedback

Example 12.12: Polarity of Feedback



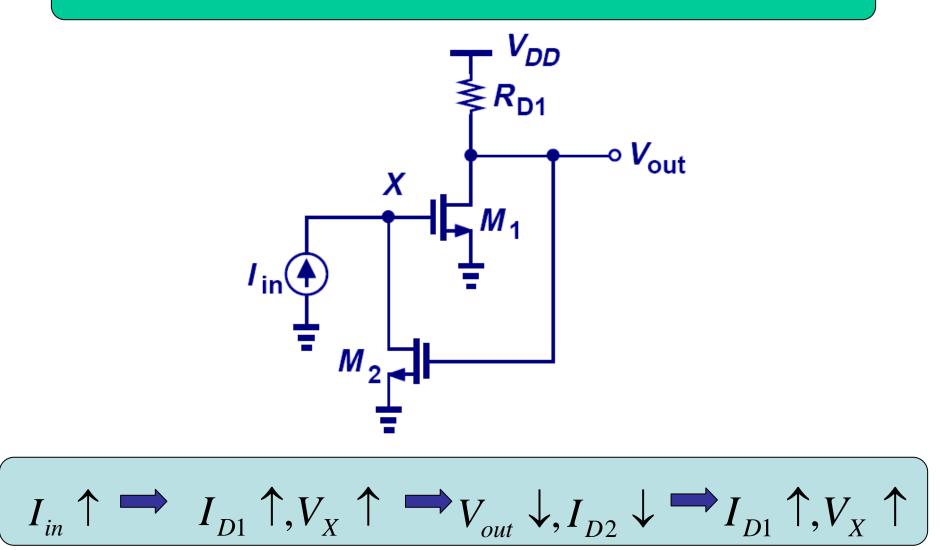
Negative Feedback

Example 12.13: Polarity of Feedback

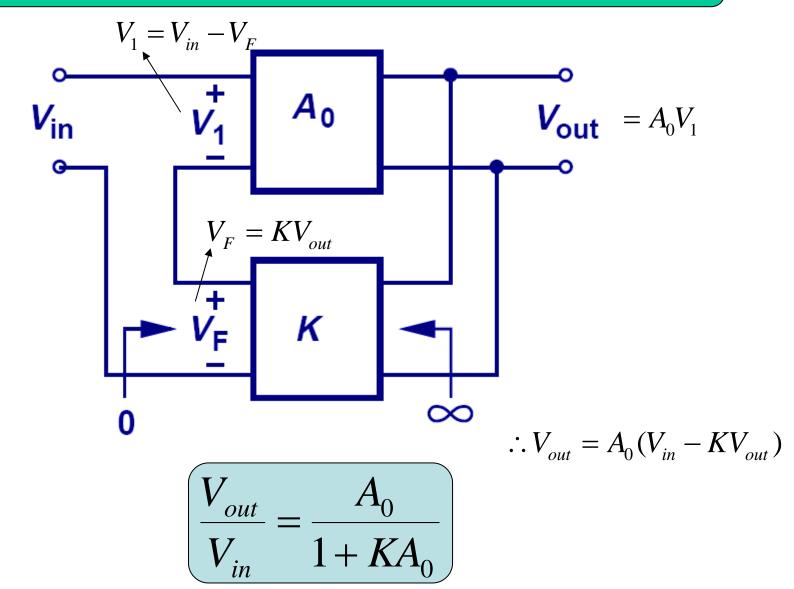


Negative Feedback

Example 12.14: Polarity of Feedback

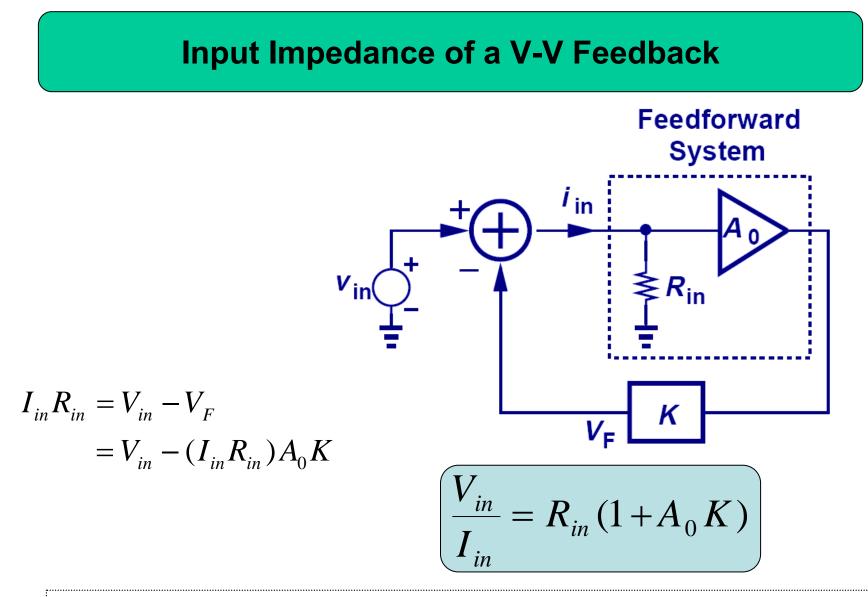


Voltage-Voltage Feedback



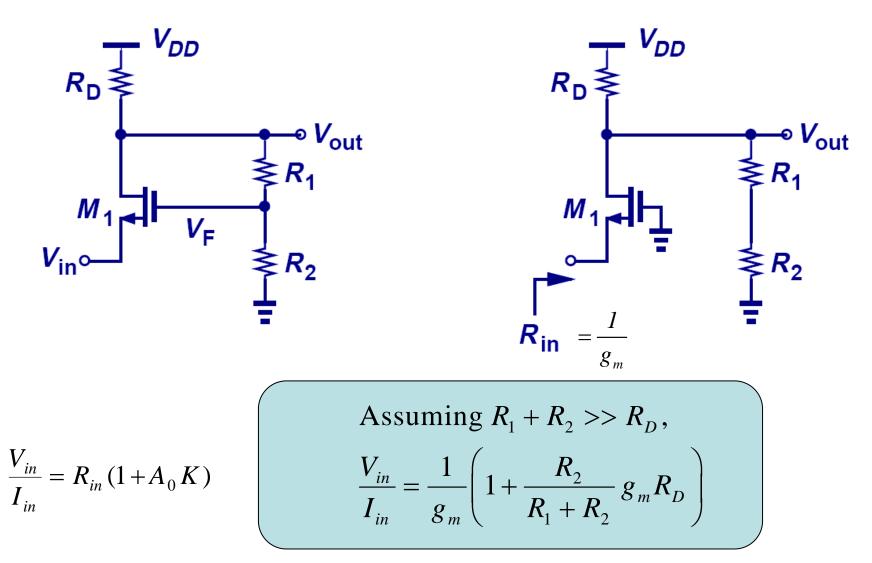
Example 12.15: Voltage-Voltage Feedback



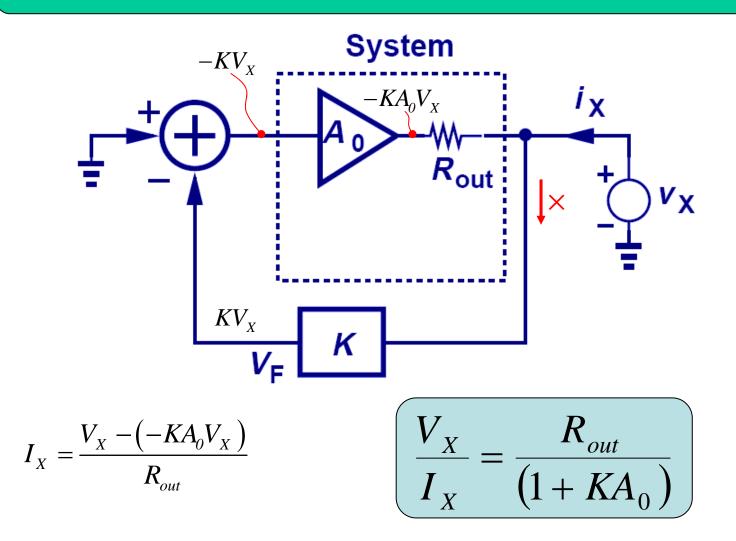


The impedance modification brings the circuit closer to an ideal voltage amplifier

Example12.16: V-V Feedback Input Impedance

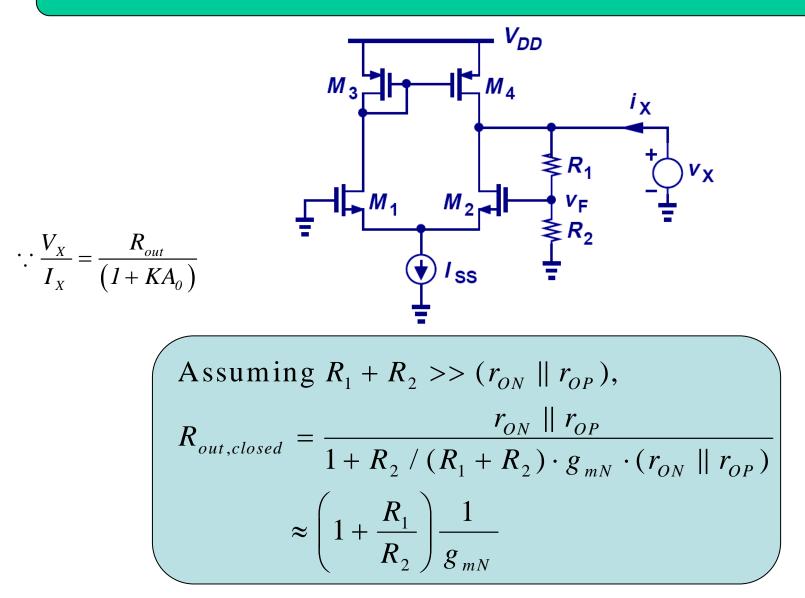


Output Impedance of a V-V Feedback

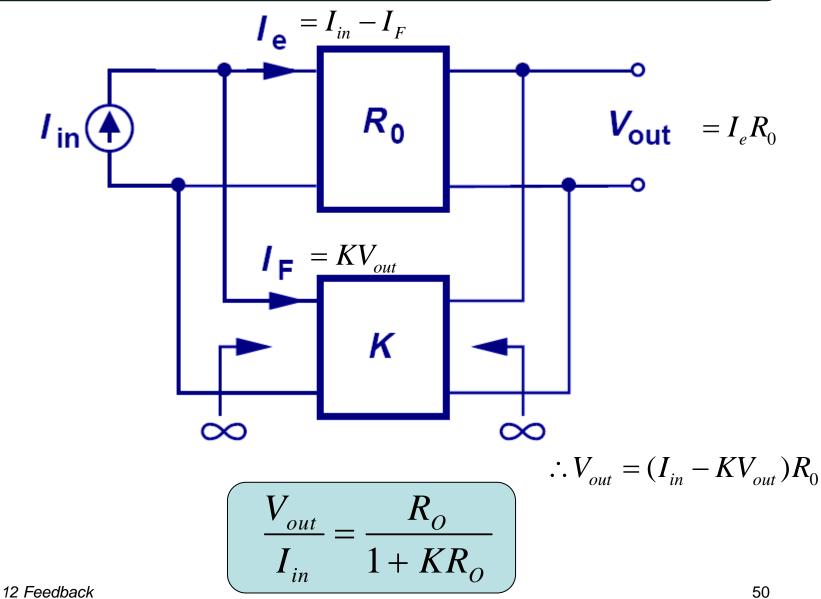


A better voltage source

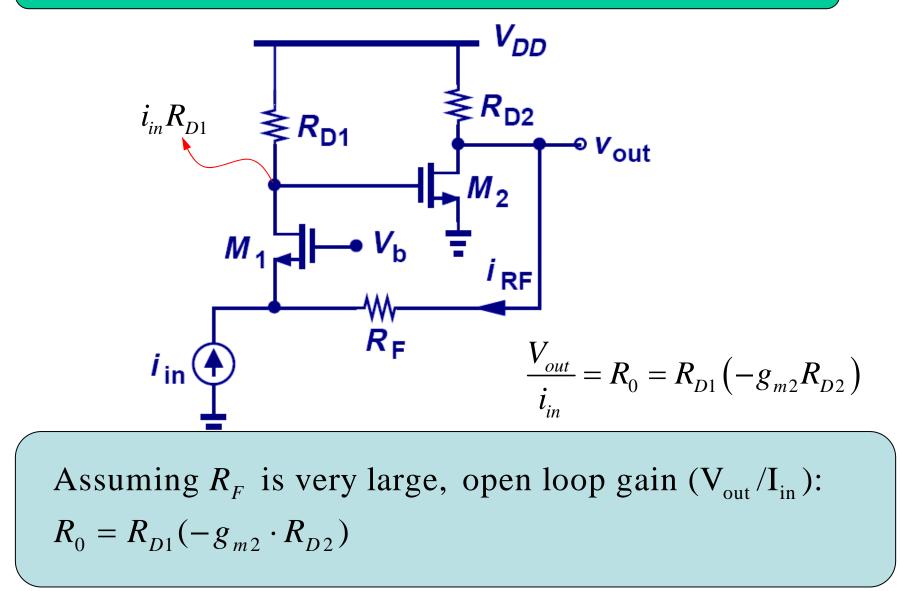
Example 12.17: V-V Feedback Output Impedance



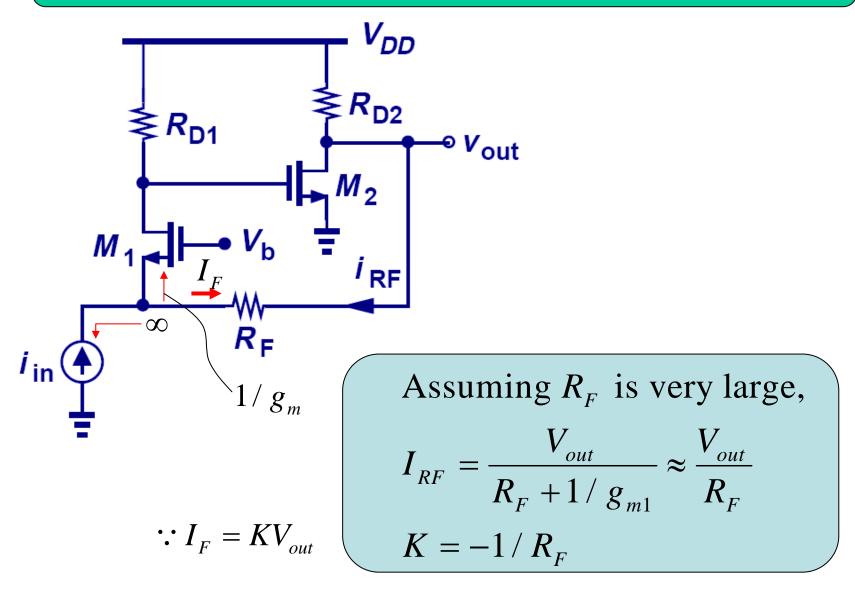
Voltage-Current Feedback



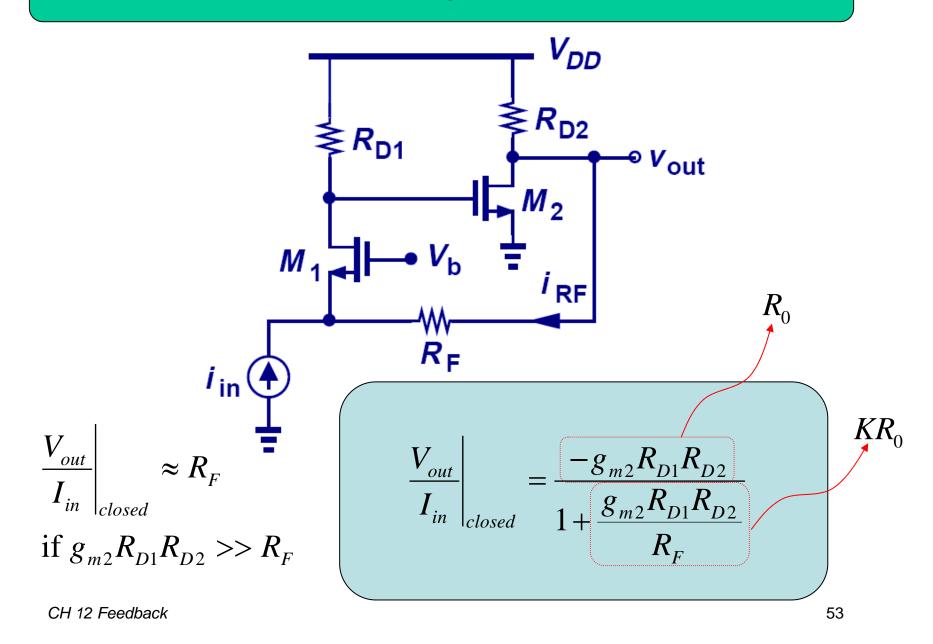
Example 12.18: Voltage-Current Feedback



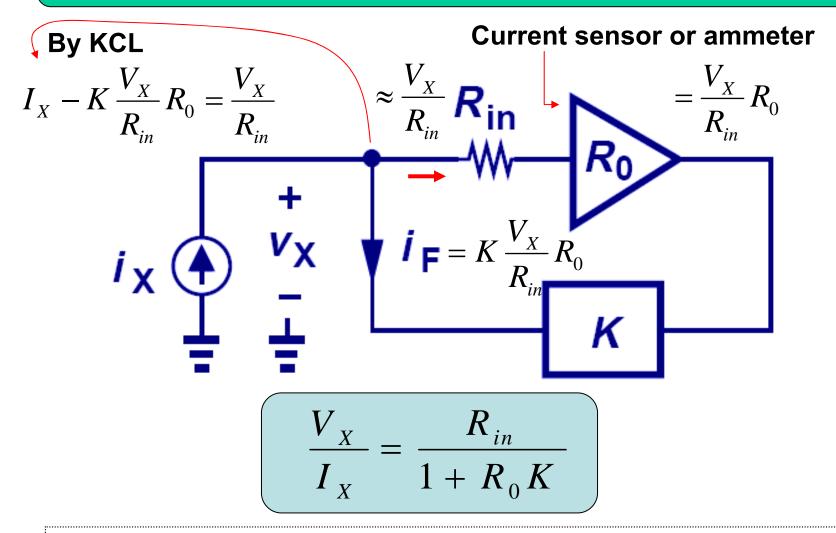
Example 12.18: Voltage-Current Feedback



Example 12.18: Voltage-Current Feedback

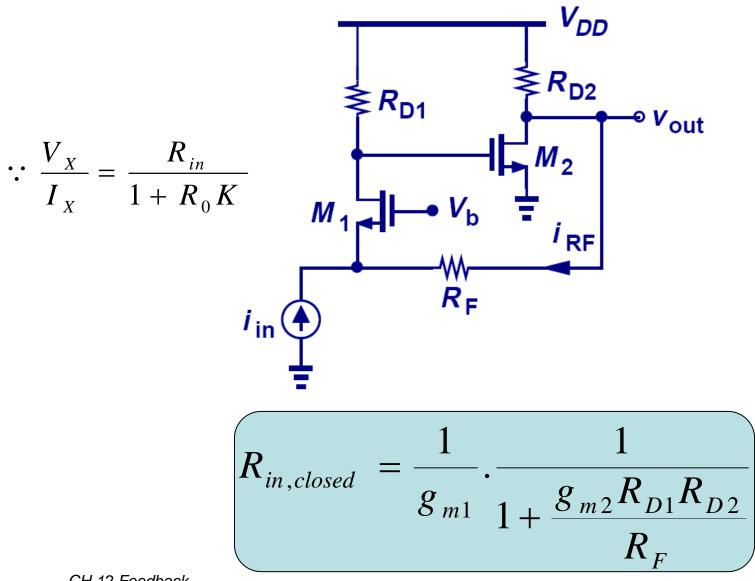


Input Impedance of a V-I Feedback

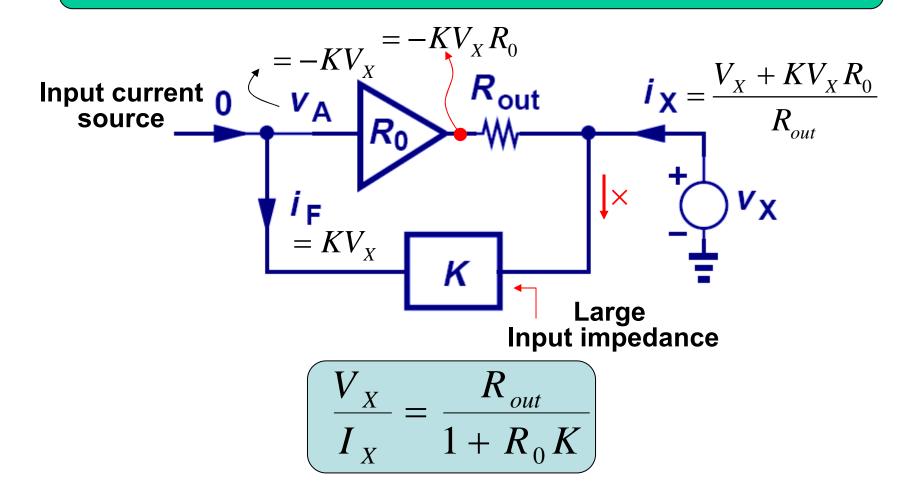


A better current sensor.

Example 12.19: V-I Feedback Input Impedance

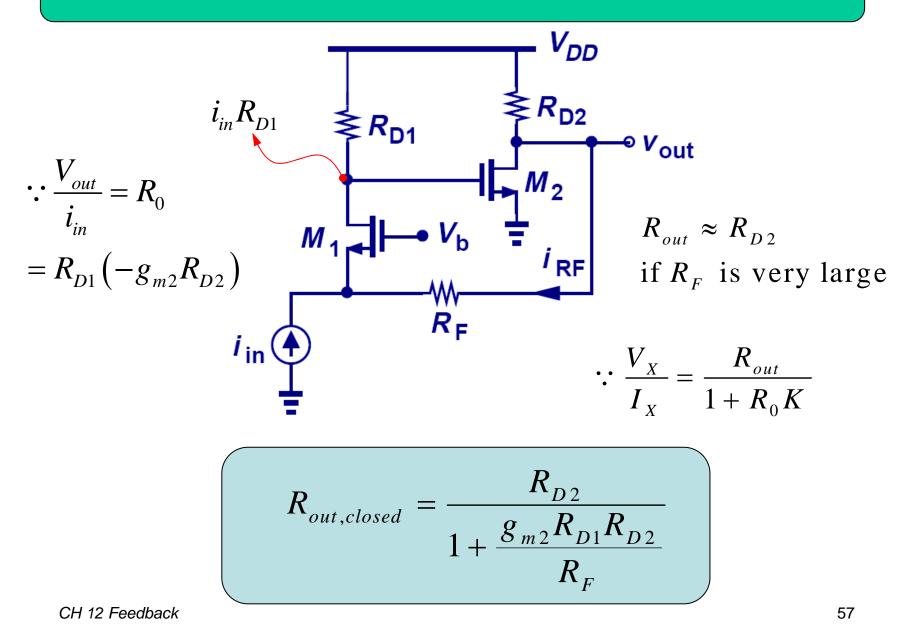


Output Impedance of a V-I Feedback

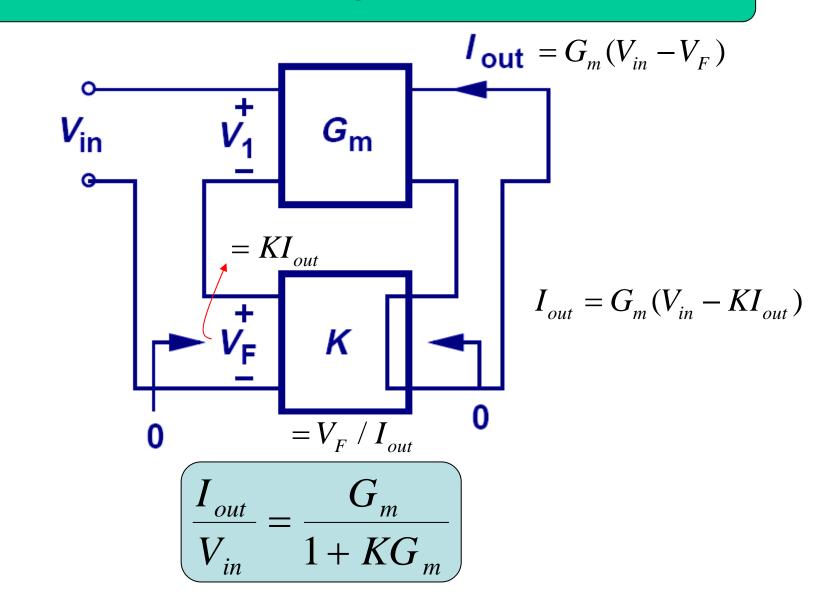


> A better voltage source.

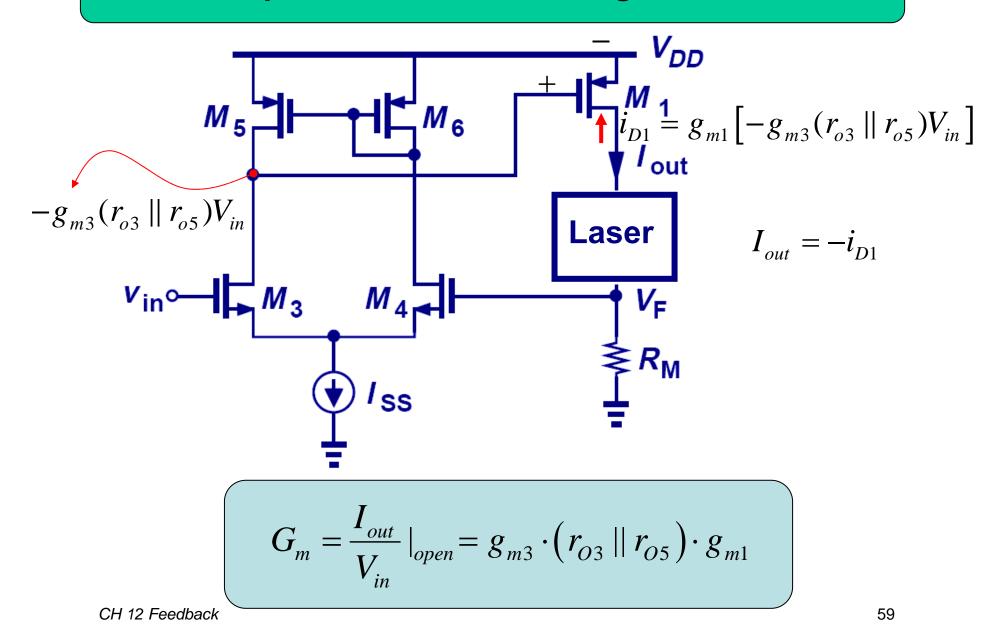
Example12.20: V-I Feedback Output Impedance



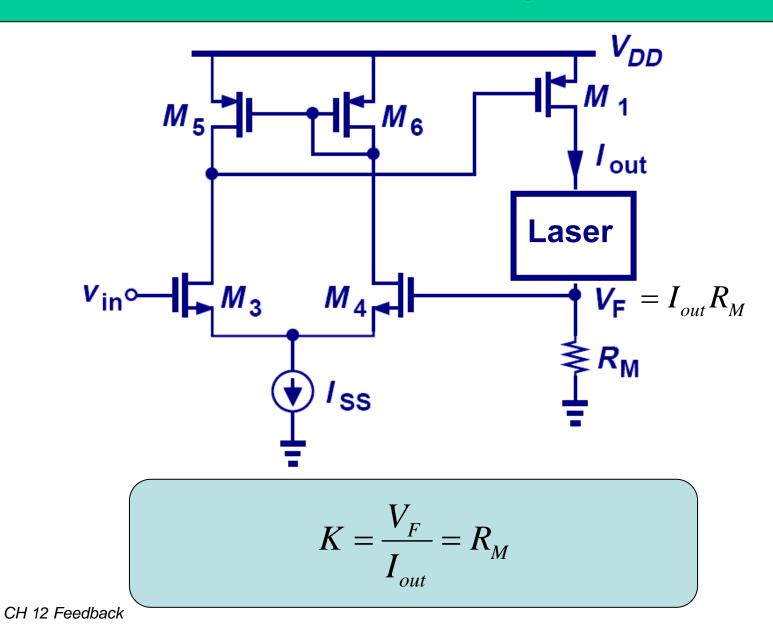
Current-Voltage Feedback



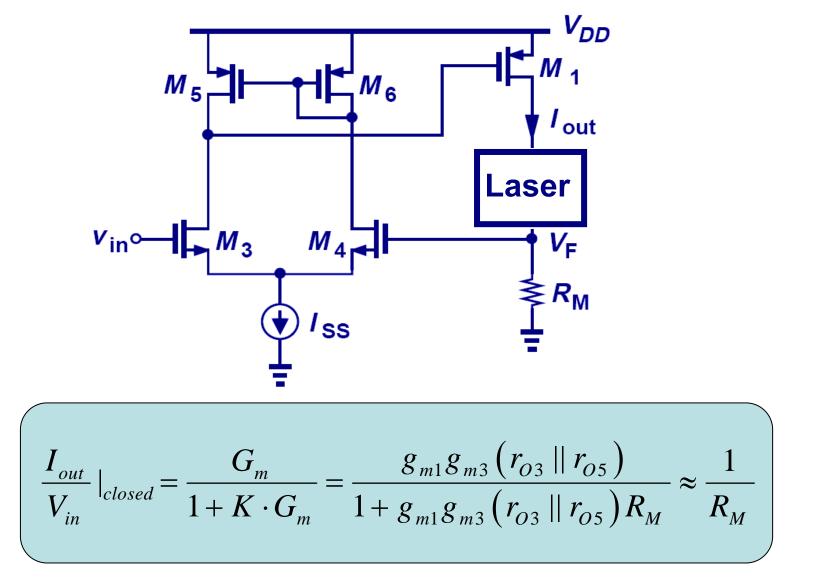
Example12.21: Current-Voltage Feedback



Example12.21: Current-Voltage Feedback



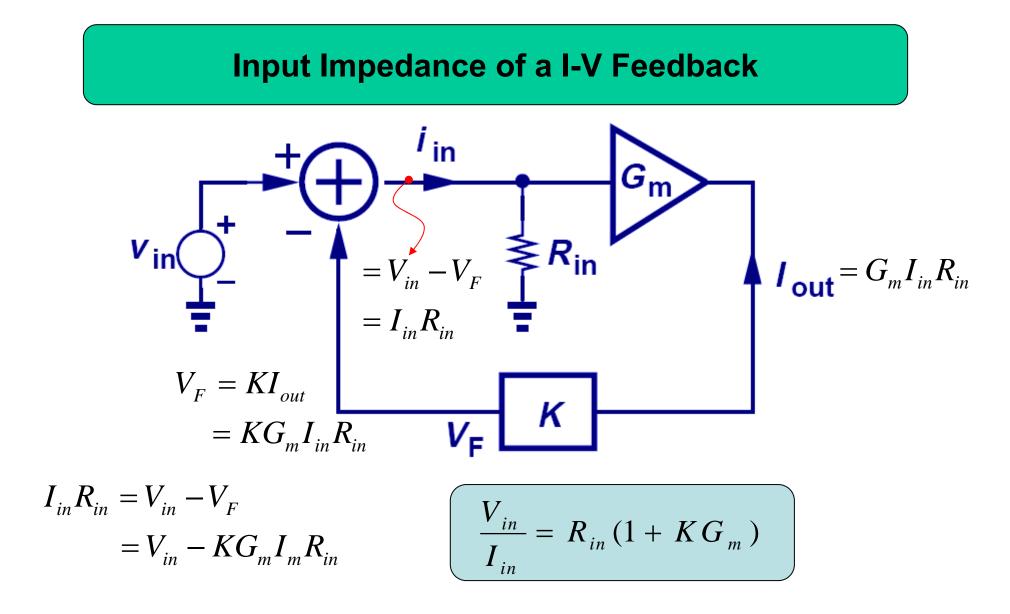
Example12.21: Current-Voltage Feedback



Topics in Last and Today's Lectures

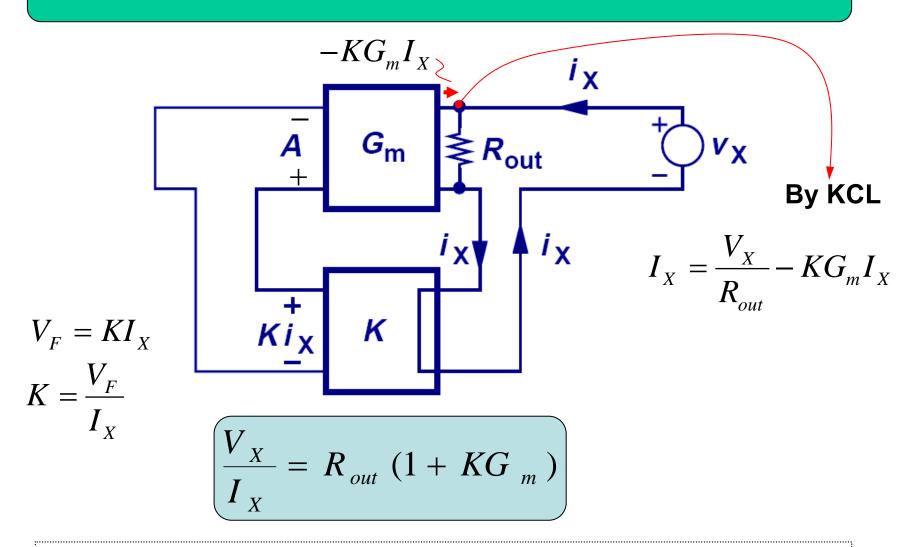
> 12.5 Polarity of Feedback

- > 12.5 Feedback Topologies
 - Voltage-Voltage Feedback
 - Voltage-Current Feedback
 - Current-Voltage Feedback
 - Current-Current Feedback
- > 12.6 Effect of Finite I/O Impedances
 - Inclusion of I/O Effects
- 12.7 Stability in Feedback Systems



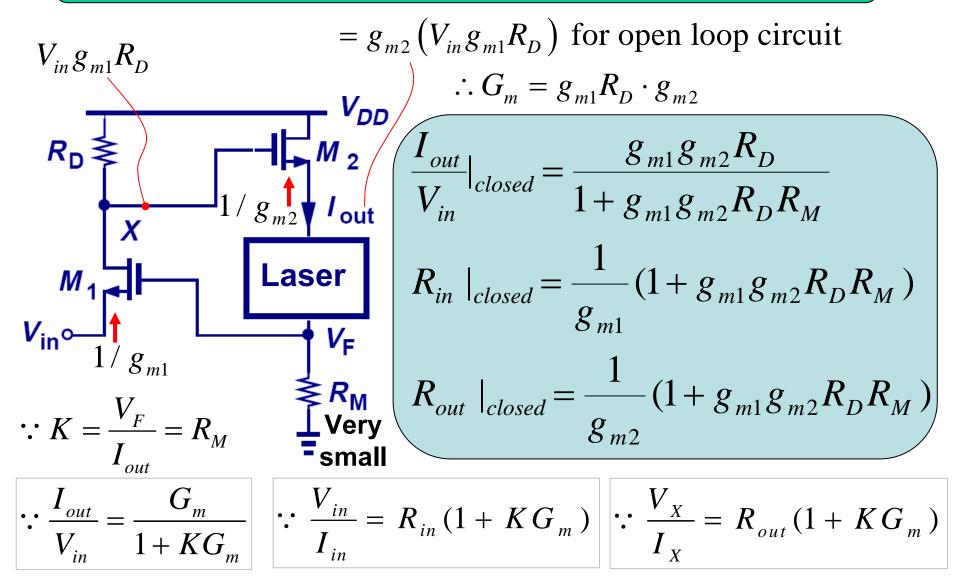
A better voltage sensor.

Output Impedance of a I-V Feedback

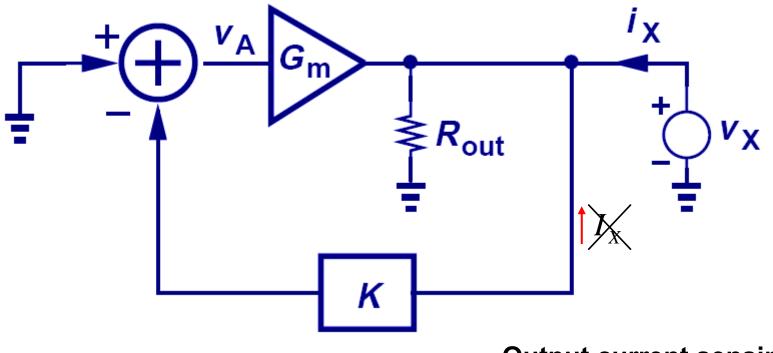


A better current source.

Example: Current-Voltage Feedback



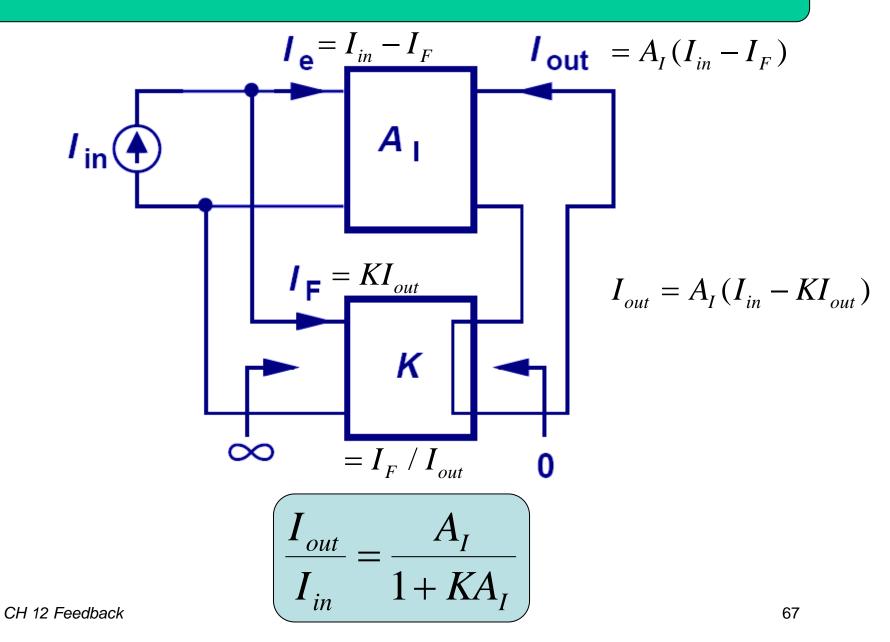
Wrong Technique for Measuring Output Impedance



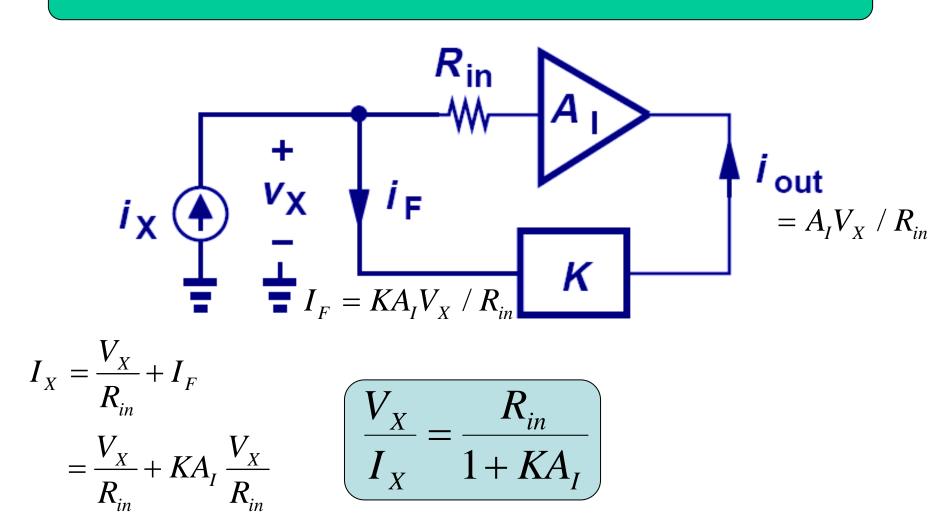
Output current sensing

If we want to measure the output impedance of a I-V closedloop feedback topology directly, we have to place V_x in series with K and R_{out}. Otherwise, the feedback will be disturbed.

Current-Current Feedback

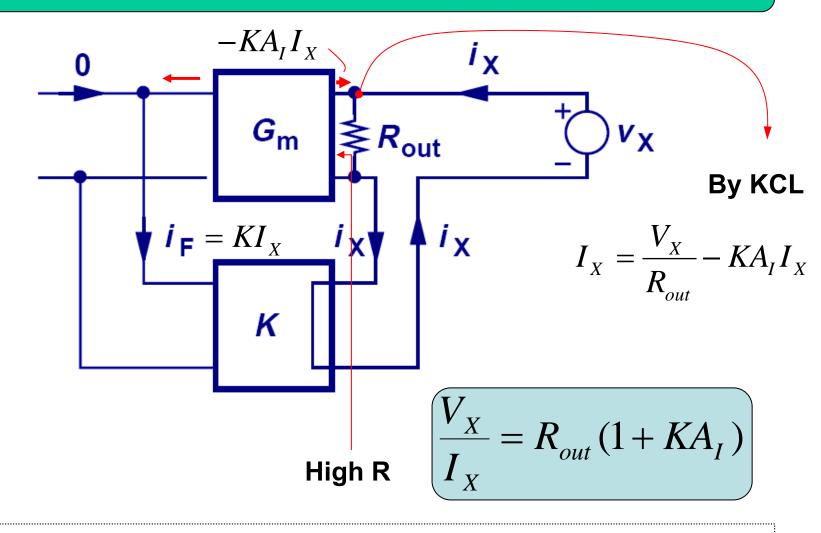


Input Impedance of I-I Feedback



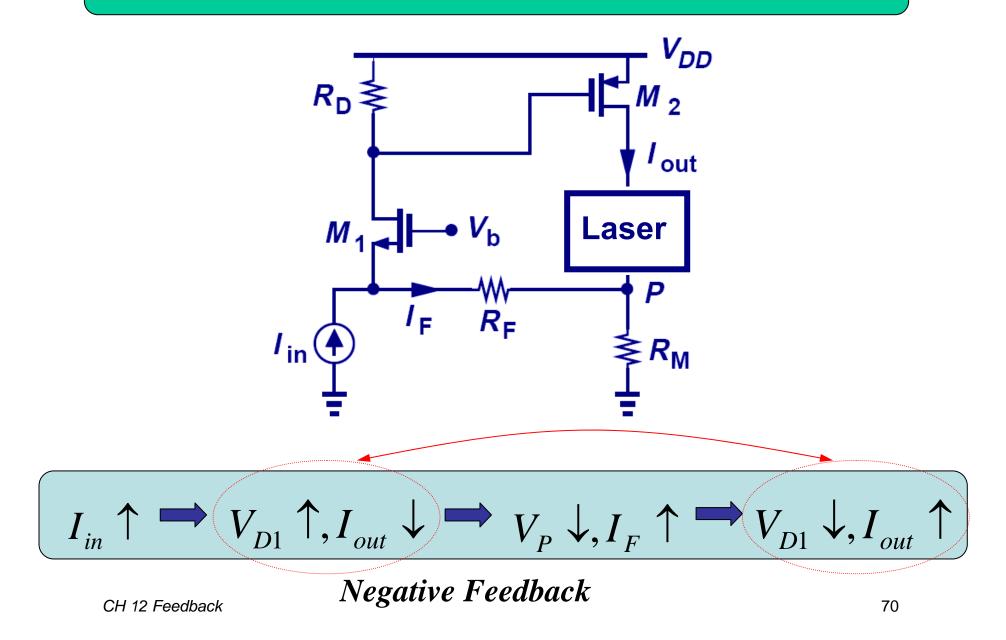
> A better current sensor.

Output Impedance of I-I Feedback

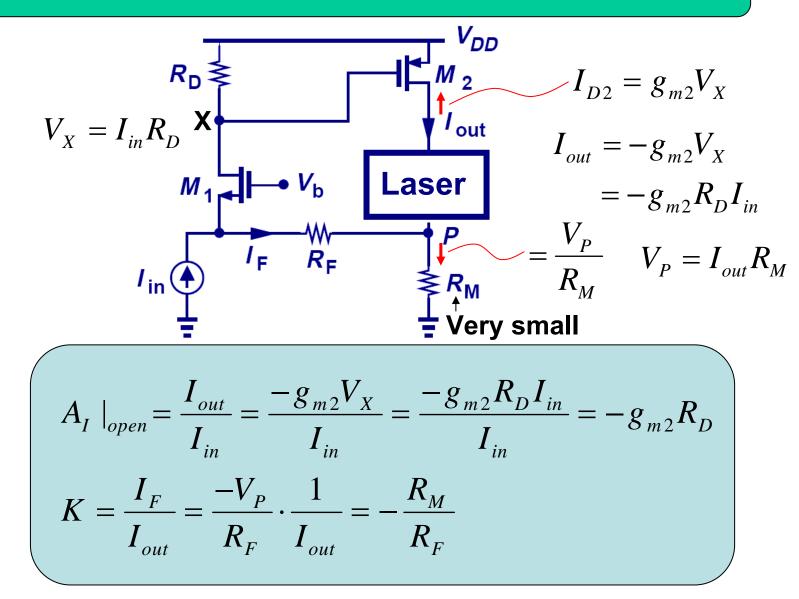


A better current source.

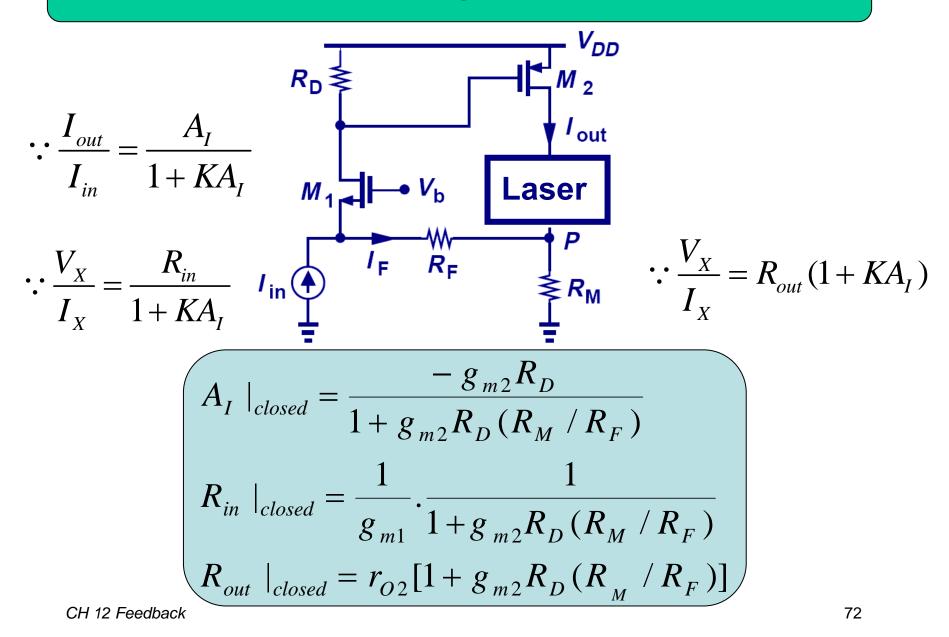
Example 12.24: Test of Negative Feedback

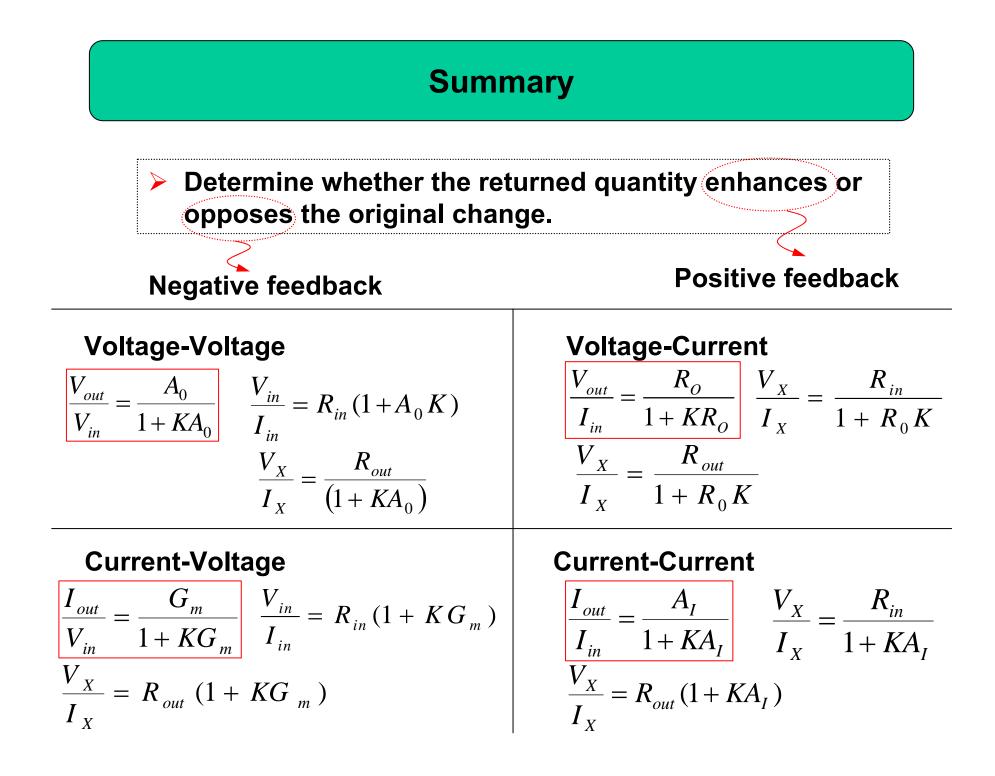


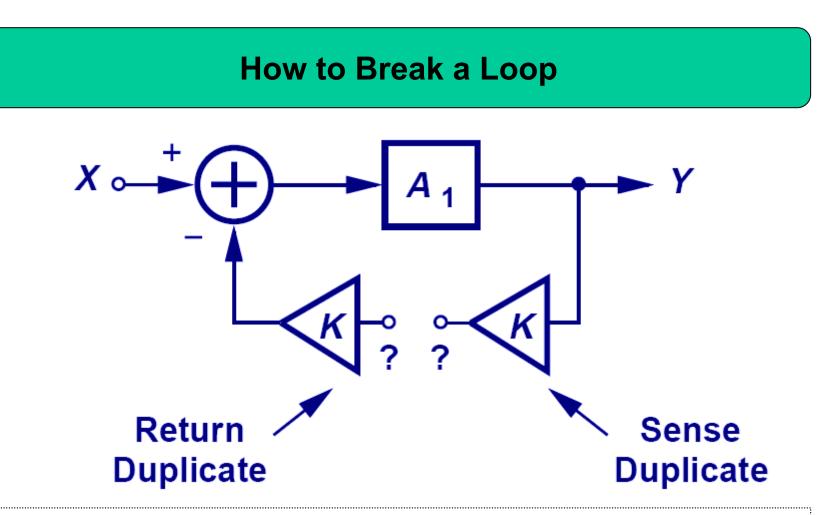
Example 12.24: I-I Negative Feedback



Example: I-I Negative Feedback

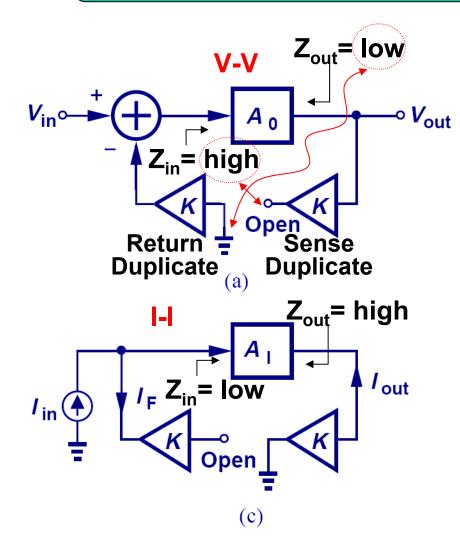


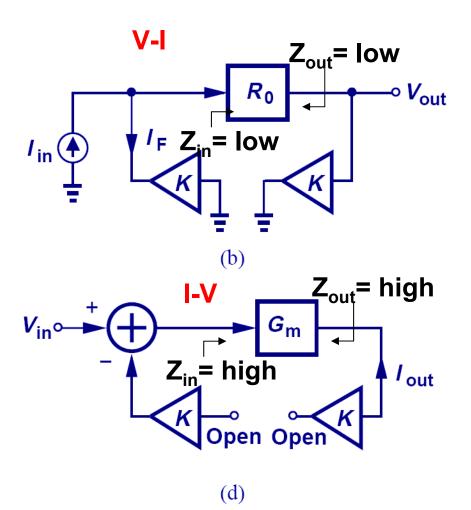




The correct way of breaking a loop is such that the loop does not know it has been broken. Therefore, we need to present the feedback network to both the input and the output of the feedforward amplifier.

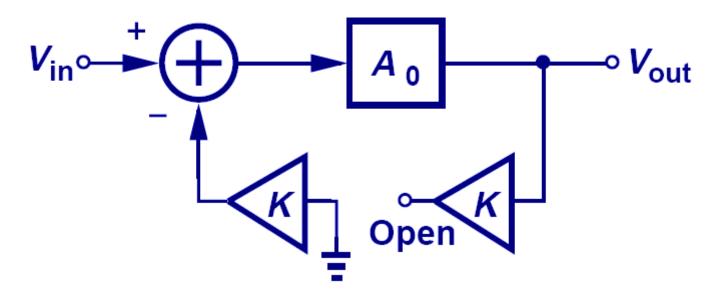
Rules for Breaking the Loop of Amplifier Types





Intuitive Understanding of these Rules

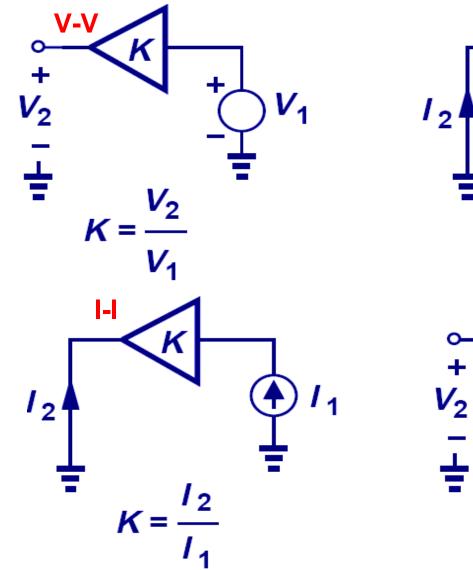
Voltage-Voltage Feedback

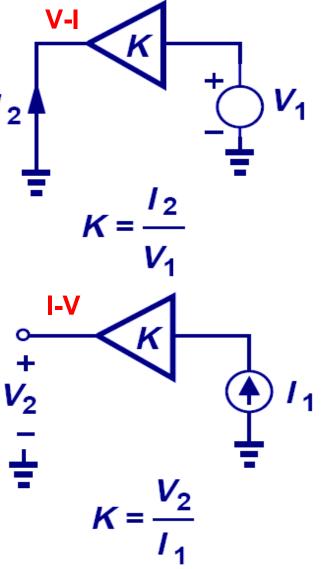


Since ideally, the input of the feedback network sees zero impedance (Z_{out} of an ideal voltage source), the return replicate needs to be grounded. Similarly, the output of the feedback network sees an infinite impedance (Z_{in} of an ideal voltage sensor), the sense replicate needs to be open.

> Similar ideas apply to the other types.

Rules for Calculating Feedback Factor

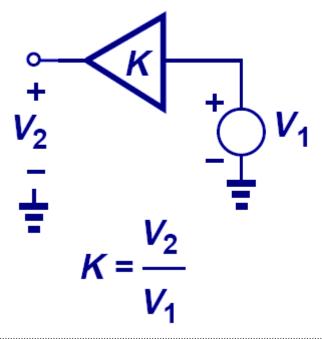




CH 12 Feedback

Intuitive Understanding of these Rules

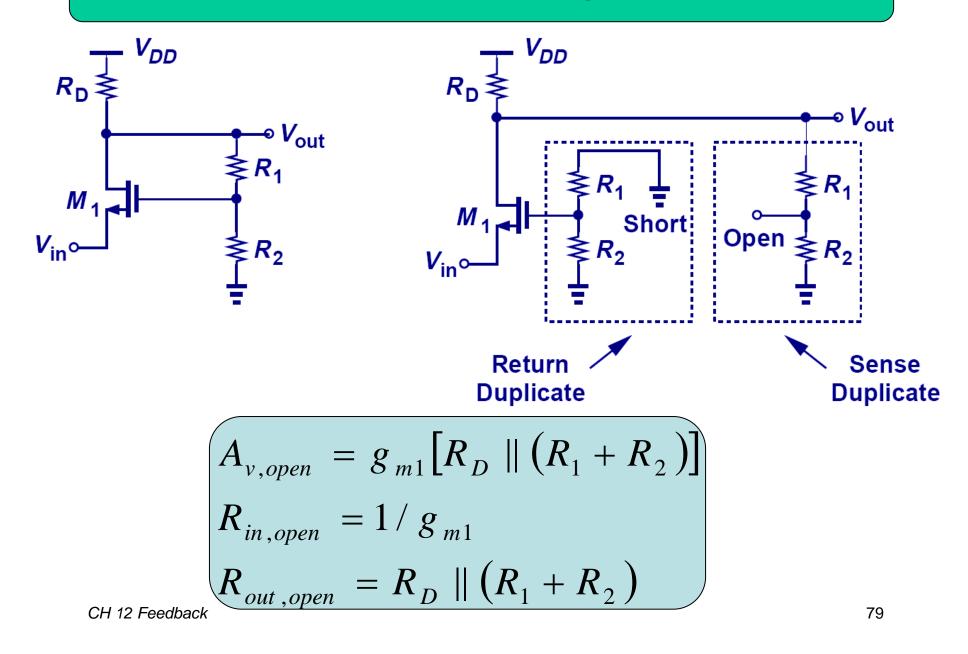
Voltage-Voltage Feedback



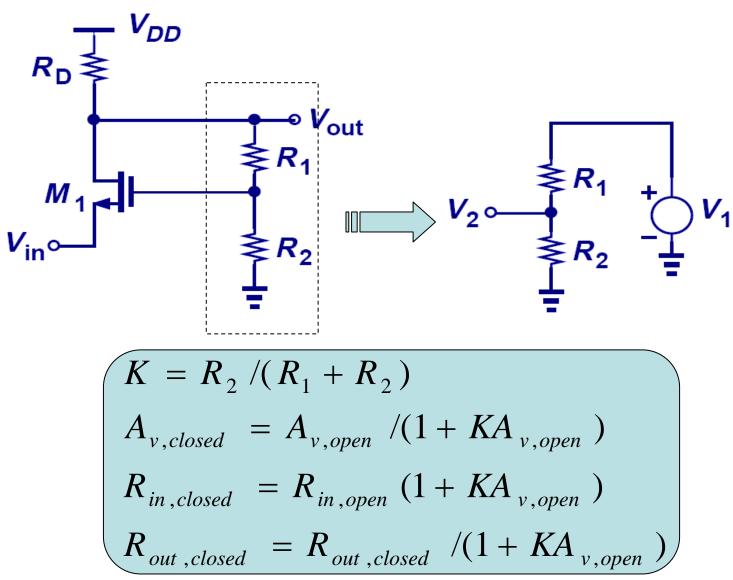
Since the feedback senses voltage, the input of the feedback is a voltage source. Moreover, since the return quantity is also voltage, the output of the feedback is left open (a short means the output is always zero).

Similar ideas apply to the other types.

Example 12.26: Breaking the Loop

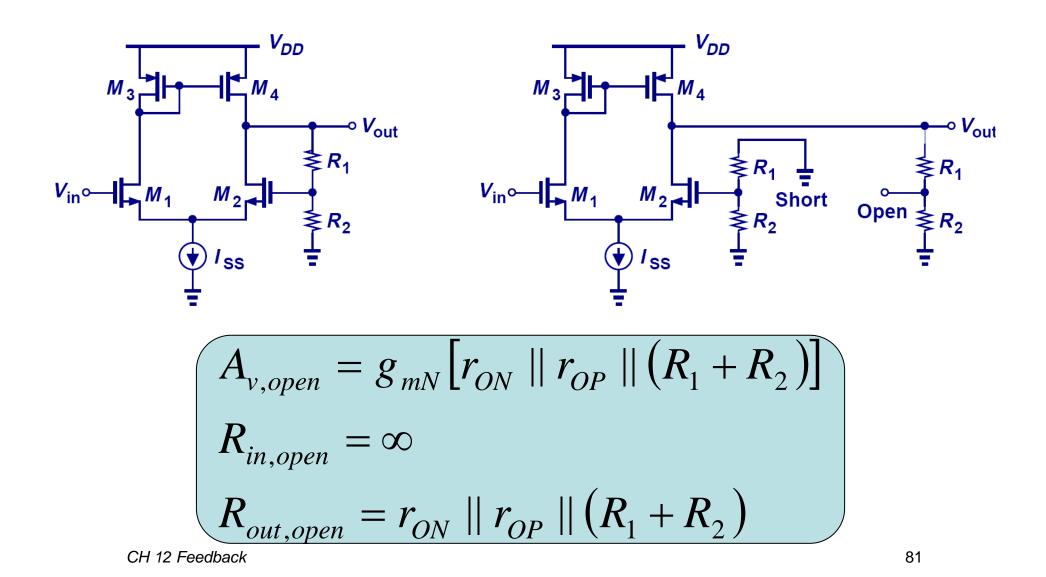


Example 12.26: Feedback Factor

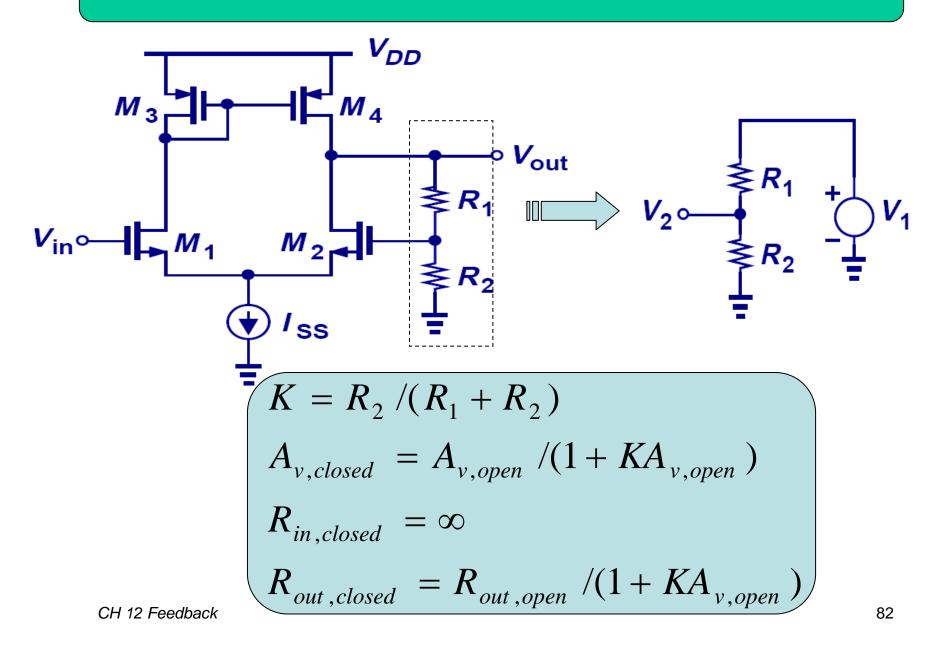


CH 12 Feedback

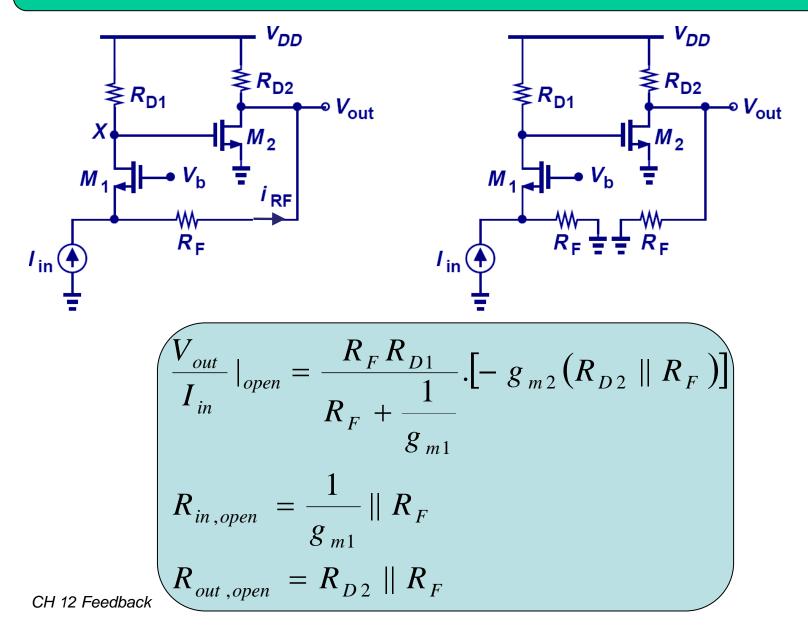
Example 12.27: Breaking the Loop



Example 12.27: Feedback Factor

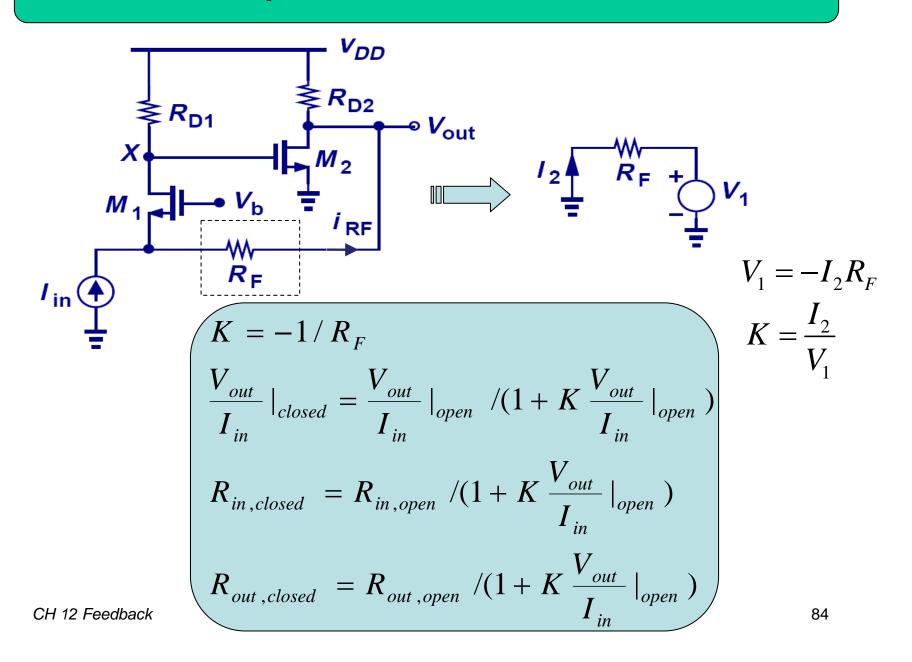


Example 12.29: Breaking the Loop

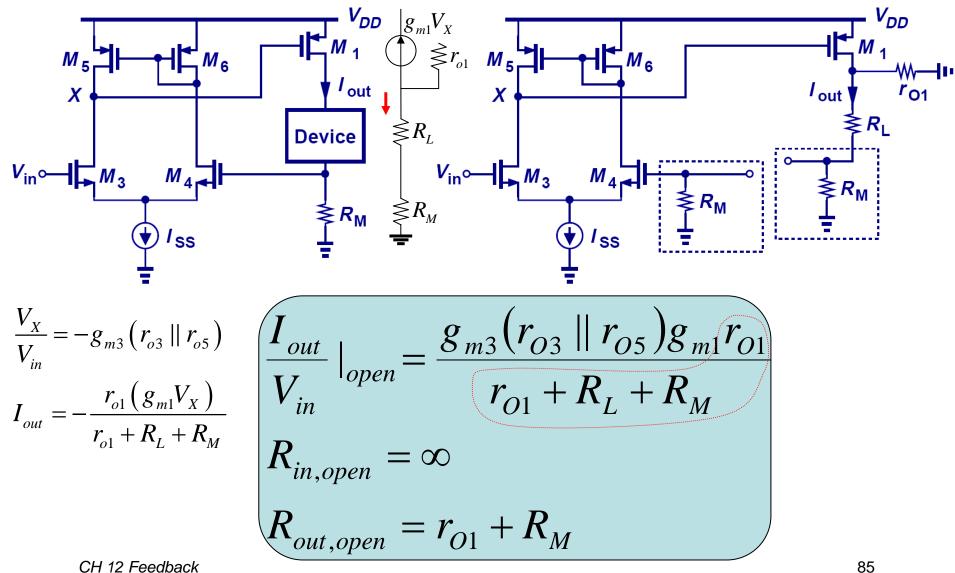


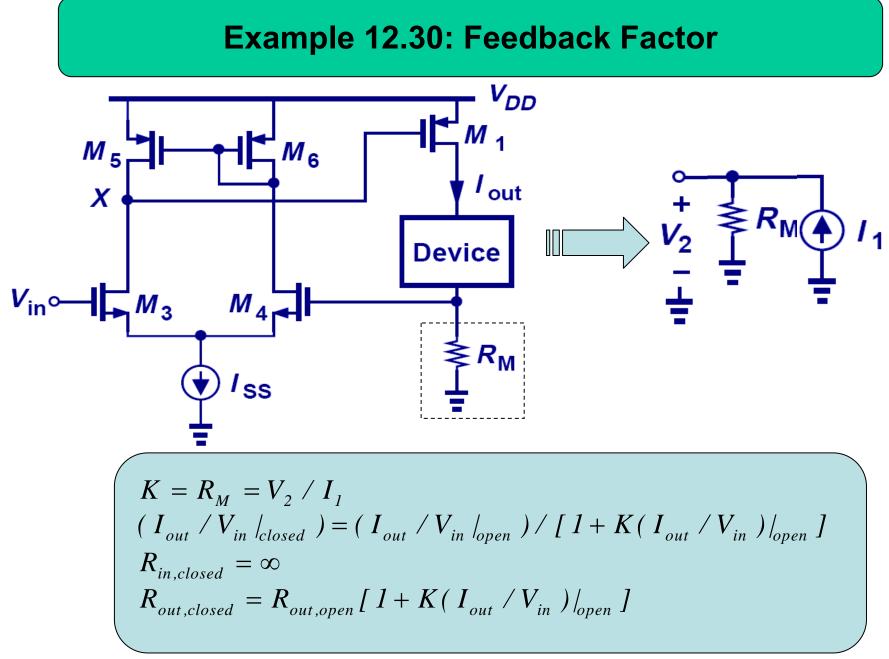
83

Example 12.29: Feedback Factor



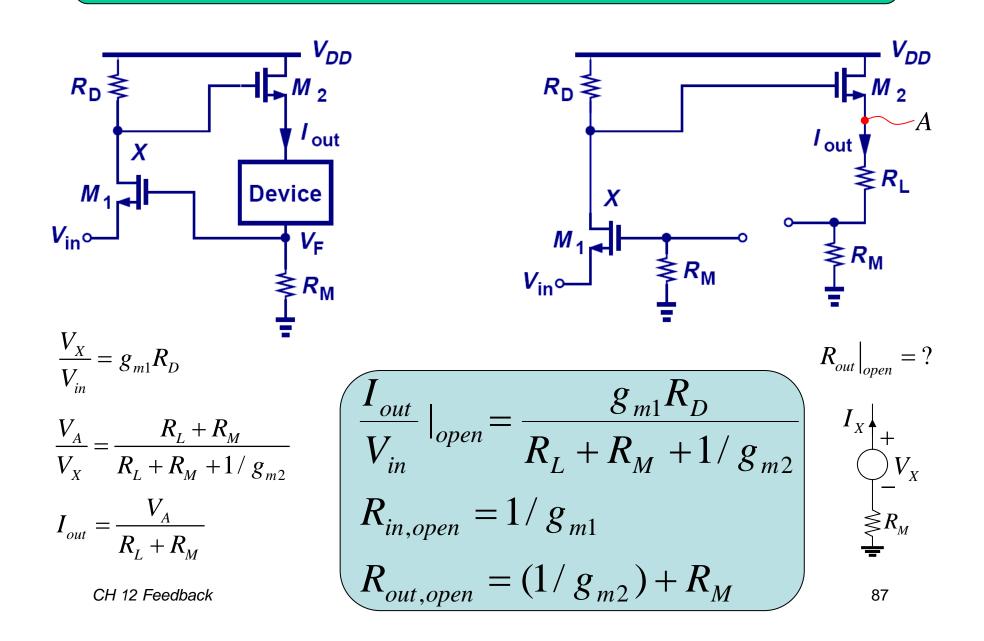
Example 12.30: Breaking the Loop



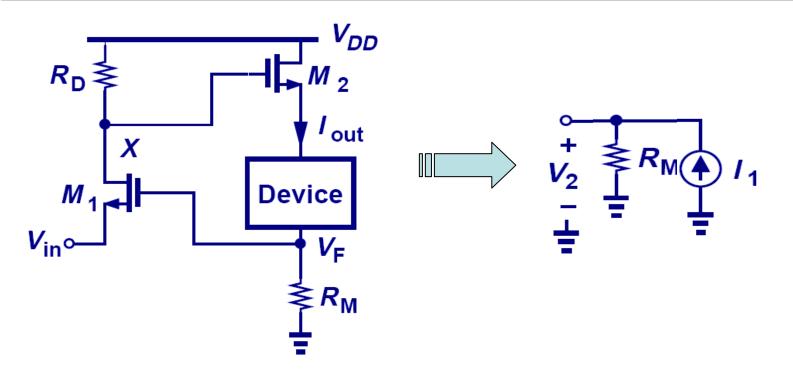


CH 12 Feedback

Example 12.31: Breaking the Loop



Example 12.31: Feedback Factor



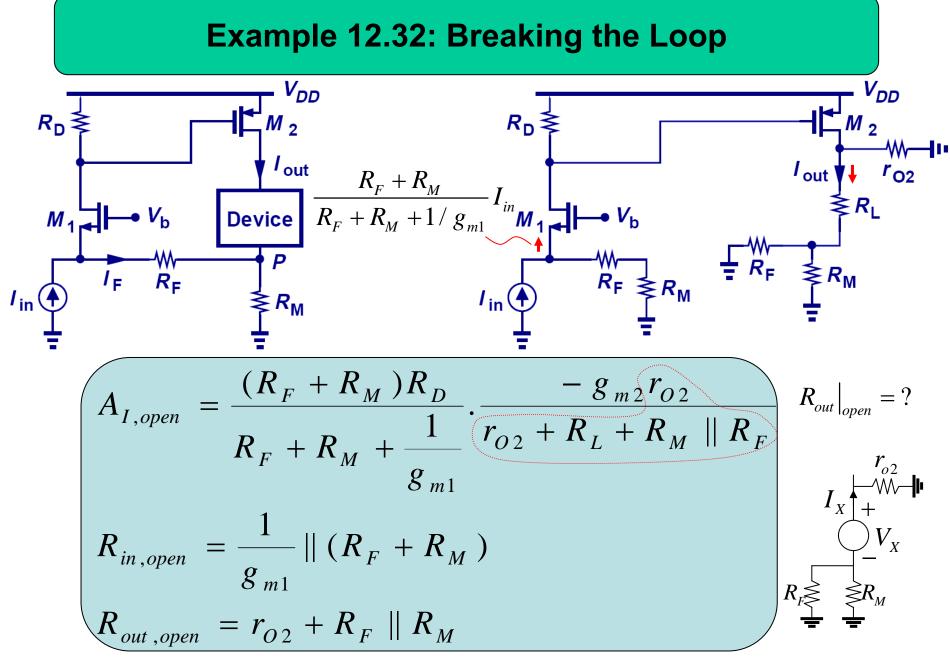
$$K = R_{M}$$

$$(I_{out} / V_{in} \mid_{closed}) = (I_{out} / V_{in} \mid_{open}) / [1 + K(I_{out} / V_{in}) \mid_{open}]$$

$$R_{in,closed} = R_{in,open} [1 + K(I_{out} / V_{in}) \mid_{open}]$$

$$R_{out,closed} = R_{out,open} [1 + K(I_{out} / V_{in}) \mid_{open}]$$

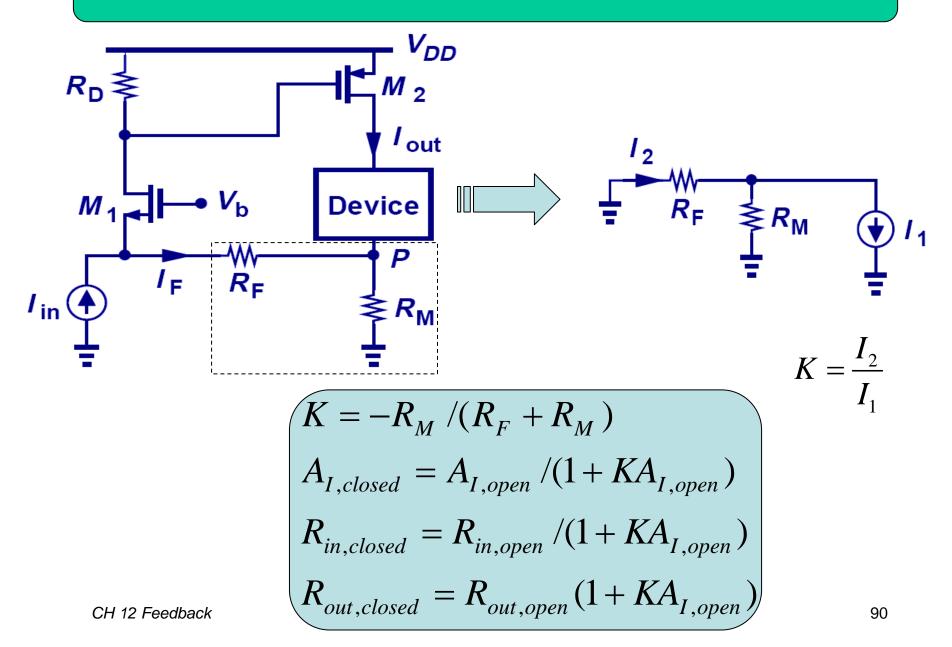
CH 12 Feedback

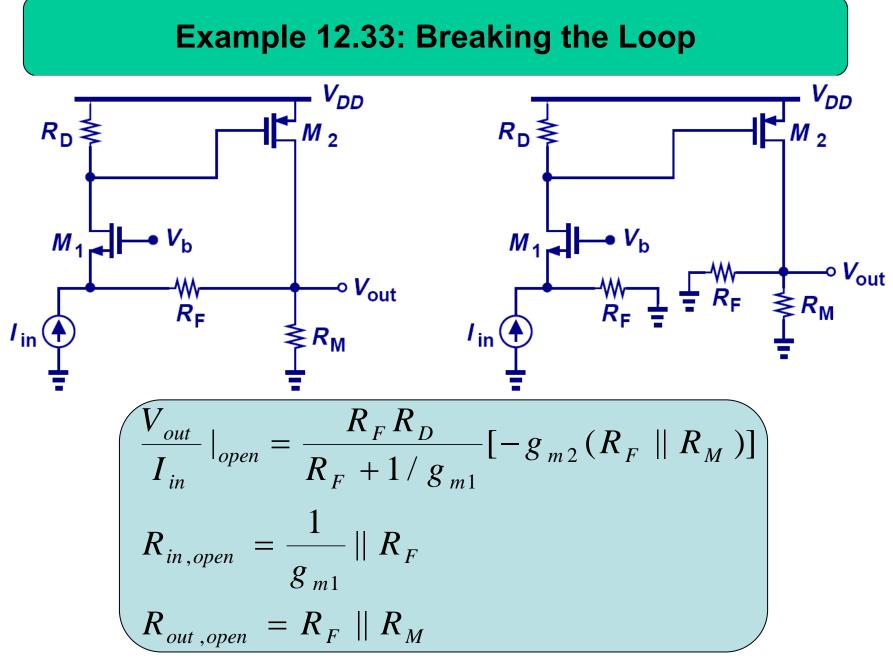


CH 12 Feedback

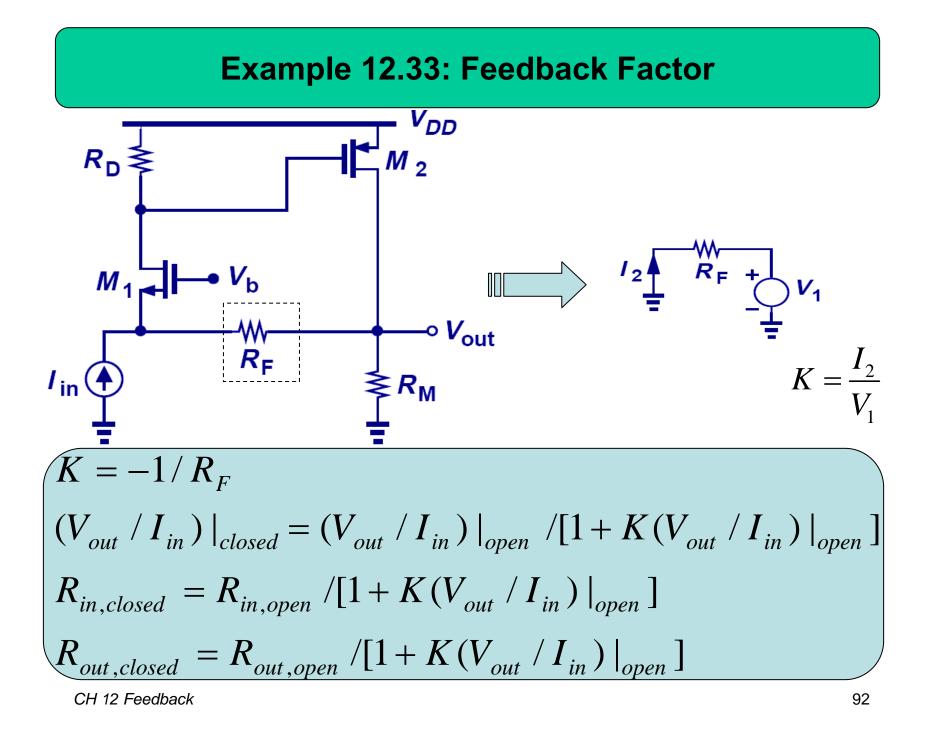
89

Example 12.32: Feedback Factor

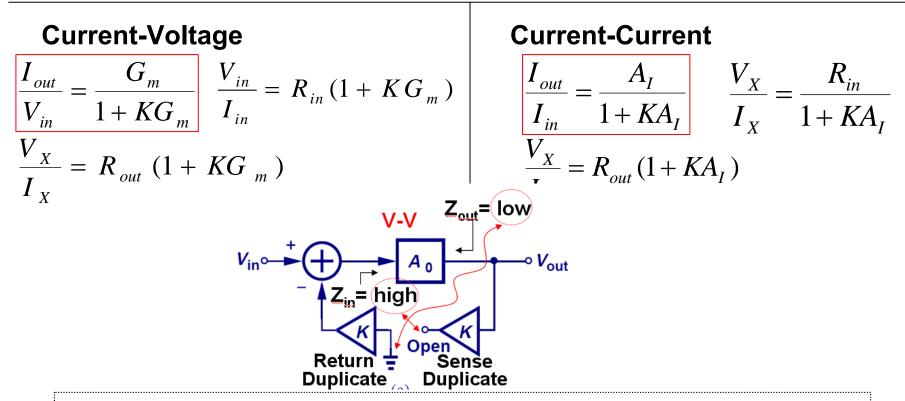




CH 12 Feedback

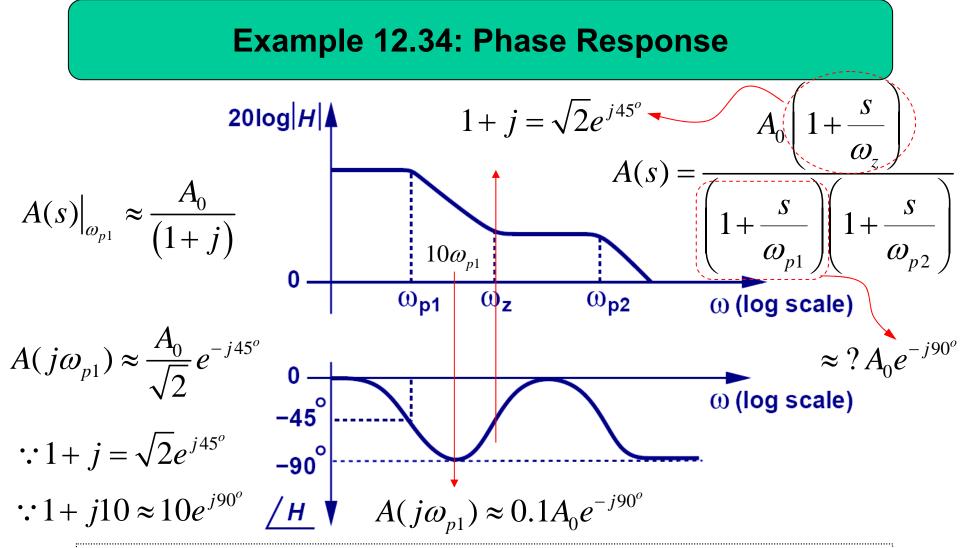


Summary



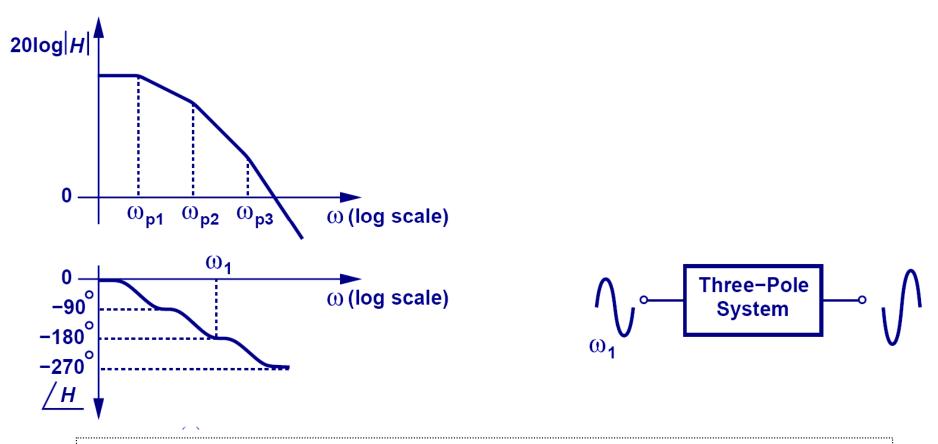
Since ideally, the input of the feedback network sees zero impedance (Z_{out} of an ideal voltage source), the return replicate needs to be grounded. Similarly, the output of the feedback network sees an infinite impedance (Z_{in} of an ideal voltage sensor), the sense replicate needs to be open.

Similar ideas apply to the other types.



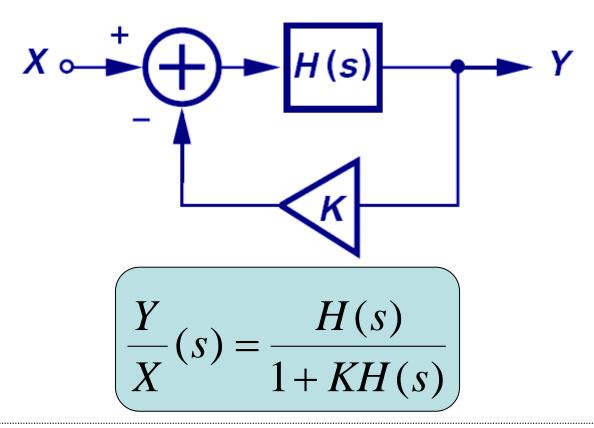
> As it can be seen, the phase of $H(j\omega)$ starts to drop at 1/10 of the pole, hits -45° at the pole, and approaches -90° at 10 times the pole.

Example 12.35: Three-Pole System



For a three-pole system, a finite frequency produces a phase of -180°, which means an input signal that operates at this frequency will have its output inverted.

Instability of a Negative Feedback Loop



Substitute j ω for s. If for a certain ω_1 , KH(j ω_1) reaches -1, the closed loop gain becomes infinite. This implies for a very small input signal at ω_1 , the output can be very large. Thus the system becomes unstable.

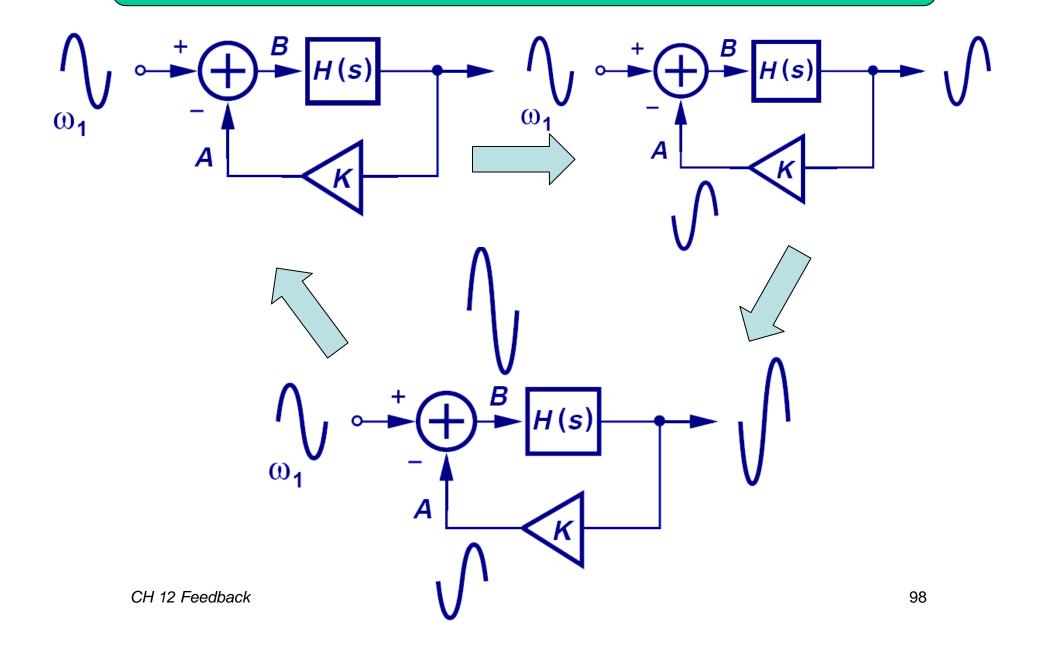
"Barkhausen's Criteria" for Oscillation

$$X \rightarrow H(s) \rightarrow Y$$

$$(KH(j\omega_1) = 1)$$

$$(KH(j\omega_1) = -180)$$

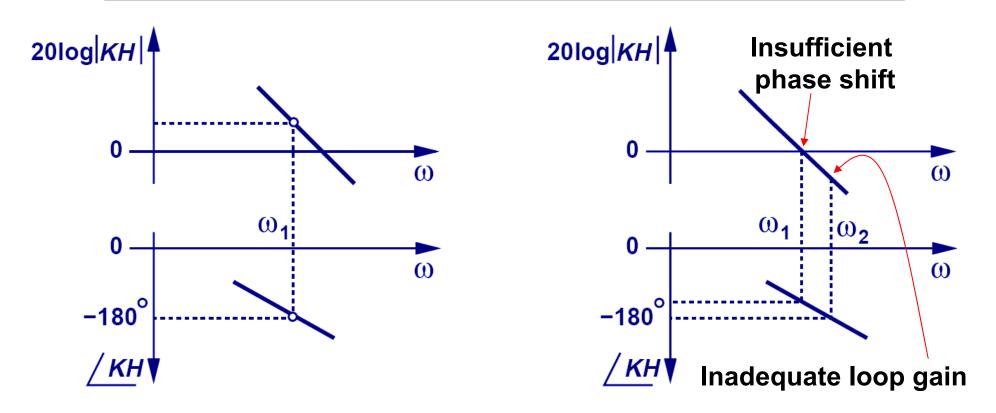
Time Evolution of Instability



Oscillation Example 20log|*H*| 0 ω_1 ω_2 ω (log scale) ω_1 0 ω (log scale) 0 -90 -180 -270[°] /н (c)

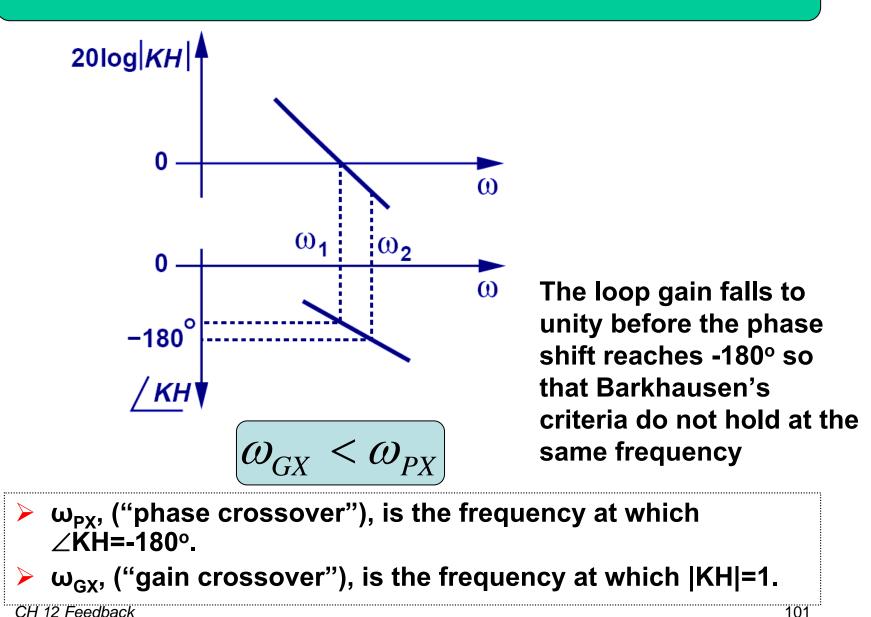
This system oscillates, since there's a finite frequency at which the phase is -180° and the gain is greater than unity. In fact, this system exceeds the minimum oscillation requirement.

Condition for Oscillation

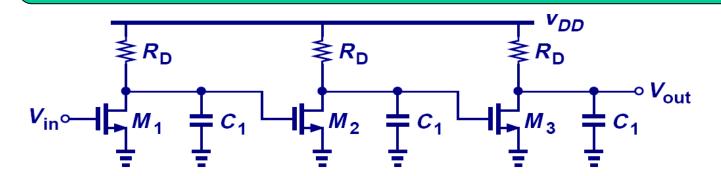


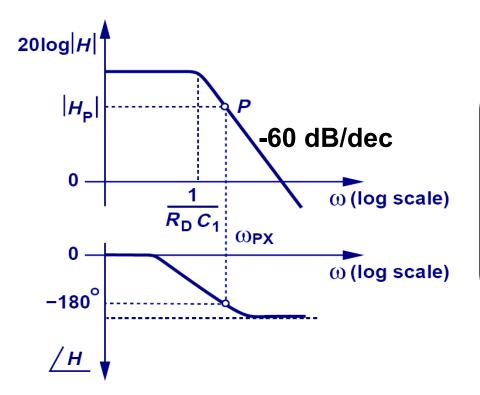
Although for both systems above, the frequencies at which |KH|=1 and ∠KH=-180° are different, the system on the left is still unstable because at ∠KH=-180°, |KH|>1. Whereas the system on the right is stable because at ∠KH=-180°, |KH|<1.</p>

Condition for Stability



Example 12.38: Stability





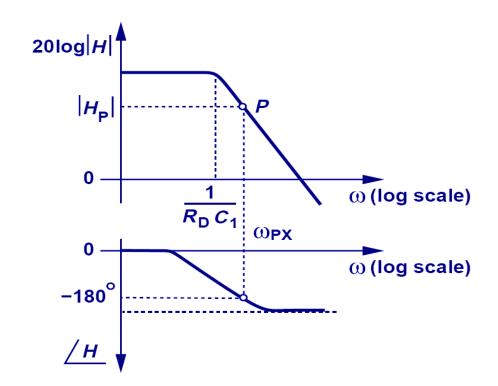
$$A_0 = -(g_m R_D)^3$$

Three poles at $\omega_p = (R_D C_1)^{-1}$
$$H(s) = -\frac{(g_m R_D)^3}{(1 + s / \omega_p)^3}$$

CH 12 Feedback

102

Example 12.38: Stability



For the unity-gain feedback system (K=1) to remain stable, $|H_p| < 1$

CH 12 Feedback

Example 12.38: Stability (Analytical Approach)

$$H(s) = -\frac{(g_m R_D)^3}{(1 + s / \omega_p)^3}$$

$$Hence, \angle H(j\omega) = -3 \cdot \tan^{-1}(\frac{\omega}{\omega_p})$$

$$Since \angle H(j\omega_{PX}) = -180^{\circ}$$

$$\omega_{PX} = \sqrt{3} \cdot \omega_p$$
For $\frac{(g_m R_D)^3}{\left[\sqrt{1 + \left(\frac{\omega_{PX}}{\omega_p}\right)^2}\right]^3} < 1$

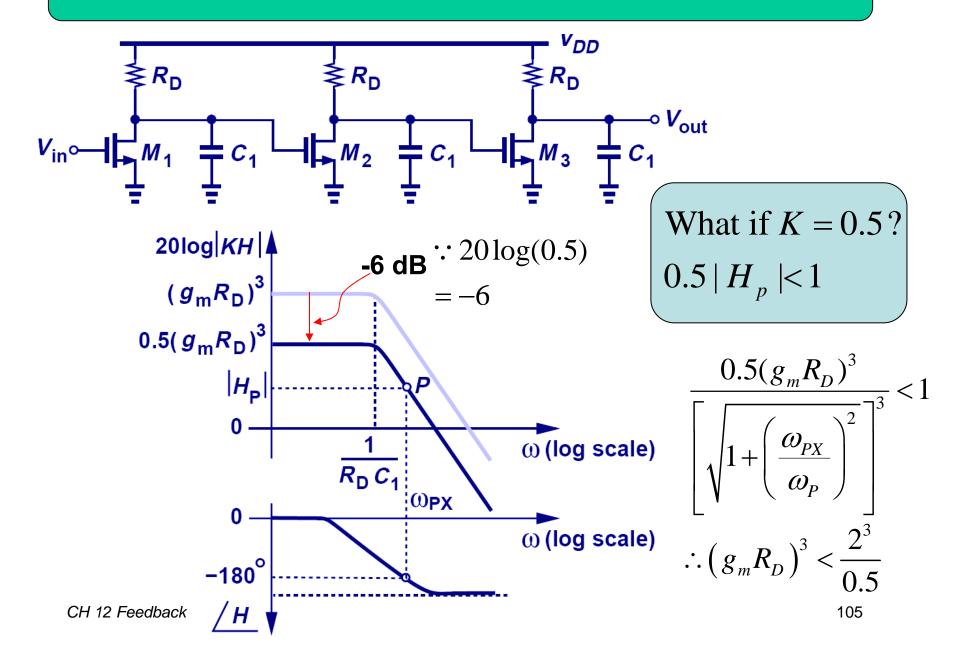
$$H(s) = |H(s)|e^{j\theta}$$

$$H(s) = |H(s)|e^{j\theta}$$

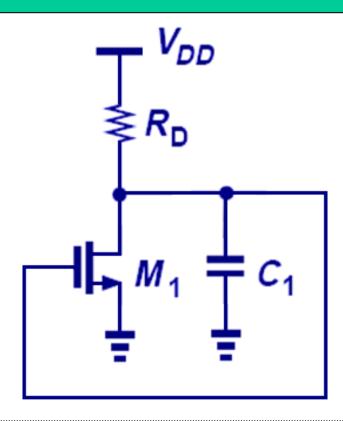
$$H(s) = |H(s)|e^{j\theta}$$

$$H(s) = |H(s)|e^{j\theta}$$

Stability Example II

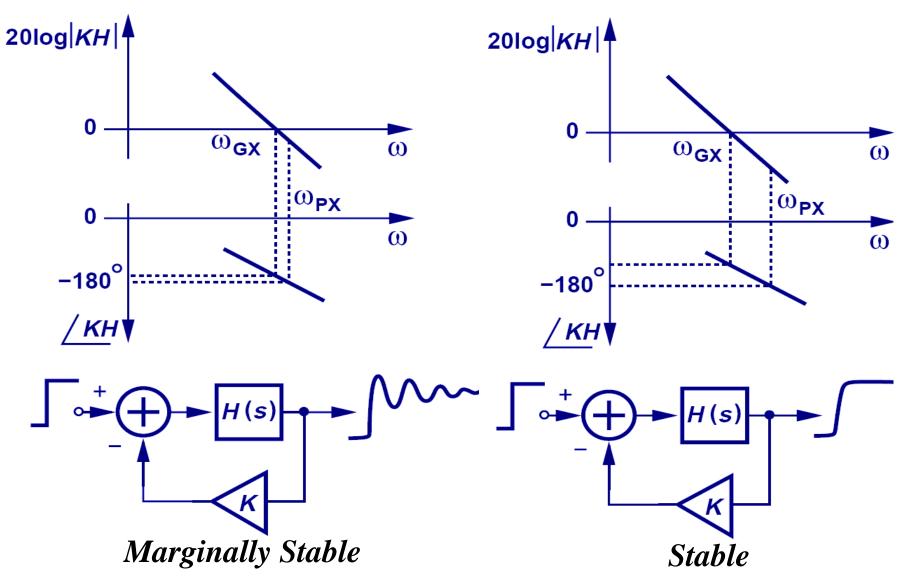


Example 12.39: Single-Stage Amplifier



A common-source stage in a unity-gain feedback loop does not oscillate. Since the circuit contains only one pole, the phase shift cannot reach 180° at any frequency. The circuit is thus stable.

Marginally Stable vs. Stable



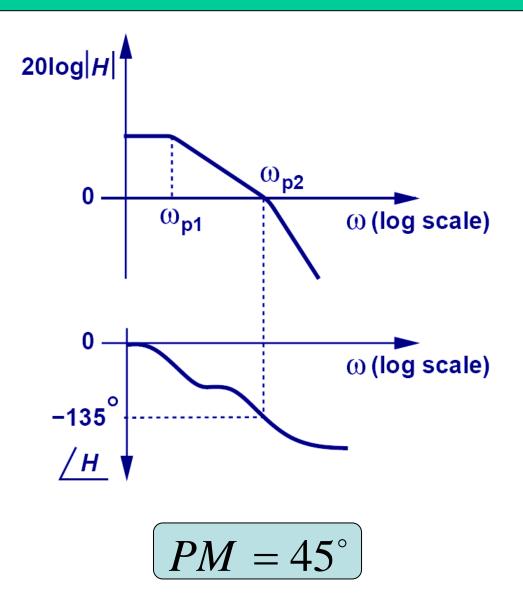
CH 12 Feedback

107

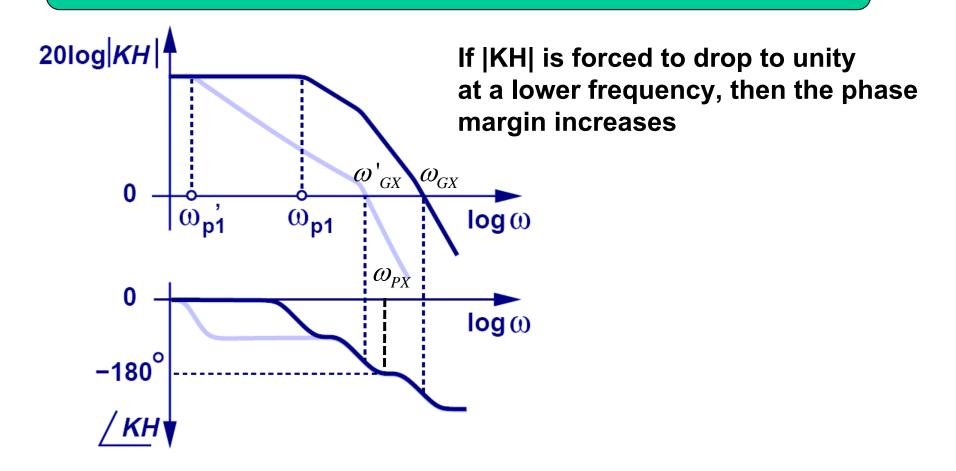
Phase Margin

- > Phase Margin = $\angle H(\omega_{GX})$ +180
- The larger the phase margin, the more stable the negative feedback becomes

Example 12.41: Phase Margin

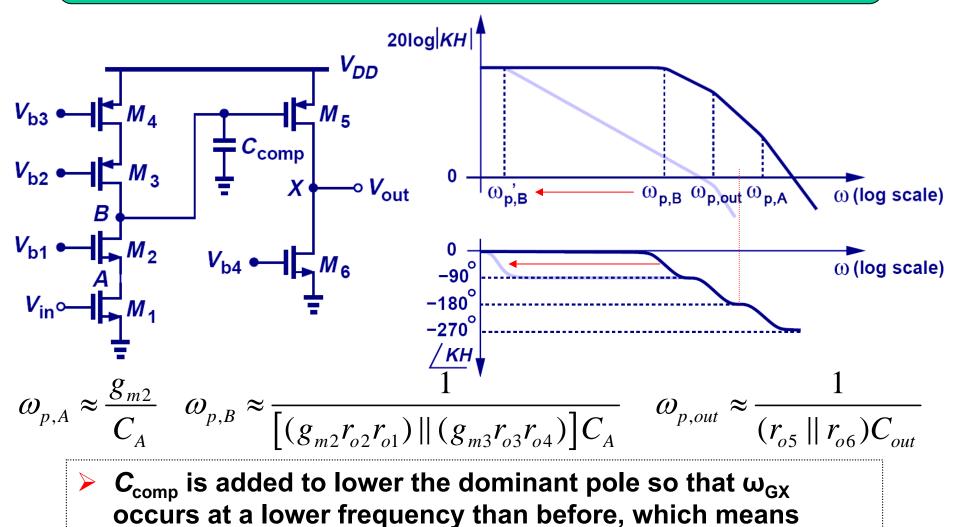


Frequency Compensation



> Phase margin can be improved by moving ω_{GX} closer to origin while maintaining ω_{PX} unchanged.

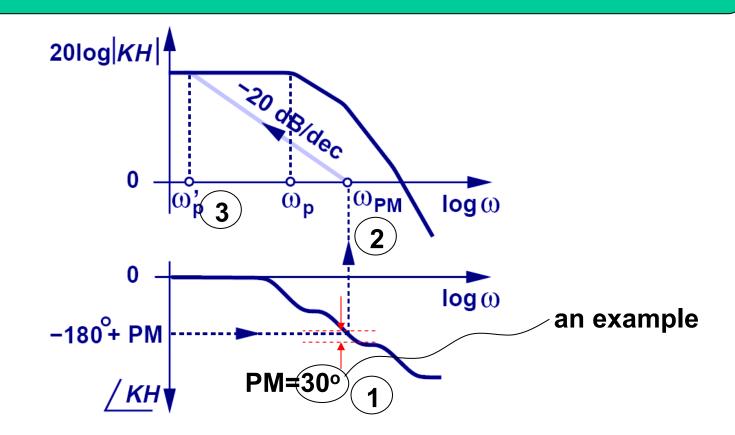
Example 12.42: Frequency Compensation



phase margin increases.

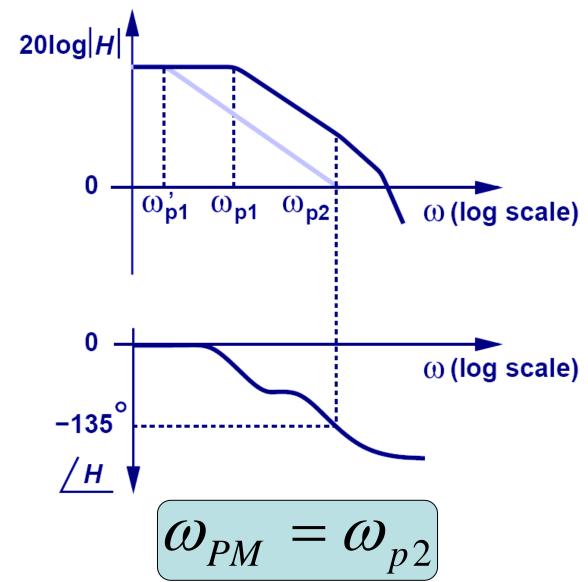
CH 12 Feedback

Frequency Compensation Procedure

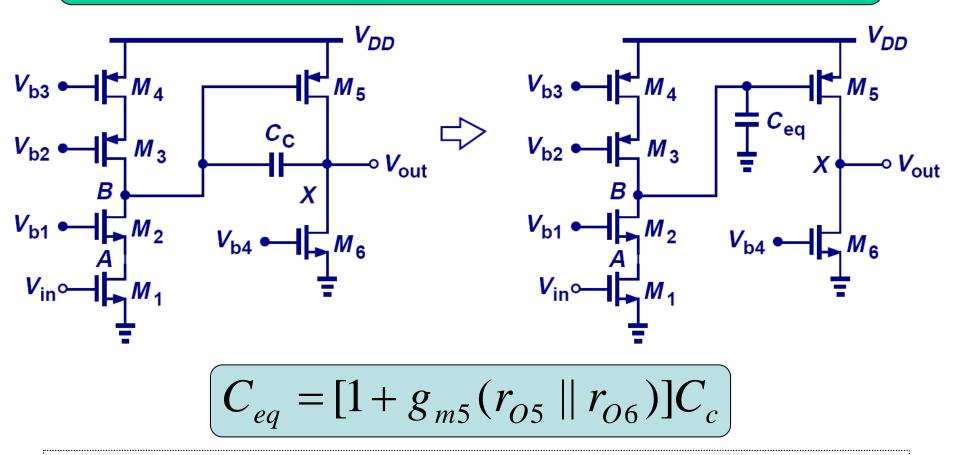


1) We identify a PM, then -180°+PM gives us the new ω_{GX}, or ω_{PM}.
 2) On the magnitude plot at ω_{PM}, we extrapolate up with a slope of -20dB/dec until we hit the low frequency gain then we look "down" and the frequency we see is our new dominant pole, ω_P'.

Example 12.43: 45° Phase Margin Compensation



Miller Compensation



- To save chip area, Miller multiplication of a smaller capacitance creates an equivalent effect.
- Miller compensation shifts not only the dominant pole but also the output pole.

Summary

Concrete understanding phase response using Bode plot.
 "Barkhausen's Criteria" for Oscillation.

