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Content of last lecture

• Heat Conduction
– Thermal conductivity Thermal conductivity 
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– Derivation of Heat Diffusion equation
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– Solution methods



Today

• Steady state one-dimensional conduction
– A plane wallA plane wall
– Radial conduction in cylindrical coordinate

• Thermal conductivity measurement method
– Steady state methody
– Transient method



Feed back on homework #1

• Distinction of formal and informal words.
– Like, a little bit, …

• Avoid using subjective, emotional words
– Veryy

• Proper tense (시제)
T t  b   ifi  h   l i• Try to be more specific when you explain

– Use numbers if possible, take examples 
B  f  bl  f f il f l  th  • Maintain a critical attitude

• 한국말을영어로직역하려고하지말고, 이에적합한영어

Because of many problems of fossil fuel energy, the 
importance of renewable energy is increased. 

,
표현이무얼까라고생각할것.

• Run the spelling check – MS Word 



Feed back on homework #1

• Why is the earth hot?
• Why is there a thermal gradient?• Why is there a thermal gradient?

• Decay of radioactive element.
H t i t i  f th  th• Hot interior of the earth



Feed back on homework #1

• What about the disadvantage of geothermal energy? 
• Why don’t we use it now? Economic feasibility???• Why don t we use it now? Economic feasibility???
• What about the safety of power plant in tectonic boundaries?
• Why doesn’t Korea build a geothermal power plant?



Homework #2



Thermal Resistance (열저항)

• Thermal resistance for conduction in a plane wall
– From Fourier’s lawFrom Fourier s law
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Analogy with electrical 
resistance

– From Newton’s law of cooling (convection)
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Thermal resistance for conduction
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– From Newton s law of cooling (convection),
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1D steady state solutions
Pl  llPlane wall

– 1D, steady state, no heat generation,
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– From constant heat flux
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Conduction
Stead state one dimensional cond ctionSteady-state one dimensional conduction

– Temperature distribution,

,2 ,1 ,1( ) ( )s s s
xT x T T T
L

  

– Conduction heat transfer rate,
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1D steady state solutions
Composite all (la ered rock) Composite wall (layered rock) 

– Equivalent thermal conductivity for a 
series composite wall (layered rock).
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1D steady state solutions
di l d ti  i  li d i l llradial conduction in cylindrical wall

– 1D, Steady state, no heat generation,
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– Heat transfer rate is a constant in the 
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radial direction.
– Assuming constant k, 
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1D steady state solutions
di l d ti  i  li d i l llradial conduction in cylindrical wall

– Temperature distribution 
associated with radial conduction 
through a cylindrical wallthrough a cylindrical wall
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– Heat transfer rate is,
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1D steady state solutions
SSummary



Hydraulic conductivity measurement
Two groups of methods (Beardsmore & Cull  2001)Two groups of methods (Beardsmore & Cull, 2001)

• Steady-state method
– Divided-bar apparatusDivided bar apparatus

• Transient method
– Needle probe



Hydraulic conductivity measurement
St d  St t  M th dSteady State Method

– Use a ‘divided-bar apparatus’
– Measure the ‘k’ directly 2 1

x
T Tq k

L
 y

– Takes long time to achieve thermal equilibrium
More accurate than ‘transient method’

x L

– More accurate than ‘transient method’
– Rock sample in discs or cylindrical shape
– Top and bottom sections of the bar maintained 

at constant but different temperatures (warm 
d t th  t ! Wh ?)end at the top! Why?).

Beardsmore and Cull, 2001



Hydraulic conductivity measurement
T i t M th dTransient Method

– “Needle probe method” is the 
best known method.

– k can be deducted from the rate 
at which its T changed in 
response to an applied heat response to an applied heat 
source.
Measure the thermal diffusivity – Measure the thermal diffusivity 
(α)and thermal conductivity is 
calculated  need to know ρρ
and cp.
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Single needle probe Dual-needle probe

– Less accurate than ‘steady state’ 
method

p

Beardsmore and Cull, 2001



Hydraulic conductivity measurement
T i t M th d (2)  lTransient Method (2) - an example

– With a line source of heat 
and a temperature sensor 
packed closelypacked closely,

  / 4 ln( ) /lk Q t T  

– Ql : applied heat per unit 
length(W/m)
t :   time (second)t :   time (second)
T: Temperature (K)

Fi d  li it  d bt i  k– Find a linearity and obtain k
P= V x I = 5 x 0.25 = 1.25W
Q=P/0 1(cm)=12 5W/mQ P/0.1(cm) 12.5W/m
Gradient between 60 & 200 sec is ~3.449
K = 12.5/4π x 3.449 = 3.43 W/mK

Data from Beardsmore and Cull, 2001



Heat Diffusion Equation

• Verbal description of heat diffusion equation
– The rate at which the temperature at a point is changing with time The rate at which the temperature at a point is changing with time 

is proportional to the rate at which the temperature gradient at that 
point is changing in the direction of heat flow. (Middleton and 

il k  1999)wilcock, 1999)
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Last lecture

• Steady state one-dimensional conduction
– A plane wallA plane wall
– Radial conduction in cylindrical coordinate

• Thermal conductivity measurement method
– Steady state methody
– Transient method

Ti  d d  ( i ) d i• Time dependent (transient) conduction
• Convective heat transfer, thermal expansion & thermal stress Convective heat transfer, thermal expansion & thermal stress 

(very briefly)



Conduction
T i t t tTransient state

• If a solid body is suddenly subjected to a change in 
environment, some time must elapse before an equilibrium 
temperature condition will prevail in the body. Transient 
heating/cooling process takes place before equilibrium 
( t d  t t )(steady state).

• Transient (or unsteady) problem:( y) p
– Arise when boundary conditions are changed

E ) if f  t t  i  lt d  t t  t h i t i  – E.g.) if surface temperature is altered, temperature at each point in 
the system will also begin to change  The change will continue 
until a steady state temperature distribution is reacheduntil a steady state temperature distribution is reached.



Time dependent conduction
i i fi it  h lf  blsemi-infinite half space problem

• A single identifiable surface + a solid extends to infinity
• A sudden change of conditions  is imposed at this surface A sudden change of conditions  is imposed at this surface 

transient, 1D conduction occur within the solid.
S i i fi it  lid (h lf ) id   f l id li ti  • Semi-infinite solid (half-space) provides a useful idealization 
for many practical problems.
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Time dependent conduction
i i fi it  h lf  blsemi-infinite half space problem

• Derivation for case (1)
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Semi-infinite half space problem
D i ti  (1)Derivation (1)

– Existence of similarity variable, η
– Partial differential equation with x, t  ordinary differential q y

equation with η

4
x

t





– We first transform the pertinent differential operator,
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Semi-infinite half space problem
D i ti  (2)Derivation (2)

– Substituting into 1D diffusion equation,
2 1T T  2
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Boundary conditions become;
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Semi-infinite half space problem
D i ti  (3)Derivation (3)

– Now T is uniquely defined by η. Let’s solve T now. T(η) may be 
obtained by separating variables, such that
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Semi-infinite half space problem
D i ti  (4)Derivation (4)
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– The final solution can be also described as;
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Semi-infinite half space problem
D i ti  (5)Derivation (5)

– Surface heat flux may be obtained by applying Fourier’s law,
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Time dependent conduction
i i fi it  h lf  blsemi-infinite half space problem
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Time dependent conduction
i i fi it  h lf  blsemi-infinite half space problem



Time dependent conduction
i i fi it  h lf  blsemi-infinite half space problem

– For granite from Forsmark, 
SwedenSweden,

– k = 3.58 W/mK, ρ: 1000 kg/m3, 
cp: 796 (J/kg·K)  α = 4.5x10-6

m2/secm2/sec

– Homework#2 Q3. Reproduce 
this graph.



Time dependent conduction
  ith fi d T t b th da cases with fixed T at both ends

tT=0.1

– Thermal relaxation time: a characteristic time for heat to diffuse 
th h th  l (Middl t  d Wil k 1999)  d  thi k  f 

Middleton and Wilcock, 1999

through the layer(Middleton and Wilcock,1999). d: thickness of 
layer, α: diffusivity. 2 /Tt d 



Convective heat transfer

• What will be the factors that make these two cases different?

Saturated Porous media
- Fluid NOT flowing

T0=100°C TL=15°C

Saturated Porous media
Fluid Flowing

T0=100°C TL=15°C

- Fluid Flowing

• These will be covered after we deal with fluid flow in rock 



Summary

• Transient conduction problem
– Temperature changes with timeTemperature changes with time

• Coupled process associated with thermal transfer
– Convective heat transfer
– Thermal expansion and thermal stressp

Fl id fl  i  k  k• Fluid flow in rock - next week
– Porous rock
– Fractured rock



References used for this lecture

• Beardsmore and Cull, 2001, Crustal Heat Flow – A guide to 
measurement and modelling, Cambridge Univ Press

• Somerton WH, 1992, Thermal properties and temperature-
related behavior of rock/fluid systems, Elsevierrelated behavior of rock/fluid systems, Elsevier

• Middleton GV and Wilcock PR, 1999, Mechanics in the Earth 
d E i t l S i  C b id  U i Pand Environmental Sciences, Cambridge Univ Press


