Geothermal Energy (Week 10, 4 Nov)

- Power Generation

민기복

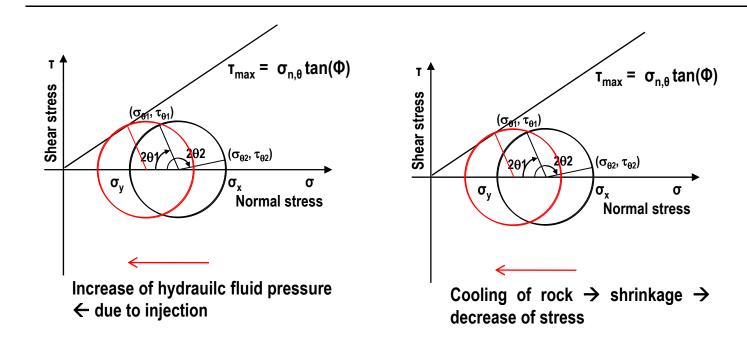
Ki-Bok Min, PhD 서울대학교 에너지자원공학과 조교수 Assistant Professor, Energy Resources Engineering

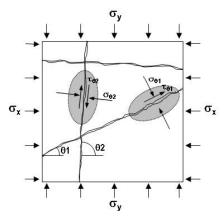
Field trip (석모도 지열개발 프로젝트)

Environmental Impact General Impact of electricity generation

- Gaseous emissions to the atmosphere
- Water Pollution
- Solid emissions to the atmosphere
- Noise pollution
- Land usage
- Land subsidence
- Induced seismicity
- Induced landslides
- Water usage
- Disturbance of wildlife habitat and vegetation

Environmental Challenges


SEOUL NATIONAL UNIVERSITY


- Land subsidence
- Induced seismicity
- Induced landslide
- Noise pollution
- Disturbance of wildlife habitat and vegetation

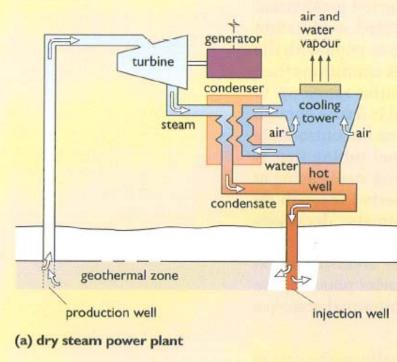
Can be serious and careful study is needed

Seismicity induced by fluid injection shear slip induced by hydraulic pressure increase

- Sources of seismicity Microseismicity
 - change of hydraulic pressure
 - cooling of rock

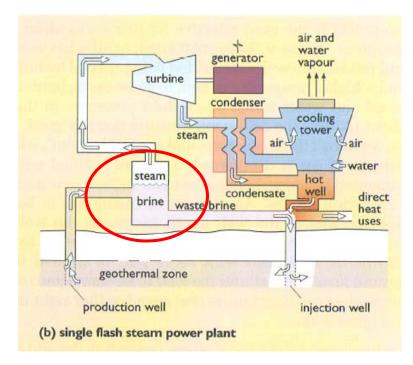
- Geothermal Power Generation
 - Power Generation technology cannot be considered in isolation from the geological aspects – we need to understand this.
 - Design consideration
 - Type of Geothermal power generation
 - Status

Types of power generation



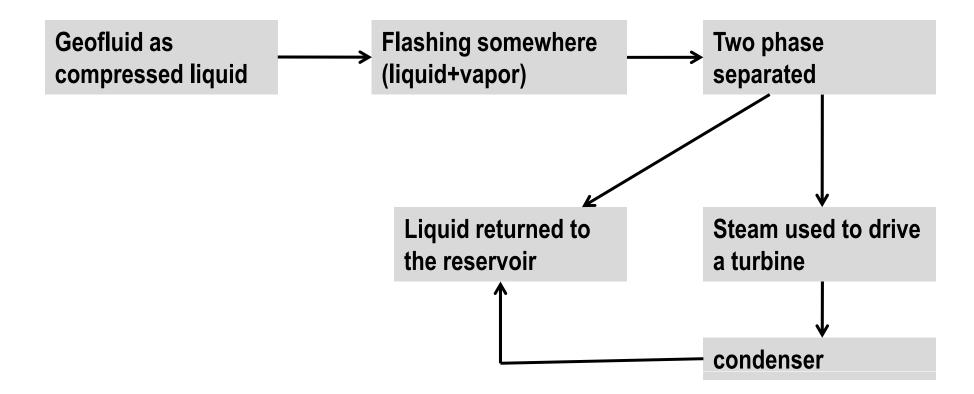
- Dry steam power plant
- Flash steam power plant
 - Single flash (1-flash)
 - Double flash (2-flash)
 - Triple flash (3-flash)
- Binary cycle power plant
 - Binary cycle
 - Combined flash-binary
- Hybrid fossil-geothermal systems
- Combined heat and power plant

Types of power generation Dry steam power plant (건조증기방식)


- Dry steam spin the turbine
- The most efficient type
- However, dry steam reservoir is not common (~5% of reservoir >200°C)

Types of power generation Flash steam power plant (증발증기 방식)

- Use separator to separate into distinct steam and liquid phase
- Mainstay of geothermal power industry
- Single/double/triple flash



Types of power generation Flash steam power plant

SEOUL NATIONAL UNIVERSITY

• General structure

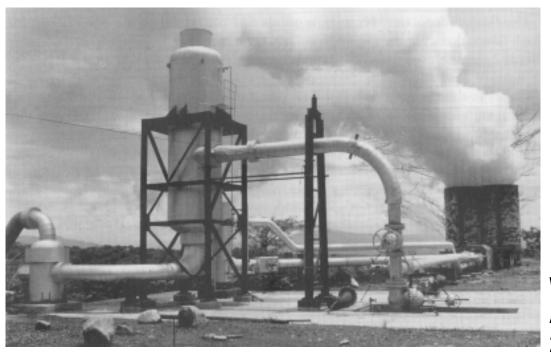
Types of power generation Flash steam power plant

SEOUL NATIONAL UNIVERSITY

- Flashing process: transition from a pressurized liquid to a mixture of liquid and vapor, as a result of lowering the geofluid pressure below the saturation pressure* corresponding to the fluid temperature (DiPippo, 2008)
- The flashing process occur in (flashing point may change though);
 - reservoir as the fluid flow through the permeable formation with an accompanying pressure drop
 - production well anywhere from the entry point to the wellhead
 - Inlet to the separator as a result of a throttling (조절) process by a control valve

*Saturation pressure: the pressure for a corresponding saturation temperature at which a liquid boils into its vapor phase

Design consideration


- Separator
- Gathering system
- Pressure losses
- Turbine blade integrity
- condenser

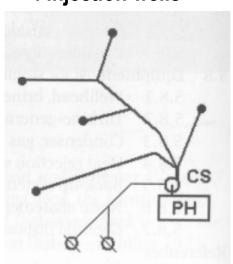
Design consideration Separator

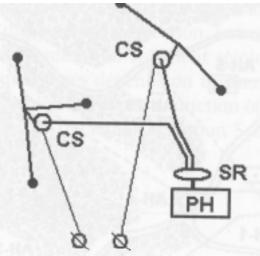
SEOUL NATIONAL UNIVERSITY

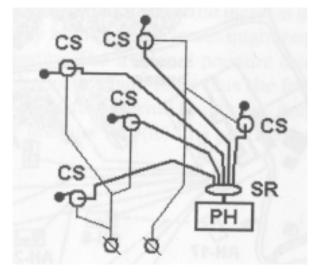
- Separator:
 - Important to separate two phase efficiently liquid entrained in the steam can cause scaling and/or erosion of piping and turbine component

Wellhead separator system at Ahuachapan, El Salvador (DiPippo, 2008)

Design consideration Gathering system




SEOUL NATIONAL UNIVERSITY


• Gathering system design:

DiPippo, 2008

- A typical 30MW 1-flash power plant needs 5-6 production wells
- : production wells
 : injection wells
- PH: powerhouse CS: cyclone separator SR: steam receive

Separator at the power house

Satellite separator

Individual wellhead separaator

Design consideration Pressure losses

SEOUL NATIONAL UNIVERSITY

• Frictional pressure loss in the steam line

$$\Delta P_f = 0.8 \frac{L\dot{m}^{1.85}}{\rho D^{4.97}}$$

- L: length of the pipe (ft)
- m: mass flow rate (lbm/s)
- ρ : density (lbm/ft³)
- D: inside diameter of the pipe (in)
- Diameter plays a huge role in the pressure drop
 - Balance between larger pipe and extra cost (thermodynamiceconomic optimization study)

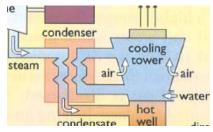
Design consideration Pressure losses

SEOUL NATIONAL UNIVERSITY

• Frictional pressure loss in the liquid line

$$\Delta P_f = 1.75 \times 10^{-4} \frac{fL\dot{m}^2}{\rho D^5}$$

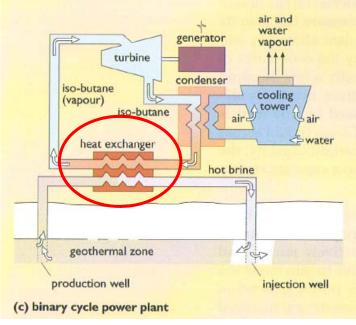
- f: friction factor affected by pipe internal roughness, Reynolds number and Diameter
- Pressure loss due to gravity


$$\Delta P_g = \rho g \Delta H$$

 Pressure loss in a two-phase, steam-liquid pipeline is far more complex

Design consideration Blade & Condenser

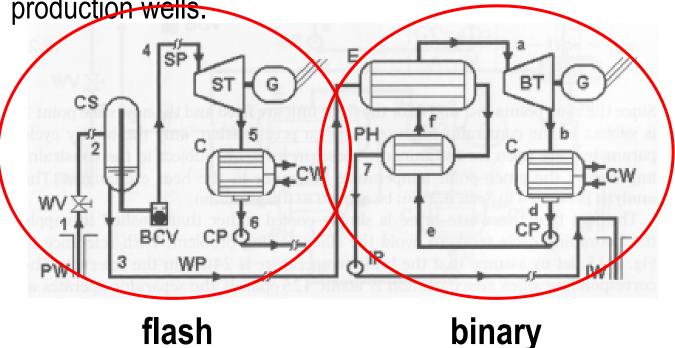
- Blade integrity:
 - Typical geothermal turbine inlet steam conditions are saturated with pressures that range from 0.5 – 1 MPa. As a result significant amounts of moisture appear in the steam path → significant amount of moisture → blades erosion
- Condenser:
 - Geothermal steam condenses when it passes through cooling water
 - CO_2 , H_2S in steam do not condense \rightarrow need to be removed (otherwise increase overall condenser pressure)



Types of power generation Binary cycle power plant

SEOUL NATIONAL UNIVERSITY

- Uses <u>a secondary working fluid</u> with a lower boiling point than water: pentane, butane
- Well established technology for utilizing low- to moderate temperature geothermal fluids
- Also known as Organic Rankine Cycle (ORC) plant
- With geofluid temperature < 150°C
- 162 units in operation which is 32% of all geothermal units (DiPippo, 2008*).
 But this generate only 4% of the total nower



Boyle, 2004, Renewable Energy

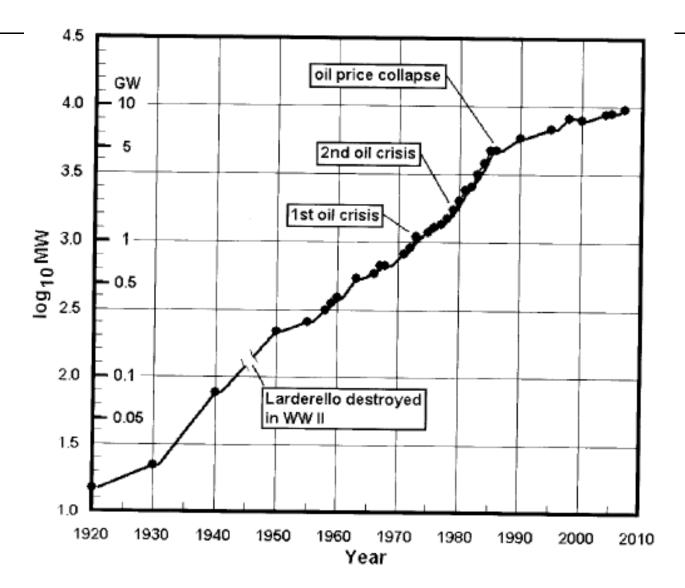
Types of power generation Hybrid combined flash-binary

- Combined flash-binary
 - add a binary unit between the separators and the reinjection wells
 - Additional power generated by the binary cycle without any new production wells.

Types of power generation Hybrid fossil-geothermal systems

- Combine fossil and geothermal energy inputs
- Fossil-superheat system
 - Fossil fuel is used to enhance the performance of geothermal plants
- Geothermal-preheat system
 - Use geothermal fluids to enhance the performance of fossil-fueled power plants
 - Geothermal resource must be located close to the site of the fossil plant

Types of power generation Combined heat and power plants



- Combine power generation and direct heat usage in a single geothermal plant
- Overall utilization efficiency of the resource is enhanced
- When heat is provided to the community adjacent to the plant, it demonstrates to the community that the plant is a 'good neighbor'.

Status

SEOUL NATIONAL UNIVERSITY

DiPippo, 2008

Status of geothermal power plant

SEOUL NATIONAL UNIVERSITY

		DiPippo, 2008		
Rank	Country	No. units	MW	
1	USA	193	2556	
2	Philippines	58	1980	
3	Mexico	37	953	
4	Italy	33	811	
5	Indonesia	15	807	
6	New Zealand	39	572	
7	Japan	22	538	

- Total: 504 units, 9513 MW, Average MW/unit: 19

- Ex) Australia: 1 unit, 0.15 MW \rightarrow in ten years???
- In the next 50 years, 100 GW in US alone (MIT, 2006)

Country	Dry steam	1-Flash	2-Flash	3-Flash	Binary	Flash- binary	Hybrid	Total	
United States	1462	49	707.3	49	257.2	25	6	2555.5	ATIONAL UNIVERSIT
Philippines	0	1325.44	496.74	0	15.73	142	0	1979.91	
Mexico	0	480	470	0	3.3	0	0	953.3	
Italy	790.5	20	0	0	0.7	0	0	811.2	
Indonesia	140	667	0	0	0	0	0	807	
New Zealand	55	85	226.8	44.8	21.5	139	0	572.1	
Japan	23.5	351.75	160	0	2.49	0	0	537.74	
Iceland	0	351.7	60	0	10.7	0	0	422.4	
El Salvador	0	160	35	0	9.3	0	0	204.3	
Costa Rica	0	144	0	0	19	0	0	163	
Kenya	0	116.4	0	0	1.8	_	-		. /
Nicaragua	0	101.4	0	0	7.5	Dry s	team:	26	%
Russia	0	79	0	0	0	Sinal	o floci	a. 19	0/
Papua-New Guinea	0	56	0	0	0	Single	e nasi	n: 42°	70
Guatemala	0	0	0	0	0	Doub	le flas	sh: 23	%
Turkey	0	20.4	0	0	7.4				
China (Tibet)	0	0.6	26	0	1	Binar	y:	8%)
Portugal (San Miguel)	0	3	0	0	13	0	0	16	
France (Guadeloupe)	0	4.7	10	0	0	0	0	14.7	
Austria	0	0	0	0	1.25	0	0	1.25	
Thailand	0	0	0	0	0.3	0	0	0.3	
Germany	0	0	0	0	0.2	0	0	0.2	
Australia	0	0	0	0	0.15	0	0	0.15	
Totals	2471	4015.39	2191.84	93.8	372.52	362.6	6	9513.15	
Percent of total	25.97	42.21	23.04	0.00	2.00	3.81	0.06	100.00	

Table A.3 Geothermal power plants; by installed MW for each type of plant.

Country	Dry steam	1-flash	2-flash	3-flash	Binary	Flash-binary	Hybrid	Total
United States	25	3	28	1	125	10	1	193 TIONAL UNIVERS
Philippines	0	37	10	0	6	5	0	58
New Zealand	1	3	9	4	6	16	0	39
Mexico	0	29	5	0	3	0	0	37
Italy	31	1	0	0	1	0 0	0	33
Iceland	0	14	2	0	8	0	0	24
Japan	1	16	3	0	2	0	0	22
Indonesia	3.0	12	0	0	0	0_23.5	0	15
China - Tibet	.0	2	10	0	1	0	0	13
Russia	0	12	0	0	0	0	0	12
Guatemala	0	0	0	0	0	9	0	Q
Kenya	0	6	0	0	1	Dry stea	m	12%
El Salvador	0	5	1	0	1011	-		
Nicaragua	0	6	0	0	1 1	Single fl	ash:	32%
Costa Rica	0	4	0	0	1 56	•		
Papua-New Guinea	. 0	6	0	0	0 0	Double f	lasn:	14%
Portugal (San Miguel)	0	1	0	0	0 0	Binary:		41%
Turkey	0	1	0	0	0 1	Dinary.		H I/0
France (Guadeloupe)	0	1	1	0	0	0 0	0	2
Austria	0	0	0	0	2	0	0	2
Thailand	0	0	0	0	1	0	0	1
Germany	0	0	0	0	1	0	0	1
Australia	0	0	0	0	1	0	0 0	1
Totals	61	159	69	5	162	46	1	504
Percent of total	12.10	31.55	13.69	0.99	32.14	9.13	0.20	100

Table A.4 Geothermal power plants: by number of units for each type of plant.

DiPippo, 2008

Summary of geothermal power plants: by # of units and installed MW (DiPippo, 2008)

Туре	Dry Steam	1-flash	2-flash	3-flash	Binary/fla sh-binary	hybrid	Total
No. unit	61	159	69	5	208	1	504
No. unit,%	12	32	14	1	41	0.2	100
MW. totals	2471	4015	2192	94	735	6	9513
MW, %	26	42	23	1	8	0.06	100
MW/unit	41	25	32	19	2.3/7.88	6	19

– MW/unit: Dry steam>2 flash > 1 flash> binary

- Geothermal Power Generation
- Design consideration:
 - Separator
 - Gathering system
 - Pressure losses
 - Turbine blade integrity
 - condenser
- Type of Geothermal power generation
- Status

- DiPippo, 2008, Geothermal Power Plants, 2nd Ed., Elsevier
- MIT, 2006, The future of geothermal energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st century, US Department of Energy, http://www1.eere.energy.gov/geothermal/future_geothermal.html