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Chapter 1

Thermondynamics and Phase Diagrams
- Equilibrium

- Single component system

Gibbs Free Energy
as a Function of Temp. and Pressure

- Driving force for solidification

- Classification of phase transition



Chapter 1.1
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Chapter 1.1
Relative Stability of a System @) Gibbs Free Energy

G=H-TS

H : Enthalpy ; Measure of the heat content of the system

H=E+ PV
H =~ E for Condensed System

E : Internal Energy, Kinetic + Potential Energy of a atom within the system

Kinetic Energy :
Atomic Vibration (Solid, Liquid)
Translational and Rotational Energy in liquid and gas.

Potential Energy : Interactions or Bonds between the atoms within the system

T : The Absolute Temperature

S : Entropy, The Randomness of the System



1.2 Single component system "%
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H=E+ PV >dE:®_PdV

When V is constant

sQ _dE  _dV/ oQ oE ok
dT  dT +P C, = (8—T)V = (a—T)v Cv — (a—.l_)v or E= .[Cv dT

Aoz VE UEGHHA ot= 2 (Cv)0l HEDI 20 vV 2CHPE L EBHA
S Xlot= A (Cp)Ol & - pressure ex)1 atm,

When pressure is const.

dH =dE + PdV +VdP

H=E+PV
=R —ow+ PdV +VdP
- & - PdV +PdV +VdP
dH 8Q =X +VdP
dT dT dT
j—$: 0 when P is constant (di)P — (Q) 5 H= ijdT
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Molecules have internal structure because they are composed of atoms
that have different ways of moving within molecules. Kinetic energy

stored in these internal degrees of freedom contributes to a substance’s

specific heat capacity and not to its temperature. i1


http://upload.wikimedia.org/wikipedia/commons/2/23/Thermally_Agitated_Molecule.gif

Table of specific heat capacities

Substance Phase Cp Cp Cv h\e/;):lir;‘s;::'ﬁy
J/gK J/mol-K J/mol-K 3/ emiK

Aluminium Solid 0.897 24.2 2.422
Copper solid 0.385 24.47 3.45
Diamond solid 0.5091 6.115 1.782
Gold solid 0.1291 25.42 2.492
Graphite solid 0.710 8.53 1.534
Iron solid 0.450 25.1 3.537
Lithium solid 3.58 24.8 1.912
Magnesium solid 1.02 24.9 1.773
Silver solid 0.233 24.9

Water liquid (25 °C) 41813 75.327 74.53 4.184
Zinc solid 0.387 25.2

All measurements are at 25 °C unless otherwise noted.
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Draw the plots of (a) C,vs. T, (b) Hvs. T and (c) Svs.

How is Cp related with H and S?

H=7?

p =

&)

298

-
H=[ c.dT

H =0 at 298K for a pure element

In 1ts most stable state.

|
Enropy S_T
C, 0S TC
— — = | —/— S= —PdT
S=7 7 (a jp J T

Ce
0 -7 (K)
(a) 0
[}
Enthalpy slope=Cp
H
0 =T (K)
(b)
)
Entropy
)
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(c) 0



Compare the plots of Hvs. T and G vs. T.

dG = (%j dT +(§j dP
oT ) oP J;
\slope: Cp
G=H-TS
=10 46— dH —d(TS)=dE +d(PV)—-d(TS)
s dG =TdS — PdV + PdV +VdP —TdS — SdT
=VdP — SdT
/Slope:rS
G
(@j -5, (§j =V
oT ), OP )
dG =VdP - SdT

G(P.T)=G(P, T,)+ [V (T,,P)dP— [ 'S(P,T)dT
’ ° 14



1.2.1 Gibbs Free Energy as a Function of Temp.

| | , H (liquid) 9
Which is larger, H- or H>? v

HL > HS at all temp.

Which is larger, St or SS?
St >SS at all temp.

-7 (K)

— Gibbs free energy of the liquid
decreases more rapidly with increasing
temperature than that of the solid.

solid _,! liquid =
Stable & siqtia f“"'”"”
|

Fig. 1.4 Variation of enthalpy (H) and free energy (G) with temperature for the

soliq_ar!d liquid _phases of a pure metal. L is the latent heat of melting, T, the
equilibrium melting temperature.

« Which is larger, Gt or G at low T?

e GL> GS (atlow Temp) and GS> Gl (at high Temp)
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Considering P, T G =G(T,P)
dG =VdP —SdT

G(P.T)=G(P,T,)+ [ V(T,,P)dP—[ S(P,T)dT

1 S(water) = 70 J/K
S(vapor) = 189 J/K

|
|
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|
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7 III
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N transformation
G .
dlamOnd
2.9 kJ \
I 9 S(graphite) = 5.74 J/K,

,
White S(diamond) = 2.38 J/K,
P =1 bar
I

300 800 1300 T (K)
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1.2.2 Pressure Effects
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Fig. 1.5 Effect of pressure on the equilibrium phase diagram for pure iron.



1.2.3 Driving force for solidification

Gt = HL-TSt AG=AH-TAS  AG=0=AH-T,AS
GS = HS-TSS L: AH=HL-HS AS=AHIT =LIT,
Latent heat
( ) AG =L-T(L/IT.)=(LAT)/T,
T=T,-AT
(eq.1.17)
o=
2 AG
O AG =—
@ : T,
i 6 S P
S
o IS " g Gt
|
l
§ Tm Temperature
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4. Solidification: Liguid —— Solid

19
4 Fold Anisotropic Surface Energy/2 Fold Kinetics, Many Seeds



4.1.1. Homogeneous Nucleation

Liquid
Liquid
olid
a b
61 62: 61*‘ ﬁG
S L
G, = (Vs "'VL)G\I/_ G, =VG; +V G, + Ay 7q

G’, G, : free energies per unit volume
. . L S
AG =G, -G, =-V,(Gy -G))+ Ay 7

for spherlcal nuclei (isotropic) of radius : r
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4.1.1. Homogeneous Nucleation

ach

Why r*is not defined by AG, = 07?

interfacial
energy ocr ?

r <r*:unstable (lower free E by reduce size)
r > r* : stable (lower free E by increase size)
r* . critical nucleus size

AG,

* —> dG=0

Volume 5
free energy ccr”AT

Unstable equilibrium

Fig. 4.2 The free energy change associated with
homogeneous nucleation of a sphere of radius r.
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1.2.3 Driving force for solidification

Gy
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Classification of phase transition

* First Order Phase Transition at T+

— G 1s continuous at T;

— First derivatives of G (V, S. H) are discontinuous at T

(0G) ~(0G) G
=), T \ar, HZG—T{

— Second derivatives of G (o, p. C,) are discontinuous at T

(o) _ifary o cafan)
=), T vlar/, ~ v \ap/,

— Examples: Vaporization, Condensation, Fusion, Crystallization.
Sublimation.
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(Pr.5.9).

On the graph G(T) at P,N = const,
always

dG/dT

1)
oT P,N

the slope IS

negative:

The First-Order Transitions

Latent heat
Energy barrier
Discontinuous entropy, heat capacity

In the first-order transitions, the
G(T) curves have a real
meaning even beyond the
intersection point, this results in
metastability and hysteresis.

An energy barrier that prevents
a transition from the higher p to
the lower p phase. (e.g., gas,
being cooled below T,, does not
immediately condense, since
surface energy makes the
formation of very small droplets
energetically unfavorable).

Water in organic cells can
avoid freezing down to —20°C
in insects and down to —47°C
in plants.

G | :
\\|
\\
|
i >
.
S ! |
i/’_
| y AS=L/T
—
CT@_)
P,N
Cp t —
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* Second Order Phase Transition at Ty

— G 1s continuous at T

— First derivatives of G (V, S. H) are continuous at T

_(9G) _ [9G) e
V_\ap)r > Lar/, H=0C

— Second derivatives of G (o, B, C)) are discontinuous at Ty

. _(oH) _1(av) _—1(ay)
Pt/ P vlar/, ~ v\ap/;

— Examples: Order-Disorder Transitions in Metal Alloys, Onset of
Ferromagnetism. Ferroelectricity. Superconductivity.

25



Pressure

The Second Order Transition

Second-order transition
== No Latent heat c !

critical )
point Continuous entropy

gas

-

OK Temperature

v

As one moves along the coexistence curve toward the critical T
point, the distinction between the liquid phase on one side and St
the gas phase on the other gradually decreases and finally
disappears at (T, P:). The T-driven phase transition that occurs AS=0
exactly at the critical point is called a second-order phase |
transition. Unlike the 1st-order transitions, the 2nd-order |
transition does not require any latent heat (L=0). In the second- s T
order transitions (order-disorder transitions or critical Ce :T( j ©
phenomena) the entropy is continuous across the transition. The "N
specific heat C, =T(8S/8T), diverges at the transition. Cp
Whereas in the 15t-order transitions the G(T) curves have a real
meaning even beyond the intersection point, nothing of the sort

can occur for a 2"d-order transition — the Gibbs free energy is a
continuous function around the critical temperature.

v
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