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•
 

Interphase
 

Interfaces in Solid (α/β)

- Glissil Interfaces

- Solid/Liquid Interfaces

Contents for previous class

Faceted interface Diffusion interface

 
: 대부분의

 

금속

 

~ R>  Lf / Tm

 

≈

 
4R  >

: 전위의

 

이동에

 

의해

 

전진할

 

수

 

있는

 

반정합계면

Shockley partial dislocation sliding            Stacking fault region
평활

 

이동

 

전위가

 

있는

 

계면의

 

중요한

 

특징: 그

 

면들이

 

결정의

 

모양을

 

변화시킬

 

수

 

있다는

 

것.

1 원자층

 

두께의

 

매우

 

좁은

 

천이대 몇

 

개의

 

원자층에

 

걸쳐서

 

천이가

 

일어남

Types of Interface
-

 
Glissile

 

Interface:

 

Athermal, Shape change

 

Military transformation

-

 

Non-Glissile

 

Interface:

 

Thermal,

 

Civilian transformation원자들의

 

불규칙

 

도약

1) 부정합

 

계면처럼

 

계면

 

이동도가

 

매우

 

높다면,

2) 계면

 

이동도가

 

낮은

 

경우,

3) 계면

 

이동도가

 

매우

 

낮은

 

경우,

ΔμB
i 는 최대

•
 

Interphase
 

migration



3

Contents in Phase Transformation

(Ch1) 열역학과상태도: Thermodynamics

(Ch2) 확 산론: Kinetics

(Ch3) 결정계면과미세조직

(Ch4) 응 고: Liquid  Solid 

(Ch5) 고체에서의확산변태: Solid  Solid (Diffusional) 

(Ch6)고체에서의무확산변태: Solid  Solid (Diffusionless) 

상변태를상변태를
이해하는데이해하는데
필요한필요한

 
배경배경

대표적인대표적인

 
상변태상변태
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• Nucleation in Pure Metals

• Homogeneous Nucleation

• Heterogeneous Nucleation

• Nucleation of melting

Contents for today’s class

Solidification:      Liquid Solid

< Nucleation >

< Growth >

• Equilibrium Shape and Interface Structure on an Atomic Scale

• Growth of a pure solid 1) Continuous growth
: Atomically rough or diffuse interface

2) Lateral growth 
: Atomically flat of sharply defined interface

• Heat Flow and Interface Stability

&



54 Fold Symmetric Dendrite Array

Solidification:      Liquid Solid
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4 Fold Anisotropic Surface Energy/2 Fold Kinetics, Many Seeds

Solidification:      Liquid Solid
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- casting & welding
- single crystal growth
- directional solidification
- rapid solidification

4.1.  Nucleation in Pure Metals

Tm

 

: GL

 

= GS
-

 
Undercooling

 
(supercooling) for nucleation: 250 K ~ 1 K

<Types of nucleation>
-

 
Homogeneous nucleation

 
-

 
Heterogeneous nucleation

Solidification:      Liquid Solid
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Driving force for solidification 

4.1.1. Homogeneous Nucleation

mT
TLG 



L : ΔH = HL – HS

(Latent heat)
T = Tm - ΔT

, 

GL  =  HL – TSL

GS  =  HS – TSS

ΔG = ΔH -T ΔS ΔG =0= ΔH-Tm ΔS

ΔS=ΔH/Tm =L/Tm

ΔG =L-T(L/Tm )≈(LΔT)/Tm
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4.1.1. Homogeneous Nucleation

L
VLS GVVG )(1  SLSL

L
VL

S
VS AGVGVG 2

L
V

S
V GG ,

SLSL
S
V

L
VS AGGVGGG  )(12

SLVr rGrG  23 4
3
4



: free energies per unit volume

for spherical nuclei (isotropic) of radius : r
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4.1.1. Homogeneous Nucleation

Fig. The free energy change associated with 
homogeneous nucleation of a sphere of radius r.

r < r* : unstable (lower free E by reduce size)
r > r* : stable (lower free E by increase size)
r* : critical nucleus size

Why r* is not defined by Gr = 0?

r* dG=0

Unstable equilibrium
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Gibbs-Thompson Equation

3

( )
4

3r l V
rG G

  

28 4 Vr r G      

G of a spherical particle of radius, r 2
( ) 4r sG r  

G of a supersaturated solute in liquid 
in equilibrium with a particle of radius, r

Equil. condition for open system


 
should be the same.

r r
Vm2

/mole  or   r
2

/ per unit volume

*/2 rG SLV 

V

SL

G
r


 2

r*: in (unstable) equilibrium  
with surrounding liquid
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Fig. 4.5 The variation of r* and  rmax with undercooling T

The number of clusters with r* at < TN is negligible.

The creation of a critical nucleus ~ thermally activated process

of atomic cluster

* SL SL m

V V

2 2 T 1r
G L T
  

     
mT
TLG 


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Formation of Atomic Cluster

At the Tm , the liquid phase has a volume 2-4% greater than the solid.

Fig. A two-dimensional representation of an 
instantaneous picture of the liquid structure. Many 
close-packed crystal-like clusters (shaded) are 
instantaneously formed.
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Formation of Atomic Cluster

3 24 4 ,
3r V SLG r G r      

When the free energy of the atomic cluster with radius r is by

how many atomic clusters of radius r would exist in the presence
of the total number of atoms, n0 ? 

1 2 3 4 1m mA A A A A A     

1 2

2 1 exp Gn n
kT

 
  

 
2 3

3 2 exp Gn n
kT

 
  

 
3 4

4 3 exp Gn n
kT

 
  

 
 1

1 exp
m m

m m
Gn n

kT

 



 
  

 
1 2 2 3 1

1 exp
m m

m
G G Gn n

kT

         
  

 



1

1 exp
m

m
Gn n
kT

 
  

 

0 exp r
r

Gn n
kT
   

 
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radius
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small driving force

large driving force

Compare the nucleation curves 
between small and large driving forces.

Formation of Atomic Cluster

* SL SL m

V V

2 2 T 1r
G L T
  

     

r*r*
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






 


TR
Gnn r

r exp0

no   : total # of atoms.
ΔGr : excess free energy associated with the cluster

# of cluster of radius r

- holds for T > Tm or T < Tm  and r ≤
 

r*
- nr exponentially decreases with ΔGr

Ex. 1 mm3 of copper at its melting point (no: 1020 atoms)

→
 

~1014 clusters of 0.3 nm radius (i.e. ~ 10 atoms)

→
 

~10 clusters of 0.6 nm radius (i.e. ~ 60 atoms)

→
 

effectively a maximum cluster size, ~ 100 atoms
~ 10-8 clusters mm-3 or 1 cluster in ~ 107 mm3

Formation of Atomic Cluster
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Fig. 4.5 The variation of r* and  rmax with undercooling T

The number of clusters with r* at < TN is negligible.

The creation of a critical nucleus ~ thermally activated process

* SL SL m

V V

2 2 T 1r
G L T
  

     



18

4.1.2. The homogeneous nucleation rate -
 

kinetics

How fast solid nuclei will appear in the liquid at a given undercooling?

C0 : atoms/unit volume
C* : # of clusters with size of C* ( critical size )

)exp(
*
hom

0 kT
GCC 



clusters / m3

The addition of one more atom to each of these clusters will convert them 
into stable nuclei.

)exp(
*
hom

0hom kT
GCfN o




nuclei / m3∙s 

fo ~ 1011 s-1: frequency ∝
 

vibration frequency energy 
of diffusion in liquid surface area

Co ~ 1029 atoms/m3
22

23

)(
1

3
16*

TL
TG

V

mSL













-
hom

*3 11 cm  when G ~ 78s kN T 
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kTL
TA

V

mSL
2

23

3
16

}
)(

exp{ 20hom T
ACfN o 


:  insensitive to Temp

Fig. 4.6 The homogeneous nucleation rate as a 
function of undercooling ∆T. ∆TN is the critical 
undercooling for homogeneous nucleation.

→
 

critical value for detectable nucleation
- critical supersaturation ratio
- critical driving force
- critical supercooling

How do we define TN ?

where

4.1.2. The homogeneous nucleation rate -
 

kinetics

2hom
1~
T

N


→
 

for most metals, ΔTN ~0.2 Tm (i.e. ~200K)
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Under suitable conditions, liquid nickel can be undercooled (or supercooled) to 250 K 
below Tm (1453oC) and held there indefinitely without any transformation occurring. 

Normally undercooling as large as 250 K are not observed.
The nucleation of solid at undercooling of only ~ 1 K is common.

In the refrigerator, however, water freezes even ~ 1 K below zero.
In winter, we observe that water freezes ~ a few degrees below zero.

Which equation should we examine?

)exp(
*
hom

0hom kT
GCfN o


*

( ) ( )

3 3 2
SL SL m

2 2 2
V V

16 16 T 1G
3 G 3 L T

  
     

Why this happens? What is the underlying physics?

Real behavior of nucleation
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Nucleation becomes easy if        ↓
 

by forming nucleus from mould wall.SL

From

Fig. 4.7 Heterogeneous nucleation of 
spherical cap on a flat mould wall.

4.1.3. Heterogeneous nucleation

22

23

)(
1

3
16*

TL
TG

V

mSL













SMSLML   cos

SLSMML  /)(cos 

het S v SL SL SM SM SM MLG V G A A A        

3 24 4 ( )
3het V SLG r G r S         

 
where 2( ) (2 cos )(1 cos ) / 4S     

In terms of the wetting angle (
 

) and the cap radius (r)      (Exercies 4.6)



22

S(θ)  has a numerical value ≤
 

1 dependent only on θ
 

(the shape of the nucleus)

* *
hom( )hetG S G   )(

3
16*2* 2

3

 S
G

Gand
G

r
V

SL

V

SL 







 

( )S 

 = 10 →
 

S() ~ 10-4 


 

= 30 →
 

S() ~ 0.02 


 
= 90 →

 
S() ~ 0.5 
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S(θ)  has a numerical value ≤
 

1 dependent only on θ
 

(the shape of the nucleus)

* *
hom( )hetG S G  

Fig. 4.8 The excess free energy of 
solid clusters for homogeneous and 
heterogeneous nucleation. Note  r* is  
independent  of  the nucleation site.

)(
3

16*2* 2

3

 S
G

Gand
G

r
V

SL

V

SL 






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The Effect of ΔT on ∆G*het & ∆G*hom ?

Fig. 4.9 (a) Variation of  ∆G* with undercooling (∆T) for homogeneous and heterogeneous nucleation.
(b) The corresponding nucleation rates assuming the same critical value of ∆G*

-3 1
hom 1 cmN s

Plot ∆G*het & ∆G* hom vs ΔT
and N vs ΔT.
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

AV

BV

Barrier of Heterogeneous Nucleation

4
)coscos32(

3
16)(

3
16*

3

2

3

2

3  








V

SL

V

SL

G
S

G
G

   
    

 

3
* 2 3cos cos

4
*

sub homoG G

32 3cos cos ( )
4

A

A B

V S
V V

   
 



How about the nucleation at the crevice or at the edge?

* *
hom( )hetG S G  
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*
homo

3
4
G *

homo
1
2
G *

homo
1
4
G

Nucleation Barrier at the crevice

contact angle = 90
groove angle = 60

What  would be the shape of nucleus and the 
nucleation barrier for the following conditions?

*
homo

1
6
G
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How do we treat the non-spherical shape?

 
     

* * A
sub homo

A B

VG G
V V

Substrate

Good Wetting

AV

BV Substrate

Bad Wetting

AV

BV

Effect of good and bad wetting on substrate
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Nucleation inside the crevice

VGVG  *
2
1*

V* : volume of the critical nucleus (cap or sphere)

In both of the nucleation types considered so far it can be shown that

Inoculants ~ low values of θ

 

→

 

low energy interface, fine grain size  

Nucleation from cracks or crevices should be able to occur at very small undercoolings
even when the wetting angle θ

 

is relatively large. However, that for the crack to be 
effective the crack opening must be large enough to allow the solid to grow out 
without the radius of the solid/liquid inteface

 

decreasing below r*.
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Although  nucleation  during  solidification  usually requires  some  
undercooling,  melting  invariably occurs at the equilibrium melting 
temperature even at  relatively  high  rates  of  heating.

Why?

SVLVSL  

In general, wetting angle = 0             No superheating required!

4.1.4. Nucleation of melting

(commonly)
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