

Phase Transformation of Materials

11. 26. 2009

Eun Soo Park

1

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Contents for previous class

4.3 Alloy solidification

- Solidification of single-phase alloys
- Eutectic solidification
- Off-eutectic alloys primary α (coring) + eutectic lamellar
- Peritectic solidification- L + $\alpha \rightarrow \beta$, difficult to complete.

4.4 Solidification of ingots and castings

- Ingot structure

Chill Zone, Columnar Zone, Equiaxed Zone

- Segregation in ingot and castings

Composition changes over distances

- Continuous casting

Vertical, Curved, Horizontal contiuous casting/ Strip casting

4.6 Solidification during quenching from the melt

- * T_g depends on thermal history.- Kinetic nature of the glass transition
- * Glass formation: Liquid stability + Formation of crystalline phase ➡ BMG 🧠

* Are amorphous matal useful?
At the Cutting Edge of Metals Research

Contents in Phase Transformation

상변태를 이해하는데 필요한 배경 (Ch1) 열역학과 상태도: Thermodynamics

(Ch2) 확 산론: Kinetics

(Ch3) 결정계면과 미세조직

(Ch4) 응 고: Liquid → Solid

대표적인 상변태

(Ch5) 고체에서의 확산 변태: Solid → Solid (Diffusional)

(Ch6)고체에서의 무확산 변태: Solid → Solid (Diffusionless)

< Phase Transformation in Solids >

- 1) Diffusional Transformation
- 2) Non-diffusional Transformation (Athermal Transformation)

From what we've learned, what can we say roughly about diffusional transformation in solid?

- 1) Thermally-activated process: rate \propto exp (- $\Delta G^*/kT$)
- 2) Misfit strain energy 📁 lattice distortion
- 3) Kinetic path for low nucleation barrier
 - \rightarrow coherent or semi-coherent interfaces
 - \rightarrow heterogeneous nucleation
- 4) Local equilibrium for incoherent (rough) interfaces
 - \rightarrow diffusion-controlled growth

5. Diffusion Transformations in solid

by short-range diffusion?

5. Diffusion Transformations in solid

(c) Order-Disorder Transformation

 $\alpha \rightarrow \alpha'$

(d) Massive Transformation

: 조성 변화 없이 결정구조가 다른 당상 또는 다상으로 분해

α

6 : 온도 범위에 따라 서로다른 결정구조가 안정

Free Energy Change Associated with the Nucleation

Negative and Positive Contributions to ΔG ?

$$\Delta G = -V\Delta G_{V} + A\gamma + V\Delta G_{S}$$

for spherical nucleation $\Delta G = -\frac{4}{3}\pi r^3 (\Delta G_V - \Delta G_S) + 4\pi r^2 \gamma$

Plot of ∆G vs r? r* = ? ∆G* = ?

$$^{*} = \frac{2\gamma}{(\Delta G_{V} - \Delta G_{S})}$$
$$G^{*} = \frac{16\pi\gamma^{3}}{3(\Delta G_{V} - \Delta G_{S})^{2}}$$

driving force for nucleation

Fig. 5.2 The variation of ΔG with r for a homogeneous nucleus. There is a activation energy barrier ΔG^* .

Concentration of Critical Size Nuclei : 단위체적당 임계 크기를 갖는 핵의 수

$$C^* = C_0 \exp(-\Delta G^* / kT)$$

C₀ : number of atoms per unit volume in the phase

Nucleation Rate

: 각각의 핵이 단위 시간당 f의 빈도로 임계크기 값 보다 커진다면,

$$N_{\rm hom} = f C^*$$
 $f = \omega \exp(-\Delta G_m/kT)$

: f는 임계핵이 얼마나 빈번히 모상 α로부터 원자를 공급받는가에 따라 변하는 함수

 $\omega \propto$ vibration frequency, area of critical nucleus ΔG_m : activation energy for atomic migration

$$N_{\text{hom}} = \omega C_0 \exp\left(-\frac{\Delta G_m}{kT}\right) \exp\left(-\frac{\Delta G^*}{kT}\right)$$

Total Free Energy Decrease per Mole of Nuclei ΔG_0

: 변태를 위한 전체 구동력/핵생성을 위한 구동력은 아님

Rate of Homogeneous Nucleation Varies with Undercooling

The Effect of ΔT on $\Delta G^*_{het} \& \Delta G^*_{hom}$?

Fig. 4.9 (a) Variation of △G* with undercooling (△T) for homogeneous and heterogeneous nucleation.
 (b) The corresponding nucleation rates assuming the same critical value of △G* 13

Rate of Homogeneous Nucleation Varies with Undercooling

The Effect of Alloy Composition on the Nucleation Rate

Compare the two plots of T vs N(1) and T vs N(2).

Fig. 5.5 The effect of alloy composition on the nucleation rate. The nucleation rate in alloy 2 is always less than in alloy 1.

대부분의 핵생성이 해당, 적합한 위치는 격자결함 (핵생성이 격자결함 제거 역할) $\Delta G_{het} = -V(\Delta G_V - \Delta G_S) + A\gamma \left| -\Delta G_d \right|$ **Nucleation on Grain Boundaries** 입계에서 핵생성이 일어날 때 입계에서 핵생성의 크기 가정: △G_S (불일치 변형 에너지)= 0, Υαβ α 핵의 모양 전체 계면 자유에너지를 최소로 하는 상태 $\cos \theta = \gamma_{\alpha\alpha}/2\gamma_{\alpha\beta}$ radius α $\Delta \boldsymbol{G} = -\boldsymbol{V} \Delta \boldsymbol{G}_{\boldsymbol{V}} + \boldsymbol{A}_{\alpha\beta} \boldsymbol{\gamma}_{\alpha\beta} - \left| \boldsymbol{A}_{\alpha\alpha} \boldsymbol{\gamma}_{\alpha\alpha} \right|$ volume 주형벽에서 불균일 핵생성에 의한 응고와 유사 불균일 핵생성에 필요한 활성화에너지 장벽 구형 모자 형태 핵의 임계 반경 $\frac{\Delta G_{het}^{*}}{\Delta G_{hom}^{*}} = \frac{V_{het}^{*}}{V_{hom}^{*}} = S(\theta)$ $r^* = 2\gamma_{\alpha\beta} / \Delta G_V$ $S(\theta) = \frac{1}{2}(2 + \cos\theta)(1 - \cos\theta)^2$ 16

Barrier of Heterogeneous Nucleation

S(θ) has a numerical value \leq 1 dependent only on θ (the shape of the nucleus)

How can V* and ΔG^* be reduced even further?

 \rightarrow By nucleation on a grain edge or a grain corner.

Fig. 5.7 Critical nucleus shape for nucleation on a grain edge.

Fig. 5.8 Critical nucleus shape for nucleation on a grain corner.

Compare the plots of $\Delta G_{het}^* / \Delta G_{hom}^* vs \cos \theta$ for grain boundaries, edges and corners

Fig. 5.9 The effect of θ on the activation energy for grain boundary nucleation relative to homogeneous nucleation. (After J.W. Cahn, *Acta Metallurgica* **4** (1956) 449.)

High-angle grain boundaries are particularly effective nucleation sites for incoherent precipitates with high $\gamma_{\alpha\beta}$.

If the matrix and precipitate make a coherent interface, V* and ΔG^* can be further reduced.

< Nucleus with Coherent Interface >

Fig. 5.10 The critical nucleus size can be reduced even further by forming a low-energy coherent interface with one grain.

- 전위 혹은 과잉공공은 핵생성시 불일치 변형에너지를 감소시킴으로써 핵생성을 도와준다.

Rate of Heterogeneous Nucleation

Decreasing order of ΔG^* (Activation Energy Barrier for nucleation)

: 아래로 갈수록 핵생성이 빨리 일어난다.

21

- 1) homogeneous sites
- 2) vacancies
- 3) dislocations
- 4) stacking faults
- 5) grain boundaries and interphase boundaries
- 6) free surfaces

$$N_{het} = \omega C_{\nu} \exp\left(-\frac{\Delta G_m}{kT}\right) \exp\left(-\frac{\Delta G^*}{kT}\right) \quad nuclei \ m^{-3} s^{-1}$$

C₁ : concentration of heterogeneous nucleation sites per unit volume $N_{\text{hom}} = \alpha C_0 \exp\left(-\frac{\Delta G_m}{kT}\right) \exp\left(-\frac{\Delta G^*}{kT}\right)$: 단위체적당 임계 크기를 갖는 핵의 수

The Rate of Heterogeneous Nucleation during Precipitation

C_1/C_0 for Various Heterogeneous Nucleation Sites

$\frac{\text{Grain boundary}}{D = 50 \ \mu\text{m}}$	$\frac{\text{Grain edge}}{D = 50 \ \mu\text{m}}$	$\frac{\text{Grain corner}}{D = 50 \ \mu\text{m}}$	Dislocations		Excess vacancies
			10^{5} mm^{-2}	10^8 mm^{-2}	$X_{\rm v} = 10^{-6}$
10^{-5}	10^{-10}	10^{-15}	10^{-8}	10^{-5}	10^{-6}

불균일 핵생성이 상대적으로 우세해지려면 앞선 식에서 뒤의 exp 항의 영향이 위의 비보다 더 커져야만 함.

In order to make nucleation occur exclusively on the grain corner, how should the alloy be cooled?

1) At small driving forces ($\triangle G_v$), when activation energy barriers for nucleation are high, the highest nucleation rates will be produced by grain-corner nucleation.

2) Grain edge or Grain boundary

3) At very high cooling rate?

At very high driving forces it may be possible for the (C_1/C_0) term to dominate and then homogeneous nucleation provides the highest nucleation rates.