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Martensite Transformation

"Needle like" Structure
retained austenite of martensite
Named for the German metallurgist Adolph Martens, Martensite is the hardened phase

of steel that is obtained by cooling Austenite fast enough to trap carbon atoms within
the cubic iron matrix distorting it into a body centered tetragonal structure. 5



Military Transformations

What Is a martensitic transformation?

Most phase transformations studied in this course have been
diffusional transformations where long range diffusion is required for
the (nucleation and) growth of the new phase(s).

1nere is a whole other class of military transformations
which are diffusionless transformations in which the
atoms move only short distances in order to join the new
phase (on the order of the interatomic spacing).

These transformations are also subject to the constraints
of nucleation and growth. They are (almost invariably)
associated with allotropic transformations.



Massive vs. Martensitic Transformations

 There are two basic types of diffusionless transformations.

« Oneisthe massive transformation. In this type, a :
diffusionless transformation takes place without a definite == -
orientation relationship. The interphase boundary )
(between parent and product phases) migrates so as to
allow the new phase to grow. Itis, however, a civilian
transformation because the atoms move individually.

e The other is the martensitic transformation. In this
type, the change in phase involves a definite orientation
relationship because the atoms have to move in a
coordinated manner. There is always a change in shape
which means that there is a strain associated with the LIRS 4
transformation. The strain is a general one, meaning that a2
all six (independent) coefficients can be different. ’
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Microstructure of Martensite
e The microstructural characteristics of martensite are:

the product (martensite) phase has a well defined crystallographic

relationship with the parent (matrix).

martensite forms as platelets within grains.

each platelet is accompanied by a shape change.

the shape change appears to be a simple shear parallel to a habit

plane (the common, coherent plane between the phases) and a
uniaxial expansion (dilatation) normal to the habit plane.
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Fig. 6.2 Illustrating how a martensite plate remains (macroscopically
coherent with the surrounding austenite and even the surface it intersects.
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Martensite formation rarely goes
to completion because of the

strain associated with the product

that leads to back stresses in the
parent phase.
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Control of Mechanical Properties
By Proper Heat Treatment in Iron-Carbon Alloy

Proper
heat treatment
(tempering )

’I'. i £ "'.."' ‘o - /
Tempered martensite

Tip of needle shape grain Very small & spherical shape grain

Nucleation site of fracture B | Good strength, ductility, toughness

=
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Driving Forces

These transformations require larger driving forces than for
diffusional transformations.

Why? In order for a transformation to occur without long range
diffusion, it must take place without a change in composition.

This leads to the so-called T, concept, which is the temperature at
which the new phase can appear with a net decrease in free energy
at the same composition as the parent (matrix) phase.

As the following diagram demonstrates, the temperature, T, at
which segregation-less transformation becomes possible (i.e. a
decrease in free energy would occur), is always less than the
liquidus temperature.

14



Free Energy - Composition: T,

a) A
product
e
parent
G Common tangent

T,>T,

T, corresponds to
figure 6.3b in P&E.

Diffusionless tra nsforn;ﬁation Impossible at T;,
Diffusionless transformation possible at T,;

v

“T,” 1s defined by no difference in free 15
energy between the phases, A4G=0.



Driving Force Estimation

 The driving force for a martensitic transformation can be
estimated in exactly the same way as for other transformations
such as solidification.

* Provided that an enthalpy (latent heat of transformation) is
known for the transformation, the driving force can be estimated
as proportional to the latent heat and the undercooling below T,,.

. : . r—a' (To - M s)
AG = AH= ©AT/T,= AH
0
, AHY= To — M, ~AGT™

a0y (J mol™!) (K) (J mol™ 1)
Ti—-Ni 1550 20 92
Cu-Al 170-270 20-60 19.3 £ 7.6
Au-Cd 290 10 11.8
Fe—Ni1 28% 1930 140 840
Fe-C 1260
Fe-Pt 24% 340 10 17
ordered

Fe-Pt 2390 ~15() ~1260
disordered




Various ways of

showing the martensite
transformation

Note that the M, line is horizontal in
the TTT diagram; also, the M, line.
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Heterogeneous Nucleation
Why does martensite not form until well below the T, temperature?

The reason is that a finite driving force is required to supply the energy
needed for (a) the interfacial energy of the nucleus and (b) the elastic
energy associated with the transformation strain. The former is a small
guantity (estimated at 0.02 Jm-?) but the elastic strain is large (estimated
at 0.2 Jm= in the Fe-C system), see section 6.3.1 for details. Therefore
the following (standard) equation applies.

Why does martensite require heterogeneous nucleation?
The reason is the large critical free energy for nucleation outlined above.

Dislocations in the parent phase (austenite) clearly provide
sites for heterogeneous nucleation.

Dislocation mechanisms are thought to be important for
propagation/growth of martensite platelets or laths.
18



Mechanisms

The mechanisms of military transformations are not entirely clear.

The small length scales mean that the reactions propagate at high
rates - close to the speed of sound. The high rates are possible
because of the absence of long range atomic movement (via diffusion).

Possible mechanisms for martensitic transformations include

(a) dislocation based
(b) shear based

Martensitic transformations strongly constrained by crystallography
of the parent and product phases.

This is analogous to slip (dislocation glide) and twinning, especially
the latter.

19



Atomic model - the Bain Model
* Forthe case of FCC Fe transforming to BCT ferrite
(Fe-C martensite), there is a basic model known as the Bain model.

* The essential point of the Bain model is that it accounts for the
structural transformation with a minimum of atomic motion.

o Start with two fcc unit cells: contract by 20% in the z direction, and
expand by 12% along the x and y directions.
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Crystallography, contd.

« Although the Bain model explains several basic aspects of
martensite formation, additional features must be added for
complete explanations (not discussed here).

 The missing component of the transformation strain is an
additional shear that changes the character of the strain so that
an invariant plane exists. This is explained in fig. 6.8.
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Phenomenological theory of martensite crystallography

——— RB
/ z Bain strain + rm\

W £ W £

P Observed
PE

Austenite | shape, Martensite

Wrong (wrong

/ J structure shape)
. % y  x

(@) Invariant —plane strain (b} Second homo- (c]
geneous shear

LATTICE
= INYARIANT
DEFORMATION

Twin
Boundary

¥

NN INNE

e
=

Twinned Slipped

Martensite MHartensite
24

Caorrect macroscopic shape, carrect structure



O+ ctrain

=

Free Energy

Temperature

i

Ael 1 AET

Carbon Cancentration

Martensite transformation is only possible below the T, temperature.

Fig. 8: Schematic illustration of the origin of the T curve on the phase dia-
gram. The T} curve incorporates a strain energy term for the ferrite, illustrated
on the diagram by raising the free energy curve for ferrite by an appropriate o5

quantity.



Why tetragonal Fe-C martensite?

At this point, it is worth stopping to ask why a tetragonal
martensite forms in iron. The answer has to do with the preferred
site for carbon as an interstitial impurity in bcc Fe.

Remember: Fe-C martensites are unusual for being so strong (&
brittle). Most martensites are not significantly stronger than their
parent phases.

Interstitial sites:

fcc: octahedral sites radius= 0.052 nm
tetrahedral sites radius= 0.028 nm

bcc: octahedral sites radius= 0.019 nm
tetrahedral sites radius= 0.036 nm

Carbon atom radius = 0.08 nm.

Surprisingly, it occupies the octahedral site in the bcc Fe structure,
despite the smaller size of this site (compared to the tetrahedral
sites) presumably because of the low modulus in the <100>
directions.

26



Interstitial sites
for Cin Fe

@ METAL ATOMS @ METAL ATOMS
O OCTAHEDRAL INTERSTICES © TETRAHEDRAL INTERSTICES

fcc:

carbon occupies the
octahedral sites

(a)

bcc:
carbon occupies the
octahedral sites
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(b)

[Le SI |e] Figure II-1. Interstitial voids in iron. (2) Interstitial voids in the fec structure, octahedral (1) and
tetrahedral (2). (b} Interstitial voids in the bee stucture; octahedral (1) and tetrahedral (2). (From
C.S. Barrett and T.B. Massalski, Structure of Metals, 3d ed., copyright 1966, used with the permis-

sion of McGraw-Hill Book Co., New York.) :



Carbon in ferrite

One conseguence of the o f) a
occupation of the octahedral site in S %

r=1
ferrite Is that the carbon atom has —— c ' /D
|/ i ¥ K '_T_%Z

[P&E]

only two nearest neighbors. 326 R

ot 70 @ Y, /-
Each carbon atom therefore X1 !) \_

distorts the iron lattice in its vicinity. @ -

4 2- 8662

The distortion is a tetragonal

. . (a) (b)
distortion.
If all the carbon atoms occupy the s S
same type of site then the entire < 35t /m] ]
lattice becomes tetragonal, as in 5 ° 2
the martensitic structure. S ool 1
Switching of the carbon atom ER ciertenstel]
between adjacent sites leads to < 2 S Martensitel
strong internal friction peaks at 0 0% 08 327 16 20
characteristic temperatures and (c) ~ Fe Weightper cent carbon
frequencies. large distortion necessary 1o accommodate 4 carbon atom (1,54 A diameter) com.

pared with the space available (0.346 A). (c) Variation of & and ¢ as a function of
carbon content. (After C.S. Roberts, Transactions AIME 191 (1953) 203.)



Shape Memory Effect (SME)

General phenomenon associated with martensitic transformations.

Characteristic feature = strain induced martensite (SIM), capable of
thermal reversion.

Ferroelasticity and Superelasticity also possible.
My, ALALALMg, M temperatures.

e Ms=243K

g ops- N\

9 Mg=331K

= \ 52.5:47.5 !

2 050 ﬁ-ea As=663K

S 7

P Ag=347K

0.25 - Fe-Ni
| 1 1 H l 1 | ] ' ) J_ 1 I
173 273 373 473 573 673 773
Temperature  [K] [Shape Memory Materials]

Fig. 1.16. Electrical resistance changes during cooling and heating Fe-Ni and Au-Cd
alloys, illustrating the hysteresis of the martensitic transformation on cooling, and the
reverse transformation on heating, for non-thermoclastic and thermoelastic trans-

formations respectively. (After Kaufman and Cohen®”) 29



Principle of Shape Memory Alloys

Ni-Ti alloys
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Shape Memory Alloy's applications can be used In
many ways depends on the use of YOUR IDEAS.
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Application of Shape Memory Alloys
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