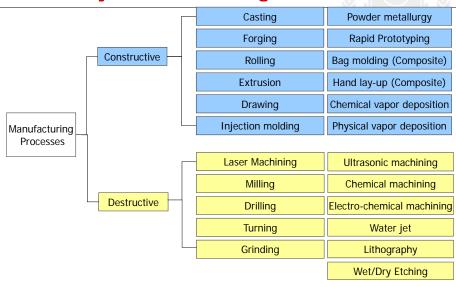


From Design to Manufacturing

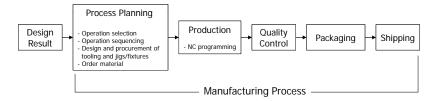
Now we are in the Manufacturing domain


Design domain: How to create geometry

Manufacturing domain: How to make part Need to consider

- Manufacturing process
- Material
- Machine

Taxonomy of Manufacturing Processes


Example Product: Self-made Vehicle

Computer-Aided Manufacturing (CAM)

Definition

 The technology concerned with the use of computer systems to plan, manage, and control manufacturing operations through either direct or indirect computer interface with the plant's production resources.

< Main Phases of discrete part manufacturing >

6

CAM Software

NC software

 NC is a system in which actions are controlled by direct insertion of numerical data at some point. The system must automatically interpret at least some portion of this data

- Electronic Industries Association (EIA)

Computer Numerical Control (CNC)

Robot programming software

Selecting and positioning tools and work-pieces for NC machines

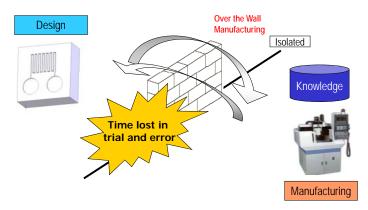
CAM Software (cont.)

Process planning software

- The act of preparing detailed work instructions to machine or assemble a part of parts
 - Computer-Aided Manufacturing, Chang et al., 1998
- Process plan; operation sheet; route sheet
- Computer-Aided Process Planning (CAPP)

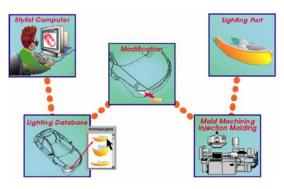
Inspection software

Coordinate Measuring Machine (CMM)



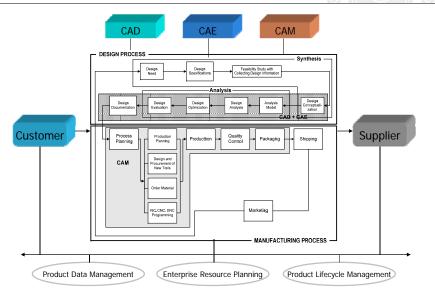
Problems in Traditional Production

Some barriers Between design and manufacturing process

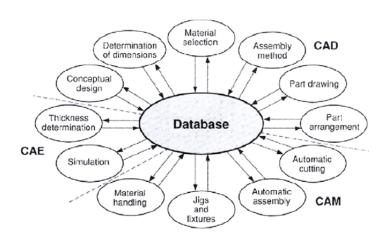


< Diagram of tradition design and manufacturing process >

CAD/CAM Integration


Goal of integration

- To facilitate coordination of work and information flow across organizational boundaries
 - "Enterprise Integration Modeling", Charles J. Petrie, The MIT Press



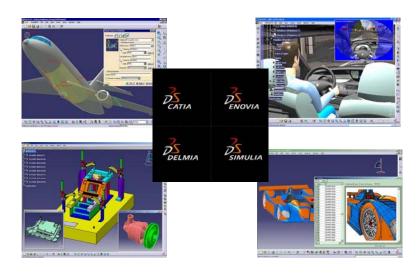
< Example concept of CAD/CAM integration >

Integration in Product Cycle Level

Integration in Database Level

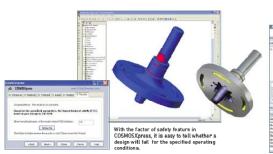
11 12

Integration in Commercial Package Level


- Integrated CAD/CAE/CAM/PDM/...
- All in one package
 - Dassult systems: CATIA, DELMIA, INOVIA...
 SolidWorks, CosmosWorks...
 - PTC: Pro/Engineering, Windchill...
 - UGS: Unigraphics, Teamcenter, Technomatix...

13

Trends of Commercial Solutions


Dassault systems: CATIA

14

Trends of Commercial Solutions (cont.)

- Dassault systems: SolidWorks
 - COSMOSXpress; simple analysis
 - COSMOSWorks Designer; simulation

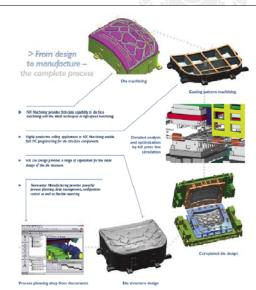
< COSMOSXpress >

< COSMOSWorks Designer >

Trends of Commercial Solutions (cont.)

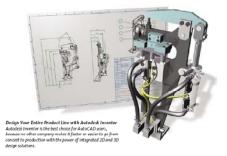
■ PTC: ProEngineering

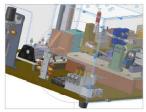
- 2D sketching
- 3D modeling
- Drawing
- Freeform surfacing
- Large Assemblies
- Analysis
- Simulation


- Sheetmetal
- CAM
- Data sharing
- Maintenance

Trends of Commercial Solutions (cont.)

- UGS: NX (Unigraphics)
 - All in NX

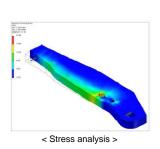

< Main concept >



Trends of Commercial Solutions (cont.)

Autodesk: Inventor

- Move to 3D from 2D (AutoCAD)
- Content center
- Virtual prototyping
- Bill of Material (BOM)


< Content center >

< Bill of Material (BOM) >

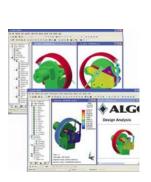
Trends of Commercial Solutions (cont.)

Embedded CAE ANSYS & Solid Dynamics

- Stress analysis (ANSYS)
- Dynamic Simulation (Solid Dynamics)
- 3D visualization (Solid Dynamics)

< 3D visualization >

Trends of Commercial Solutions (cont.)


ANSYS

- Multi-physics Analysis software
- CAD supporting in pre-processing

		Complete Simulation Solutions							Meshing Solutions			
	Multiphysics"	Mechanical**	Structural**	Professional**	DesignSpace*	Emag™	CFX*	ED"/[C-12]	LS-DYNA™	Advanced Meshing	CFX* PrepPost**	ANSYS* PrepPost**
re-Processing												
Solid Modeling	- 4	1.0	-	14		1.0			+			
Defeaturing	4 - 1	1.0							11:1	- 25		-
IGES Geometry Transfer	100	1 0	19	18					+1			
Geometry Repair		114111		-					4			1 4
Topology Diagnosis										- +:		
Faceted Data Handling										(4)		
Mid-Surfacing	- 19	0.00	1.4	5.0				(+)				-
Variable Thickness Mid-Surfacing										-		
Tetra/Prism Meshing							-			- 2	- 2	-
Structured Hex Meshing												
Automatic Free-Meshing		114		- 4	-				+			
Automatic Hex-Meshing	- 4			. +:	114.					*:		

Trends of Commercial Solutions (cont.)

- ALGOR
 - Multi-physics Analysis software
 - Direct CAD support

	Multiphysics	MES	Static/NLM	CFD	Designer	Static/LM	PipePak	Civil	ALG/NASTRAN	FEMPRO
CAD Support (Direct)										
Alibre Design	V	√	V	V	1	√			1	V
Autodesk Inventor	1	√	1	1	1	√			1	1
CADKEY	1	✓	1	1	1	1			1	1
KeyCreator	√	V	√	V	V	√			√	1
Mechanical Desktop	1	V	1	1	1	1			1	1
Pro/ENGINEER	1	1	1	1	1	V		Г	1	1
Phinoceros	1	V	1	1	1	1			1	1
Solid Edge	1	1	1	1	1	V		П	1	1
Solidworks	V	V	1	1	√	V			1	1
Full Associativity	√	√	1	V	1	√		Г	1	1
Captures Exact Assembly or Part Geometry without File Translation	√	1	√	1	√	1			√	1
User-Controlled Feature Suppression	1	1	1	1	1	1		Γ	1	1

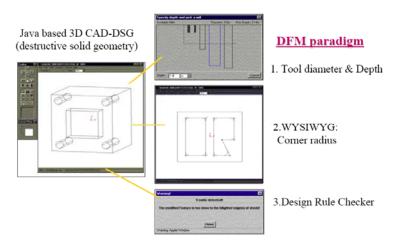
21

Coupling Modes in Integration

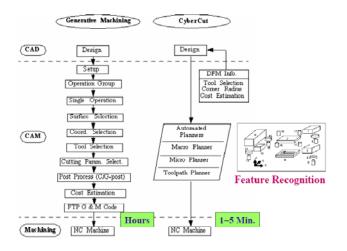
There are 3 types of coupling modes between design and manufacturing

Coupling Mode	Pros	Cons	Example		
Loose/ Repetitive	Flexible design	Cost & delay for redesign	Conventional CAD/CAM		
Stiff/ One-way	Guaranteed Manufacturing	Less design freedom	CyberCut, MOSIS		
Strong/ Bidirectional	Moderately flexible design, guaranteed manufacturing	Some loss of design freedom	SmartLite, SmartFab		

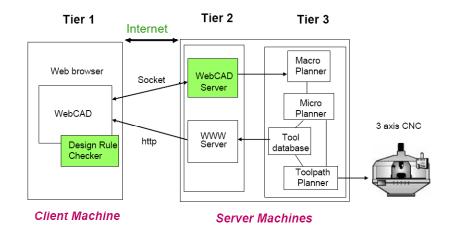
22


Example Solutions of Stiff mode

CyberCut paradigm

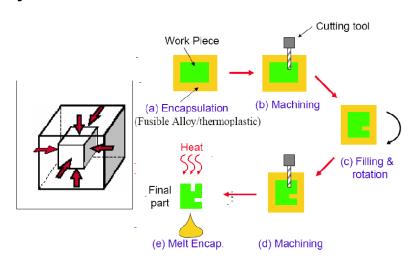

Example Solutions of Stiff mode (cont.)

CyberCut – Feature 1. WebCAD


Example Solutions of Stiff mode (cont.)

CyberCut – Feature 2. Automated Process Planning

Example Solutions of Stiff mode (cont.)


CyberCut – Network communication

25

Example Solutions of Stiff mode (cont.)

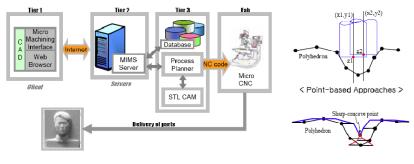
CyberCut – Feature 3. Universal fixture

Example Solutions of Stiff mode (cont.)

CyberCut – Fabricated parts

27

Example Solutions of Strong mode (cont.)


SmartLite: I-DEAS based tools

Web-based CAD/CAM Integration

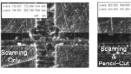
Micro Machining System (MIMS)

- Micro machining service using the internet
- Communication with 3-tier client-server model
- Upload STL file

< Communication architecture >

< Curve-based approaches >

30

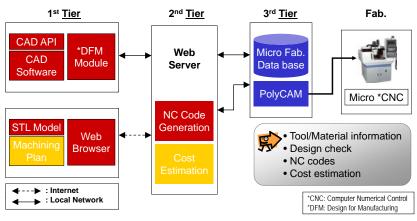

Web-based CAD/CAM Integration (cont.)

- Micro Machining System (MIMS)
 - Provide the NC code viewer

< Two types of toolpath >

• Fabricated by micro-endmill according to scanning and pencil-cut toolpath

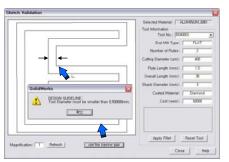
< Micro channel >

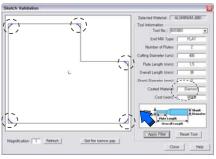

< 3D scanned head > < Micro fluidic channel >

31

Web-based CAD/CAM Integration (cont.)

SmartFab

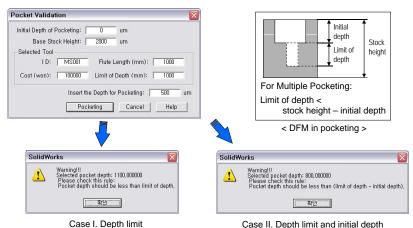

Micro machining using SolidWorks



< Architecture of SmartFab >

Web-based CAD/CAM Integration (cont.)

- SmartFab Sketch validation
 - Improve machinability
 - Based on the tool information and DFM philosophy



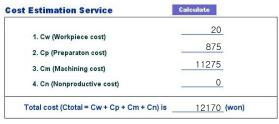
< Check for minimum Gap >

< Check for fillet >

Web-based CAD/CAM Integration (cont.)

SmartFab – Pocket validation

Case II. Depth limit and initial depth

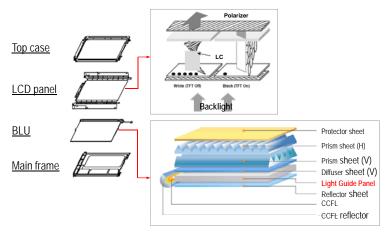

34

36

33

Web-based CAD/CAM Integration (cont.)

SmartFab – Cost estimation

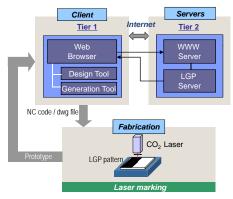


Cp = Tp*WTp: Preparation time (0.35 hr) W: Operator's wage (2500/hr) Cm = Com+Ct = Tm*W+Ct Tm: Machining time (0.41 hr) W: Operator's wage (2500/hr) $Ct = y^*(Tm/T)$ (11,275 won, 92% of total cost)

Ct: Tool usage cost T: Tool life (4 hr) y: tool cost (100,000)

Web-based CAD/CAM Integration (cont.)

TFT LCD-LGP (Light Guide Panel) prototyping

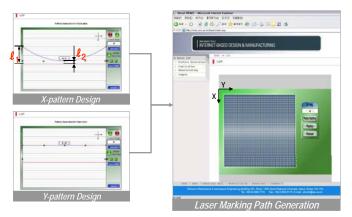


< Schematic Structure of LCD Unit >

Web-based CAD/CAM Integration (cont.)

TFT LCD-LGP (Light Guide Panel) prototyping

- Patter design & NC code generation tool
- Provide NC code or DWG file



< Communication Architecture of LGP Pattern Generator >

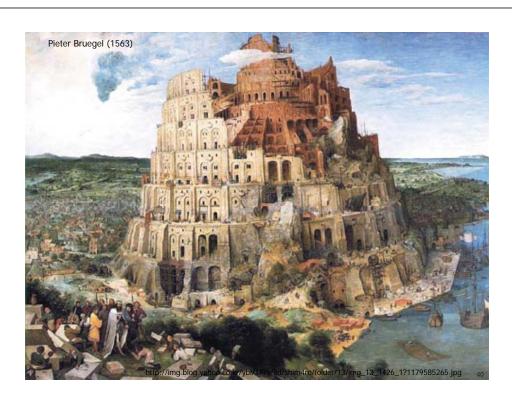
Web-based CAD/CAM Integration (cont.)

TFT LCD-LGP (Light Guide Panel) prototyping

X and Y pattern generation service

< Web-based Design Tool for LGP Pattern >

20

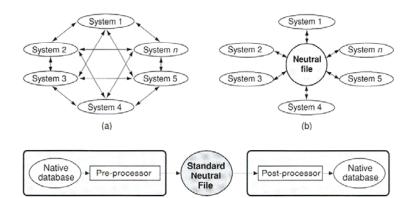

Broad Integration

■ PDM (Product Data Management)

- Control CAD file revisions
- Manage all data related to project

PLM (Product Life-cycle Management)

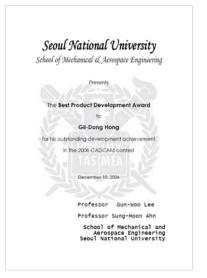
- Product Development Management (PDM)
- Include all actors (company departments, business partners, suppliers, OEM, and customers)
- Share product data
- Apply common processes
- Leverage corporate knowledge



a

Data Exchange

- Standard formats for data exchange
 - IGES (Initial Graphics Exchange Specification)
 - · 3D CAD data
 - STEP (Standard for the Exchange of Product model data)
 - DFX (Drawing eXchange Format)
 - 2D drawing data
 - STL (Stereo Lithography)
 - · De facto standard in rapid prototyping
 - VRML (Virtual Reality Modeling Language)
 - 3D model on web

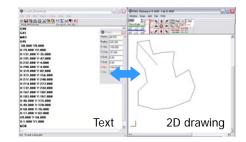

Data Exchange (cont.)

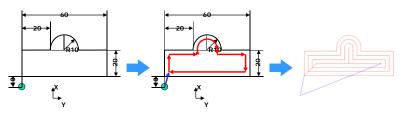
CAD/CAM Award

- Award to the Best Team!!!
- No money, but Honor!

CATIA NC Lab

- From CAD to CAM directly
- Model File Exchange
 - From SolidWorks to CATIA, IGES format
- CATIA V5 NC Manufacturing Function
 - Prismatic Machining
 - Contouring
 - Facing
 - Pocketing
 - Surface Machining
 - Roughing
 - Finishing


< Example part model >


43

41

Manual NC Lab

- GCode2000
 - Text NC support
 - 2D drawing support

< Example 2d drawing and NC path >

CAM & Injection molding Lab

CATIA NC

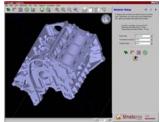
- Model with surface
- Roughing & Finishing

IDIM lab tour

Micro machining

Injection molding

46


45

Rapid Prototyping Lab

■ FDM software: Insight

STL format: CAD modelSSL format: Sliced layer

SML format: Deposition path

IDIM lab tour

- Nano Composite Deposition System
 - Rapid Prototyping + CNC machining

< Hybrid (depositing + machining) process of NCDS >

