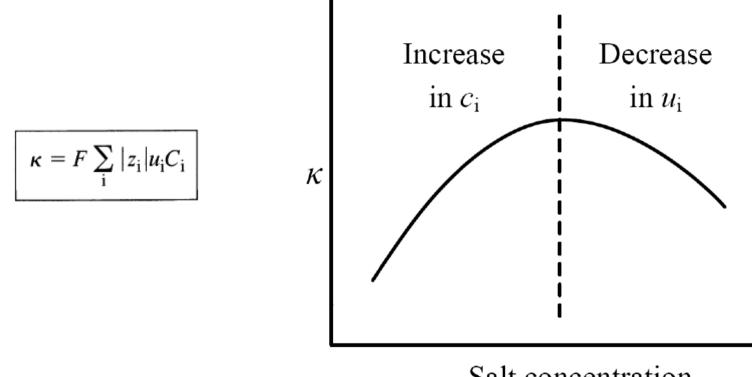
- The magnitude of the force exerted by the field is $|z_i| e^{\mathscr{C}}$
 - e: the electronic charge.
- The frictional drag can be approximated from the Stokes law as 6πηrv,
 - $\boldsymbol{\eta}$: the viscosity of the medium
 - r: the radius of the ion
 - v: the velocity.
- When the terminal velocity is reached,
- \rightarrow the mobility is:

$$u_{\rm i} = \frac{v}{\mathscr{C}} = \frac{|z_{\rm i}|e}{6\pi\eta r}$$



Salt concentration

• The transference number for species i

 \rightarrow is merely the contribution to conductivity made by that species divided by the total conductivity:

$$t_{i} = \frac{|z_{i}|u_{i}C_{i}}{\sum_{j} |z_{j}|u_{j}C_{j}} \qquad \kappa = F \sum_{i} |z_{i}|u_{i}C_{i}$$

- For solutions of simple, pure electrolytes (i.e., one positive and one negative ionic species), such as KCl, CaCl₂, and HNO₃,
- \rightarrow conductance is often quantified in terms of the equivalent conductivity, Λ , which is defined by

$$\Lambda = \frac{\kappa}{C_{\rm eq}}$$

→ where C_{eq} is the concentration of positive (or negative) charges (Clzl = C_{eq}). → Thus, Λ expresses the conductivity per unit concentration of charge.

• Since $C|z| = C_{eq}$ for either ionic species in these systems, one finds that

$$\kappa = F \sum_{i} |z_{i}| u_{i}C_{i}$$

$$\Lambda = \frac{\kappa}{C_{eq}}$$

$$\Lambda = F(u_{+} + u_{-})$$

 \rightarrow where u₊ refers to the cation and u₋ to the anion.

$$\Lambda = F(u_+ + u_-)$$

 This relation suggests that Λ could be regarded as the sum of individual equivalent ionic conductivities,

$$\Lambda = \lambda_+ + \lambda_- \qquad \qquad \lambda_i = F u_i$$

- In these simple solutions,
 - \rightarrow then, the transference number t_i is given by

$$t_{i} = \frac{\lambda_{i}}{\Lambda} \qquad \qquad t_{i} = \frac{u_{i}}{u_{+} + u_{-}}$$

TABLE 2.3.1	Cation 7	Fransference Numbers
for Aqueous So	lutions a	at 25°C ^{<i>a</i>}

		Concentration, $C_{eq}^{\ b}$		
Electrolyte	0.01	0.05	0.1	0.2
HC1	0.8251	0.8292	0.8314	0.8337
NaCl	0.3918	0.3876	0.3854	0.3821
KCl	0.4902	0.4899	0.4898	0.4894
NH ₄ Cl	0.4907	0.4905	0.4907	0.4911
KNO3	0.5084	0.5093	0.5103	0.5120
Na ₂ SO ₄	0.3848	0.3829	0.3828	0.3828
K_2SO_4	0.4829	0.4870	0.4890	0.4910

^{*a*}From D. A. MacInnes, "The Principles of Electrochemistry," Dover, New York, 1961, p. 85 and references cited therein.

^bMoles of positive (or negative) charge per liter.

Ion	λ_0 , cm ² Ω^{-1} equiv ^{-1a}	$u, \operatorname{cm}^2 \operatorname{sec}^{-1} \operatorname{V}^{-1b}$
H^+	349.82	3.625×10^{-3}
K^+	73.52	$7.619 imes 10^{-4}$
Na^+	50.11	$5.193 imes 10^{-4}$
Li ⁺	38.69	$4.010 imes 10^{-4}$
NH_4^+	73.4	7.61×10^{-4}
$\frac{1}{2}Ca^{2+}$	59.50	$6.166 imes 10^{-4}$
OH^-	198	2.05×10^{-3}
Cl ⁻	76.34	7.912×10^{-4}
Br^{-}	78.4	8.13×10^{-4}
Ι-	76.85	7.96×10^{-4}
NO_3^-	71.44	$7.404 imes 10^{-4}$
OAc ⁻	40.9	4.24×10^{-4}
ClO_4^-	68.0	7.05×10^{-4}
$\frac{1}{2}SO_4^{2-}$	79.8	8.27×10^{-4}
HCO_3^-	44.48	$4.610 imes10^{-4}$
$\frac{1}{3}$ Fe(CN) ₆ ³⁻	101.0	1.047×10^{-3}
$\frac{1}{4}$ Fe(CN) $^{4-}_{6-}$	110.5	1.145×10^{-3}

TABLE 2.3.2Ionic Properties at InfiniteDilution in Aqueous Solutions at 25°C

^{*a*}From D. A. MacInnes, "The Principles of Electrochemistry," Dover, New York, 1961, p. 342 ^{*b*}Calculated from λ_0 .

 λ_{0i} : obtained by extrapolation to infinite dilution

- It is convenient to use these λ_{0i} values to estimate t_i for mixed electrolytes by the following equation:

$$t_{i} = \frac{|z_{i}|u_{i}C_{i}}{\sum_{j} |z_{j}|u_{j}C_{j}}$$
$$t_{i} = Fu_{i}$$
$$t_{i} = \frac{|z_{i}|C_{i}\lambda_{i}}{\sum_{j} |z_{j}|C_{j}\lambda_{j}}$$

Mid-term Exam

April 26, 2018 (9:30-11:00)

Scope: Ch. 1, 2

• Consider the cell:

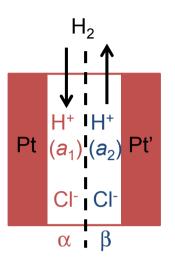
$$\bigcirc$$
 Pt/H₂(1 atm)/H⁺, Cl⁻/H⁺, Cl⁻/H₂(1 atm)/Pt' \oplus

- At equilibrium under the null-current condition,

 \rightarrow chemical transformations at the metal-solution interfaces are:

- The electrochemical free energy change for each of them individually is zero.
- Of course, this is also true for their sum:

$$\mathrm{H}^{+}(\beta) + e(\mathrm{Pt}') \rightleftharpoons \mathrm{H}^{+}(\alpha) + e(\mathrm{Pt}),$$



• Since the electrochemical free energy change is zero,

$$\mathrm{H}^+(\beta) + e(\mathrm{Pt}') \rightleftharpoons \mathrm{H}^+(\alpha) + e(\mathrm{Pt}),$$

$$\overline{\mu}_{H^+}^{\beta} + \overline{\mu}_e^{\text{Pt}'} = \overline{\mu}_{H^+}^{\alpha} + \overline{\mu}_e^{\text{Pt}}$$

$$FE = F(\phi^{\text{Pt}'} - \phi^{\text{Pt}}) = \overline{\mu}_{H^+}^{\beta} - \overline{\mu}_{H^+}^{\alpha}$$

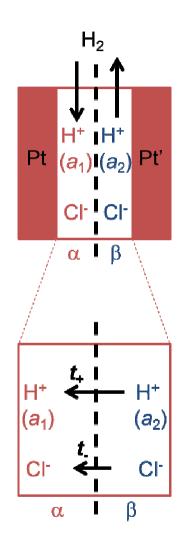
$$E = \frac{RT}{F} \ln \frac{a_2}{a_1} + (\phi^{\beta} - \phi^{\alpha})$$

 \rightarrow The first component of E

: the Nernst relation for the reversible chemical change

- → $φ^{\beta}$ $φ^{\alpha}$: liquid junction potential.
- In general, for a chemically reversible system under null current conditions,

$$E_{\text{cell}} = E_{\text{Nernst}} + E_{\text{j}}$$



• Consider the cell:

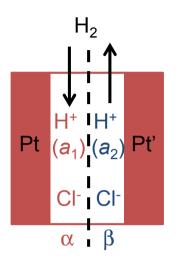
$$\bigcirc$$
 Pt/H₂(1 atm)/H⁺, Cl⁻/H⁺, Cl⁻/H₂(1 atm)/Pt' \oplus

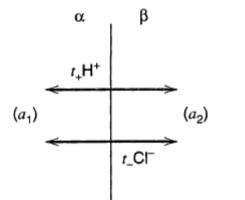
- At equilibrium under the null-current condition,

 \rightarrow chemical transformations at the metal-solution interfaces are:

 $\frac{1}{2}H_2 \rightleftharpoons H^+(\alpha) + e(Pt)$ $H^+(\beta) + e(Pt') \rightleftharpoons \frac{1}{2}H_2$

• The electrochemical free energy change for each of them individually is zero.





- To evaluate E_{j} , consider the charge transport at the liquid junction
- \rightarrow At equilibrium under the null-current condition,

$$t_{+}\mathrm{H}^{+}(\alpha) + t_{-}\mathrm{Cl}^{-}(\beta) \rightleftharpoons t_{+}\mathrm{H}^{+}(\beta) + t_{-}\mathrm{Cl}^{-}(\alpha)$$

 \rightarrow The electrochemical free energy change for charge transport across the junction = 0

$$t_{+}(\overline{\mu}_{\mathrm{H}^{+}}^{\alpha} - \overline{\mu}_{\mathrm{H}^{+}}^{\beta}) + t_{-}(\overline{\mu}_{Cl^{-}}^{\beta} - \overline{\mu}_{Cl^{-}}^{\alpha}) = 0$$
$$t_{+}\left[RT\ln\frac{a_{\mathrm{H}^{+}}^{\alpha}}{a_{\mathrm{H}^{+}}^{\beta}} + F(\phi^{\alpha} - \phi^{\beta})\right] + t_{-}\left[RT\ln\frac{a_{\mathrm{Cl}^{-}}^{\beta}}{a_{\mathrm{Cl}^{-}}^{\alpha}} - F(\phi^{\beta} - \phi^{\alpha})\right] = 0$$

Activity coefficients for single ions cannot be measured with thermodynamic rigor

 \rightarrow hence they are usually equated to a measurable mean ionic activity coefficient.

Under this procedure

$$a_{\rm H^+}^{\alpha} = a_{\rm Cl^-}^{\alpha} = a_1$$
 $a_{\rm H^+}^{\beta} = a_{\rm Cl^-}^{\beta} = a_2.$

• Since $t_+ + t_- = 1$, for a type 1 junction involving 1:1 electrolytes

$$t_{+} \left[RT \ln \frac{a_{\mathrm{H}^{+}}^{\alpha}}{a_{\mathrm{H}^{+}}^{\beta}} + F(\phi^{\alpha} - \phi^{\beta}) \right] + t_{-} \left[RT \ln \frac{a_{\mathrm{Cl}^{-}}^{\beta}}{a_{\mathrm{Cl}^{-}}^{\alpha}} - F(\phi^{\beta} - \phi^{\alpha}) \right] = 0$$

$$E_{j} = (\phi^{\beta} - \phi^{\alpha}) = (t_{+} - t_{-}) \frac{RT}{F} \ln \frac{a_{1}}{a_{2}}$$

- For example, HCl solutions with $a_1 = 0.01$ and $a_2 = 0.1$.
 - \rightarrow From Table 2.3.1 that t₊ = 0.83 and t₋ = 0.17
 - \rightarrow hence at 25°C

$$E_{\rm j} = (0.83 - 0.17)(59.1) \log\left(\frac{0.01}{0.1}\right) = -39.1 \text{ mV}$$

• For the total cell with $a_1 = 0.01$ and $a_2 = 0.1$,

 \rightarrow the measured cell potential is:

$$E = \frac{RT}{F} \ln \frac{a_2}{a_1} + (\phi^\beta - \phi^\alpha)$$
$$E = 59.1 \log \frac{a_2}{a_1} + E_j = 59.1 - 39.1 = 20.0 \text{ mV}$$

- ➔ the junction potential is a substantial component of the measured cell potential
- → How can we decrease the junction potential?

$$E_{\rm j}=(\phi^\beta-\phi^\alpha)=(t_+-t_-)\frac{RT}{F}\ln\frac{a_1}{a_2}$$

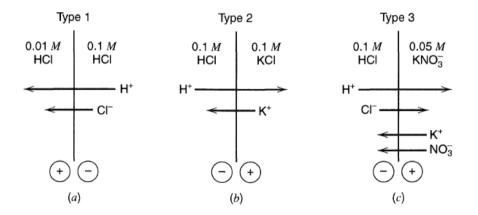
For KCl,
$$t_{+} = 0.49$$

If $a_1/a_2 = 0.1$, $E_j = 1.2$ mV

• In the derivation above,

we made the implicit assumption that the transference numbers were constant throughout the system.

 \rightarrow A good approximation for junctions of type 1.



- For type 2 and type 3 systems, it clearly cannot be true.
 - → transference numbers are not constant throughout the system.
 - \rightarrow need to use the differential equation

• Let us imagine the junction region to be sectioned into an infinite number of volume elements having compositions that range smoothly from the pure α -phase composition to that of pure β .

 \rightarrow the passage of positive charge from x toward x+dx might be depicted as in the following figure:

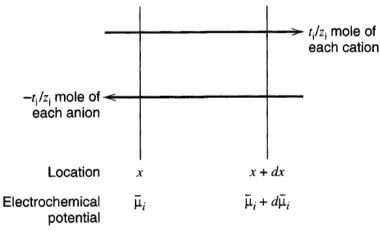


Figure 2.3.7 Transfer of net positive charge from left to right through an infinitesimal segment of a junction region. Each species must contribute t_i moles of charge per mole of overall charge transported; hence $t_i |z_i|$ moles of that species must migrate.

 \rightarrow For each mole of charge passed from x to x+dx,

 $\frac{\tau_i}{|z_i|}$ moles of species i must move

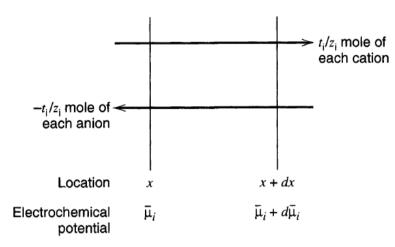


Figure 2.3.7 Transfer of net positive charge from left to right through an infinitesimal segment of a junction region. Each species must contribute t_i moles of charge per mole of overall charge transported; hence $t_i|z_i|$ moles of that species must migrate.

• So, the change in electrochemical free energy upon moving any species =

$$\frac{t_i}{z_i}d\overline{\mu_i}$$

• The differential in free energy is:

$$d\overline{G} = \sum_{i} \frac{t_{i}}{z_{i}} d\overline{\mu}_{i}$$

• Integrating from the α phase to the β phase at equilibrium,

$$\int_{\alpha}^{\beta} d\overline{G} = 0 = \sum_{i} \int_{\alpha}^{\beta} \frac{t_{i}}{z_{i}} d\overline{\mu}_{i}$$

- If both phase are same solutions such as aqueous solutions,
 - \rightarrow we can assume that μ_i^0 for the α phase is the same as that for the β phase

$$\sum_{i} \int_{\alpha}^{\beta} \frac{t_{i}}{z_{i}} RT \, d \ln a_{i} + \left(\sum_{i} t_{i}\right) F \int_{\alpha}^{\beta} d\phi = 0$$

Since $\Sigma t_i = 1$,

$$E_{j} = \phi^{\beta} - \phi^{\alpha} = \frac{-RT}{F} \sum_{i} \int_{\alpha}^{\beta} \frac{t_{i}}{z_{i}} d\ln a_{i}$$

→ the general expression for the junction potential

$$E_{j} = \phi^{\beta} - \phi^{\alpha} = \frac{-RT}{F} \sum_{i} \int_{\alpha}^{\beta} \frac{t_{i}}{z_{i}} d\ln a_{i} \qquad t_{i} = \frac{|z_{i}|u_{i}C_{i}}{\sum_{j} |z_{j}|u_{j}C_{j}}$$

- By assuming
- (a) that concentrations of ions everywhere in the junction are equivalent to activities
- (b) that the concentration of each ion follows a linear transition between the two phases
- \rightarrow Approximate values for E_i can be obtained in the form of

$$E_{j} = \frac{\sum_{i} \frac{|z_{i}| u_{i}}{z_{i}} [C_{i}(\beta) - C_{i}(\alpha)]}{\sum_{i} |z_{i}| u_{i} [C_{i}(\beta) - C_{i}(\alpha)]} \frac{RT}{F} \ln \frac{\sum_{i} |z_{i}| u_{i} C_{i}(\alpha)}{\sum_{i} |z_{i}| u_{i} C_{i}(\beta)}$$

: the Henderson equation

• Suppose a selectively permeable membrane having an interface between two electrolyte phases across which only a single ion could penetrate.

$$\int_{\alpha}^{\beta} d\overline{G} = 0 = \sum_{i} \int_{\alpha}^{\beta} \frac{t_{i}}{z_{i}} d\overline{\mu}_{i} \qquad \sum_{i} \int_{\alpha}^{\beta} \frac{t_{i}}{z_{i}} RT d \ln a_{i} + \left(\sum_{i} t_{i}\right) F \int_{\alpha}^{\beta} d\phi = 0$$

- but it could be simplified by recognizing that the transference number for the permeating ion is unity, while that for every other ion is zero.
- If both electrolytes are in a common solvent, one obtains by integration

$$\frac{RT}{z_{\rm i}}\ln\frac{a_{\rm i}^{\beta}}{a_{\rm i}^{\alpha}} + F(\phi^{\beta} - \phi^{\alpha}) = 0$$

: where ion i is the permeating species.

• Rearrangement gives

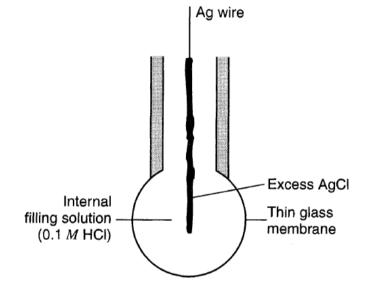
$$E_{\rm m} = -\frac{RT}{z_{\rm i}F}\ln\frac{a_{\rm i}^{\beta}}{a_{\rm i}^{\alpha}}$$

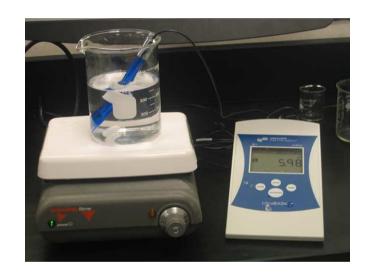
 $\rightarrow\,$ often called the membrane potential, $\rm E_{m}$

$$E_{j} = \phi^{\beta} - \phi^{\alpha} = \frac{-RT}{F} \sum_{i} \int_{\alpha}^{\beta} \frac{t_{i}}{z_{i}} d\ln a_{i}$$

2.4.2 Glass Electrodes

- Glass electrodes have the ion-selective properties of glass/electrolyte interfaces
 - → have been used for measurements of pH and the activities of alkali ions

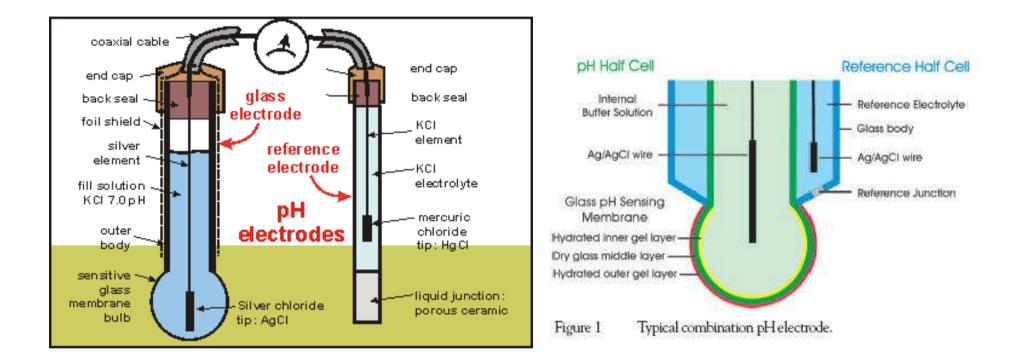




Dry glass membrane

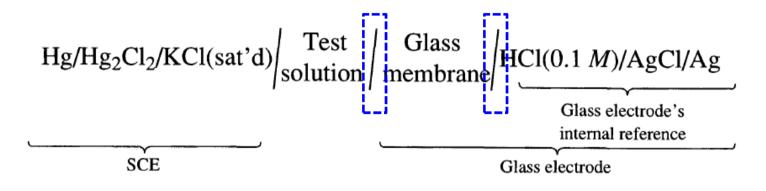
- : about 50 µm thick,
- : charge transport occurs exclusively by the mobile cations present in the glass.
 - \rightarrow Usually, these are alkali ions, such as Na⁺ or Li⁺.
- : Hydrogen ion from solution does not contribute to conduction in this region.

2.4.2 Glass Electrodes



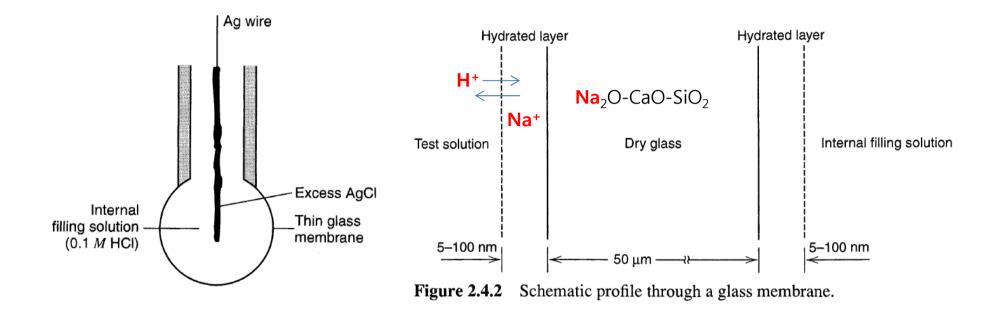
- To make measurements,
- \rightarrow the thin membrane is fully immersed in the test solution
- → the potential of the electrode is registered with respect to a reference electrode such as an SCE.

• Thus, the cell becomes



- The overall potential difference of the cell at two points includes:
 - i) the interfacial potential difference at the Hg and Ag electrodes (constant)
 - ii) the liquid junction between the SCE and the test solution (assume that it is small and constant)
 - ii) the junction between test solution and glass membrane

& the junction between internal filling solution and glass membrane



- The faces of the membrane in contact with solution differ from the bulk,
 → in that the silicate structure of the glass is hydrated.
- The hydrated layers are thin. (H⁺ can be permeable in the hydrated layer)
- The silicate network has an affinity for certain cations, which are adsorbed (probably at fixed anionic sites) within the structure.
 - \rightarrow This action creates a charge separation that alters the interfacial potential difference.

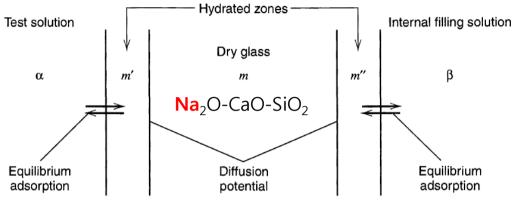


Figure 2.4.3 Model for treating the membrane potential across a glass barrier.

- Let us consider a model for the glass membrane like that shown in the Figure.
- The glass will be considered as comprising three regions.
 - 1) In the interfacial zones, m' and m"
 - \rightarrow equilibrium with constituents in solution through adsorption and desorption
 - of only cations (only cations are permeable through hydrated zones)
 - 2) The bulk of the glass, m
 - → conduction takes place by a single species, which is taken as Na⁺ in this example

2.4.2 Glass Electrodes

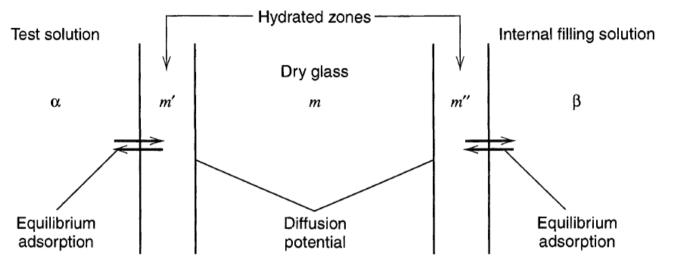


Figure 2.4.3 Model for treating the membrane potential across a glass barrier.

The whole system therefore comprises five phases

→ the overall difference in potential across the membrane

= the sum of four contributions from the junctions between the various zones:

$$E_{\rm m} = (\phi^{\beta} - \phi^{\rm m''}) + (\phi^{\rm m''} - \phi^{\rm m}) + (\phi^{\rm m} - \phi^{\rm m'}) + (\phi^{\rm m'} - \phi^{\alpha})$$

$$E_{\rm m} = (\phi^{\beta} - \phi^{\rm m''}) + (\phi^{\rm m''} - \phi^{\rm m}) + (\phi^{\rm m} - \phi^{\rm m'}) + (\phi^{\rm m'} - \phi^{\rm a})$$

• The first and last terms

: interfacial potential differences arising from an equilibrium balance of selective charge exchange across an interface

- \rightarrow occurs near selectively permeable membrane (m)
 - : cations are only permeable in this example
- \rightarrow This condition is known as Donnan equilibrium
- The magnitude of the resulting potential difference can be evaluated from electrochemical potentials.
- \rightarrow Suppose we have Na⁺ and H⁺ as interfacially active ions.
- \rightarrow Then at the α/m' interface,

$$\overline{\mu}_{\mathrm{H}^{+}}^{lpha} = \overline{\mu}_{\mathrm{H}^{+}}^{\mathrm{m}'} \ \overline{\mu}_{\mathrm{Na}^{+}}^{lpha} = \overline{\mu}_{\mathrm{Na}^{+}}^{\mathrm{m}'}$$

$$\overline{\mu}^{lpha}_{\mathrm{H}^+} = \overline{\mu}^{\mathrm{m}'}_{\mathrm{H}^+}$$

$$\mu_{\rm H^+}^{0\alpha} + RT \ln a_{\rm H^+}^{\alpha} + F\phi^{\alpha} = \mu_{\rm H^+}^{0{\rm m}'} + RT \ln a_{\rm H^+}^{{\rm m}'} + F\phi^{{\rm m}'}$$

$$(\phi^{\mathbf{m}'} - \phi^{\alpha}) = \frac{\mu_{\mathrm{H}^+}^{0\alpha} - \mu_{\mathrm{H}^+}^{0\mathbf{m}'}}{F} + \frac{RT}{F} \ln \frac{a_{\mathrm{H}^+}^{\alpha}}{a_{\mathrm{H}^+}^{\mathbf{m}'}}$$

- An equivalent treatment of the interface between β and m["] gives:

$$(\phi^{\beta} - \phi^{m''}) = \frac{\mu_{\rm H^+}^{0m''} - \mu_{\rm H^+}^{0\beta}}{F} + \frac{RT}{F} \ln \frac{a_{\rm H^+}^{m''}}{a_{\rm H^+}^{\beta}}$$

 $\mu_{\rm H^+}^{0lpha} = \mu_{\rm H^+}^{0eta}$ because both α and β are aqueous solutions. $\mu_{\rm H^+}^{0{\rm m}'} = \mu_{\rm H^+}^{0{\rm m}''}$

$$E_{\rm m} = (\phi^{\beta} - \phi^{\rm m''}) + (\phi^{\rm m''} - \phi^{\rm m}) + (\phi^{\rm m} - \phi^{\rm m'}) + (\phi^{\rm m'} - \phi^{\rm a})$$

- The second and third components:
 - : junction potentials within the glass membrane.
 - : use the Henderson equation

$$E_{j} = \frac{\sum_{i} \frac{|z_{i}| u_{i}}{z_{i}} [C_{i}(\beta) - C_{i}(\alpha)]}{\sum_{i} |z_{i}| u_{i} [C_{i}(\beta) - C_{i}(\alpha)]} \frac{RT}{F} \ln \frac{\sum_{i} |z_{i}| u_{i} C_{i}(\alpha)}{\sum_{i} |z_{i}| u_{i} C_{i}(\beta)}$$

Univalent positive charge carriers in this example

 \rightarrow hence we can specialize the Henderson equation for the interface between m and m' as

$$(\phi^{\rm m} - \phi^{\rm m'}) = \frac{RT}{F} \ln \frac{u_{\rm H^+} a_{\rm H^+}^{\rm m'} + u_{\rm Na^+} a_{\rm Na^+}^{\rm m'}}{u_{\rm Na^+} a_{\rm Na^+}^{\rm m}}$$

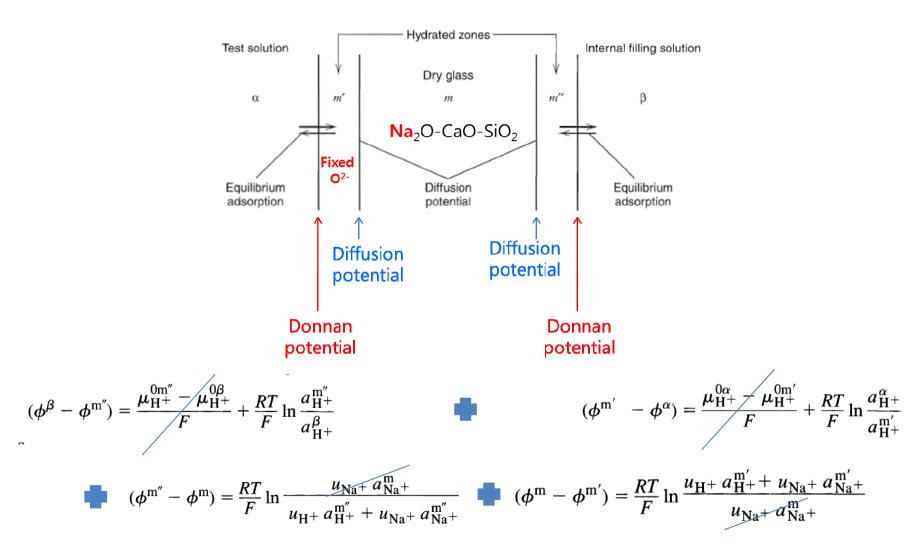
: where the concentrations have been replaced by activities

2.4.2 Glass Electrodes

• Similarly, for the interface between m and m"

$$(\phi^{\mathbf{m}''} - \phi^{\mathbf{m}}) = \frac{RT}{F} \ln \frac{u_{\mathbf{N}a^+} a_{\mathbf{N}a^+}^{\mathbf{m}}}{u_{\mathbf{H}^+} a_{\mathbf{H}^+}^{\mathbf{m}''} + u_{\mathbf{N}a^+} a_{\mathbf{N}a^+}^{\mathbf{m}''}}$$

$$E_{\rm m} = (\phi^{\beta} - \phi^{\rm m''}) + (\phi^{\rm m''} - \phi^{\rm m}) + (\phi^{\rm m} - \phi^{\rm m'}) + (\phi^{\rm m'} - \phi^{\alpha})$$



• When we add all component potential differences to obtain the whole potential difference across the membrane,

$$E_{\rm m} = \frac{RT}{F} \ln \frac{a_{\rm H}^{\alpha} + a_{\rm H}^{m''}}{a_{\rm H}^{\beta} + a_{\rm H}^{m'}} \qquad \text{(Donnan Term)}$$

+ $\frac{RT}{F} \ln \frac{(u_{\rm Na}^{+}/u_{\rm H}^{+})a_{\rm Na}^{m'} + a_{\rm H}^{m'}}{(u_{\rm Na}^{+}/u_{\rm H}^{+})a_{\rm Na}^{m''} + a_{\rm H}^{m''}} \qquad \text{(Diffusion term)}$

• When we combine the two terms and rearrange the parameters,

$$E_{\rm m} = \frac{RT}{F} \ln \frac{(u_{\rm Na}^+/u_{\rm H}^+)(a_{\rm H}^{\alpha} + a_{\rm Na}^{\rm m'} + /a_{\rm H}^{\rm m'}) + a_{\rm H}^{\alpha}}{(u_{\rm Na}^+/u_{\rm H}^+)(a_{\rm H}^{\beta} + a_{\rm Na}^{\rm m''} + /a_{\rm H}^{\rm m''}) + a_{\rm H}^{\beta}}$$

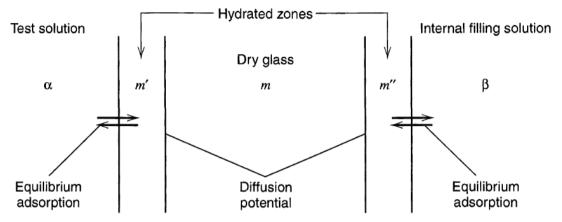


Figure 2.4.3 Model for treating the membrane potential across a glass barrier.

At the α/m' interface:

$$\overline{\mu}_{H^+}^{\alpha} = \overline{\mu}_{H^+}^{m'}$$
$$\overline{\mu}_{Na^+}^{\alpha} = \overline{\mu}_{Na^+}^{m'}$$

- Their sum must also be true: $\overline{\mu}_{Na^+}^{\alpha} + \overline{\mu}_{H^+}^{m'} = \overline{\mu}_{H^+}^{\alpha} + \overline{\mu}_{Na^+}^{m'}$
- This equation is a free energy balance for the ion-exchange reaction:

$$\operatorname{Na}^+(\alpha) + \operatorname{H}^+(m') \rightleftharpoons \operatorname{H}^+(\alpha) + \operatorname{Na}^+(m')$$

- Since it does not involve net charge transfer,
- \rightarrow it is not sensitive to the interfacial potential difference
- \rightarrow it has an equilibrium constant given by

$$K_{\rm H^+,Na^+} = \frac{a_{\rm H^+}^{lpha} a_{\rm Na^+}^{\rm m'}}{a_{\rm H^+}^{\rm m'} a_{\rm Na^+}^{lpha}}$$

$$K_{\rm H^+,Na^+} = \frac{a_{\rm H^+}^{\alpha} a_{\rm Na^+}^{\rm m'}}{a_{\rm H^+}^{\rm m'} a_{\rm Na^+}^{\alpha}}$$

$$E_{\rm m} = \frac{RT}{F} \ln \frac{(u_{\rm Na^+}/u_{\rm H^+})(a_{\rm H^+}^{\alpha} a_{\rm Na^+}^{\rm m'}/a_{\rm H^+}^{\rm m'}) + a_{\rm H^+}^{\alpha}}{(u_{\rm Na^+}/u_{\rm H^+})(a_{\rm H^+}^{\beta} a_{\rm Na^+}^{\rm m''}/a_{\rm H^+}^{\rm m''}) + a_{\rm H^+}^{\beta}}$$

$$E_{\rm m} = \frac{RT}{F} \ln \frac{(u_{\rm Na} + /u_{\rm H} +) K_{\rm H} + Na}{(u_{\rm Na} + /u_{\rm H} +) K_{\rm H} + Na} a_{\rm Na}^{\alpha} + a_{\rm H}^{\alpha} + a_{\rm H}^{\alpha} + a_{\rm H}^{\alpha} + a_{\rm H}^{\alpha} + a_{\rm H}^{\beta} + a_{\rm H}^{\beta}$$

$$E_{\rm m} = \frac{RT}{F} \ln \frac{(u_{\rm Na}^+/u_{\rm H}^+)K_{\rm H^+,Na}^+ a_{\rm Na}^{\alpha} + a_{\rm H^+}^{\alpha}}{(u_{\rm Na}^+/u_{\rm H}^+)K_{\rm H^+,Na}^+ a_{\rm Na}^{\beta} + a_{\rm H^+}^{\beta}}$$

- Since $K_{H+,Na+}$ and u_{Na+}/u_{H+} are constants of the experiment,
- \rightarrow it is convenient to define their product as the potentiometric selectivity coefficient, k_{H^+,Na^+}^{pot}

$$E_{\rm m} = \frac{RT}{F} \ln \frac{a_{\rm H^+}^{\alpha} + k_{\rm H^+,Na}^{\rm pot} + a_{\rm Na^+}^{\alpha}}{a_{\rm H^+}^{\beta} + k_{\rm H^+,Na}^{\rm pot} + a_{\rm Na^+}^{\beta}}$$

• If the β phase is the internal filling solution (of constant composition) and the α phase is the test solution,

 \rightarrow the overall potential of the cell is

$$E = \text{constant} + \frac{RT}{F} \ln \left(a_{\text{H}^+}^{\alpha} + k_{\text{H}^+,\text{Na}^+}^{\text{pot}} a_{Na^+}^{\alpha} \right)$$

$$E = \text{constant} + \frac{RT}{F} \ln \left(a_{\text{H}^+}^{\alpha} + k_{\text{H}^+,\text{Na}}^{\text{pot}} + a_{Na}^{\alpha} \right)$$

• This expression tells us that

→ the cell potential is responsive to the activities of both Na⁺ and H⁺ in the test solution, and that the degree of selectivity between these species k_{H^+,Na^+}^{pot}

$$E = \text{constant} + \frac{RT}{F} \ln \left(a_{\text{H}^+}^{\alpha} + k_{\text{H}^+,\text{Na}^+}^{\text{pot}} a_{Na^+}^{\alpha}\right)$$

→ If this value is much less than $a_{H^+}^{\alpha}$,

: then the membrane responds essentially exclusively to H⁺