2.3.2 Types of Liquid Junctions

« The magnitude of the force exerted by the field is |zi| €%

- e: the electronic charge.

= The frictional drag can be approximated from the Stokes law as 6nnry,
- n: the viscosity of the medium
- r: the radius of the ion

- v: the velocity.

= When the terminal velocity is reached,

- the mobility is:

v _ |f='1|€

it 6mnr
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2.3.2 Types of Liquid Junctions

= The transference number for species |
- is merely the contribution to conductivity made by that species divided by the

total conductivity:

|zi|“ici
= o o k =FY |z|uC,
]2 |zj |ujCj - 11%1+1




2.3.2 Types of Liquid Junctions

= For solutions of simple, pure electrolytes (i.e., one positive and one negative
ionic species), such as KCl, CaCl,, and HNO;,

- conductance is often quantified in terms of the equivalent conductivity, A,
which is defined by

)

- where C,, is the concentration of positive (or negative) charges (Clzl = C,).

> Thus, A expresses the conductivity per unit concentration of charge.

= Since Clzl = C,, for either ionic species in these systems, one finds that

k =F X |zuC;
i .
Ceq

- where u, refers to the cation and u. to the anion.



2.3.2 Types of Liquid Junctions

A=Fu, +u_)

= This relation suggests that A could be regarded as the sum of individual

equivalent ionic conductivities,

= In these simple solutions,

- then, the transference number t; is given by



2.3.2 Types of Liquid Junctions

TABLE 2.3.2 Ionic Properties at Infinite
TABLE 2.3.1 Cation Transference Numbers Dilution in Aqueous Solutions at 25°C
for Aqueous Solutions at 25°C*

Ion Ao, cm® O equivT¥ u, cm? sec”! V1P
Concentration, Ceqb qt 34082 3.625 X 1073
Electrolyte 001 005 0.1 0.2 K" 73.52 7.619 X 10°°
Na* 50.11 5193 x 107*
HCI 0.8251 0.8292 0.8314 0.8337 Lit 38.69 4.010 X 10~*
NaCl 0.3918 0.3876 0.3854 0.3821 NH; 73.4 761 X 1074
KCl 0.4902 0.4899 0.4898 0.4894 rCadt 5950 6.166 X 104
NH4C1 0.4907 0.4905 04907 04911 OH™ 198 2.05 X 1073
KNO; 0.5084 0.5093 0.5103 0.5120 Cl- 76.34 7.912 X 1074
Na,SO, 0.3848 0.3829 0.3828 0.3828 Br~ 78.4 8.13 x 1074
K550, 0.4829 04870 0.4890 0.4910 I~ 76.85 796 x107¢
. . NOj 71.44 7.404 X 1074
From D. A. Maclnnes, “The Principles of Electro- OAc™ 40.9 424 % 10-
chemistry,” Dover, New York, 1961, p. 85 and references ¢ ‘ ' .
cited therein. €10, 68.0 7.05 X107
’Moles of positive (or negative) charge per liter. 7503 79.8 8.27 x10
HCO; 44.48 4,610 X 107¢
'Fe(CN);~  101.0 1.047 x 103
Fe(CN)E™  110.5 1.145 X 1073

“From D. A. MacInnes, “The Principles of Electrochemistry,”
Dover, New York, 1961, p. 342

bCalculated from Ag.

A obtained by extrapolation to infinite dilution
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= It is convenient to use these Ay values to estimate t; for mixed electrolytes by the

following equation:

. — |zilwC;
] B 2 15|Cia;
J

)li:FHi -
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2.3.4 Calculation of Liquid Junction Potentials

= Consider the cell:

a B
©Pt/H,(1 atm)/H™, C17/H™, C1 /Hy(1 atm)/Pt'@®
(a1) (az)

= At equilibrium under the null-current condition,

- chemical transformations at the metal-solution interfaces are:

Hy =H" (a) + e(Pt)
H* (B) + e(Pt') = 3H,

= The electrochemical free energy change for each of them individually is zero.

= Of course, this is also true for their sum:

H" (B) + e(Pt)Y=H" (a) + e(Pt),



2.3.4 Calculation of Liquid Junction Potentials

= Since the electrochemical free energy change is zero, H,

H" (B) + e(Pt)Y=H" (a) + e(Pt),

Wi + pe' = Hi + e
FE = F(¢™ — ¢™) = pfi+ — i+

_RT, @ _
E—Flna1+(¢ﬁ %)

- The first component of E

|
: the Nernst relation for the reversible chemical change ¢ :
2> ¢ - ¢« liquid junction potential. HY €— H°
(@) 1 (a)
t_l
= In general, for a chemically reversible system under null Cl (I Cl
current conditions, o 1 B

Ecen = ENemst T Ej



2.3.4 Calculation of Liquid Junction Potentials

= Consider the cell:

a B
©Pt/H,(1 atm)/H™, C17/H™, C1 /Hy(1 atm)/Pt'@®
(a1) (az)

= At equilibrium under the null-current condition,

- chemical transformations at the metal-solution interfaces are:

Hy =H" (a) + e(Pt)
H* (B) + e(Pt') = 3H,

= The electrochemical free energy change for each of them individually is zero.



2.3.4 Calculation of Liquid Junction Potentials

* b * To evaluate E; consider the charge transport at the liquid
( H* junction
(@) - }{aﬂ - At equilibrium under the null-current condition,
- .
e O t.H (@) +1.Cl"(B)=t, H" (B) + t_ CI” (a)

- The electrochemical free energy change for charge transport across the junction = 0

r+(ﬁﬁ+ — 1) + (- — wg-) =0
o
T+ F¢® - q':ﬁ)] + 1 [RT In C‘ — F(¢P — d)"“)}

C]"‘

t, [RT In

afl

= Activity coefficients for single ions cannot be measured with thermodynamic rigor
- hence they are usually equated to a measurable mean ionic activity coefficient.

= Under this procedure

¥ — ¥ —_—
ag+ = ac- = a; b+ = ali- = a,.



2.3.4 Calculation of Liquid Junction Potentials

= Since ty +t_ =1 ,foratype 1 junction involving 1:1 electrolytes
ﬁ
t.| RT In 2BY F(¢p* — ¢Py| + t_| RT In 2C17 _ F(¢P — M| =0
HE[+ Cl"

= For example, HCl solutions with a; = 0.01 and a, = 0.1.
- From Table 2.3.1 thatt, = 083 and t. = 0.17
- hence at 25°C

= (0.83 — 0.17)(59.1) log (%) = —30.1 mV



2.3.4 Calculation of Liquid Junction Potentials

= For the total cell with a; = 0.01 and a, = 0.1,

- the measured cell potential is:

RT

E=81n22+ ¢f - 0%

E = 59110g——+E—591—391—-200mV

=> the junction potential is a substantial component of the measured cell

potential

= How can we decrease the junction potential?

=@ - =~ 1) m!

az

For KCI, t, = 0.49
If a;/a, = 0.1, =12 mV



2.3.4 Calculation of Liquid Junction Potentials

= In the derivation above,
we made the implicit assumption that the transference numbers were constant

throughout the system.

=>» A good approximation for junctions of type 1.

Type 1 Type 2 Type 3

0.01 M 0.1 M 01 M 01M 01 M 0.05 M

HCI HCI HCI KCI HCI KNOj
——— H* H' — H"

~—1—CI K’ cr
K+
= NOjg
() (b) (c)

= For type 2 and type 3 systems, it clearly cannot be true.
=» transference numbers are not constant throughout the system.

= need to use the differential equation



2.3.4 Calculation of Liquid Junction Potentials

= Let us imagine the junction region to be sectioned into an infinite number of volume

elements having compositions that range smoothly from the pure a-phase composition

to that of pure .

=> the passage of positive charge from x toward x+dx might be depicted as in the

following figure:

t;i/z; mole of
each cation

~t;/z; mole of -

each anion
Location X X +dx
Electrochemical  [i; B+ di
potential

Figure 2.3.7 Transfer of net positive
charge from left to right through an
infinitesimal segment of a junction region.
Each species must contribute #; moles of
charge per mole of overall charge
transported; hence f;|z;| moles of that
species must migrate.

=» For each mole of charge passed from x to x+dx,

ti

i moles of species | must move
l



2.3.4 Calculation of Liquid Junction Potentials

t/z; mole of
each cation

Figure 2.3.7 Transfer of net positive
—t;/z; mole of .
each anion charge from left to right through an
infinitesimal segment of a junction region.
Each species must contribute #; moles of
Location x X +dx charge per mole of overall charge
Electrochemical i, I+ dil; trans'portcd; her}ce t;|z;| moles of that
potential species must migrate.

= So, the change in electrochemical free energy upon moving any species =
tid_
Z Hi

= The differential in free energy is:

—_ .
dG = 2 7 dp;
1



2.3.4 Calculation of Liquid Junction Potentials

= Integrating from the a phase to the B phase at equilibrium,
B _ Bt _
fdG=o=2f = A
a i Ya 71

= If both phase are same solutions such as aqueous solutions,

=> we can assume that u,° for the a phase is the same as that for the B phase
Bt B
gj;zmwm@+ ;qFﬁﬁw=0

Since 2t; = 1,

o« _ —RT < [P
%=¢ﬁ—¢=>?rﬁj‘zqu

1 o

=» the general expression for the junction potential



2.3.4 Calculation of Liquid Junction Potentials

|z |u;C,

_ Bt
., = )B— a=—..____RT fl . fl=_-_.—
== [Mhana|  wgi

= By assuming

(a) that concentrations of ions everywhere in the junction are equivalent to
activities

(b) that the concentration of each ion follows a linear transition between the

two phases

= Approximate values for £; can be obtained in the form of

EH [Ci(B) — Cy(a)] BT, le|uC(a)
Elzlu[cua) Cia)] F 2|z|u (B)

: the Henderson equation

i




2.4.1 Selective Interfaces

= Suppose a selectively permeable membrane having an interface between two

electrolyte phases across which only a single ion could penetrate.
B _ Bt _ B t. B
f dG:():Zif -Ziid.ui zj Z—'iRlenai+(zri)Ff dd =0
54 o 1 o 1 a

= but it could be simplified by recognizing that the transference number for the

permeating ion is unity, while that for every other ion is zero.

= If both electrolytes are in a common solvent, one obtains by integration

B

a

RZ—T In— + F(¢P — ¢*) =0
1 al

: where ion i is the permeating species.



2.3.4 Calculation of Liquid Junction Potentials

= Rearrangement gives

RT , &
E, =—221
m= T ZF g

- often called the membrane potential, E,

— Bt
=B — o= —RT f_l |
Ej=¢F —¢%=— 2 _zdIng



2.4.2 Glass Electrodes

= Glass electrodes have the ion-selective properties of glass/electrolyte interfaces

=» have been used for measurements of pH and the activities of alkali ions

Ag wire

Excess AgCl
Internal .
filling solution Thin glass
(0.1 M HCI) membrane

Dry glass membrane

: about 50 um thick,

: charge transport occurs exclusively by the mobile cations present in the glass.
- Usually, these are alkali ions, such as Na* or Li*.

: Hydrogen ion from solution does not contribute to conduction in this region.
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= To make measurements,

nH Half Cell Reference Half Cel
Inflernal
Raference Elechchte
Buiffer Solution SRR et
Elass Dody
A AGCE wira AQAST] wire

s REfERErCE USRI
Gloss pH Sensing

Membrane
Fydrotad inner gel laver
Oy glass middie oyver
Hydrabed ouber gl kayet

Figure | Typical combination pH electrode.

> the thin membrane is fully immersed in the test solution

- the potential of the electrode is registered with respect to a reference electrode

such as an SCE.



2.4.2 Glass Electrodes

= Thus, the cell becomes

i Glass
!ne mbra

.E.__

] Test |
Hg/Hg,Cl,/KCl(sat’d) /Sol;iso | /

-_-—"_‘"-—-_

C1(0.1 M)/AgCl/Ag

v
Glass electrode’s
internal reference
Y J LN Y
SCE Glass electrode

-

I'-FD---'I

|
L.

= The overall potential difference of the cell at two points includes:

I) the interfacial potential difference at the Hg and Ag electrodes (constant)

i) the liquid junction between the SCE and the test solution (assume that it is
small and constant)

i) the junction between test solution and glass membrane

& the junction between internal filling solution and glass membrane



2.4.2 Glass Electrodes

Hft——>

]

Na+

Test solution

Excess AgCl
Internal .
filling solution Thin Elass
(0.1 M HCI) membrane 5100 nm
—_—

Hydrated layer
]

Nazo'caO‘S|02

Dry glass

Hydrated layer

~——— 50 um

Internal filling solution

5-100 nm
———

Figure 2.4.2 Schematic profile through a glass membrane.

= The faces of the membrane in contact with solution differ from the bulk,

- in that the silicate structure of the glass is hydrated.

= The hydrated layers are thin. (H* can be permeable in the hydrated layer)

= The silicate network has an affinity for certain cations, which are adsorbed (probably at

fixed anionic sites) within the structure.

- This action creates a charge separation that alters the interfacial potential difference.



2.4.2 Glass Electrodes

Hydrated zones
Test solution '

Dry glass
o m’ m
/: Nazo‘caO'S|OZ

Equilibrium Diffusion

adsorption potential

m”’

Internal filling solution

et

N

Equilibrium

adsorption

Figure 2.4.3 Model for treating the membrane potential across a glass barrier.

= Let us consider a model for the glass membrane like that shown in the Figure.

= The glass will be considered as comprising three regions.

1) In the interfacial zones, m" and m"

- equilibrium with constituents in solution through adsorption and desorption

of only cations (only cations are permeable through hydrated zones)

2) The bulk of the glass, m

- conduction takes place by a single species, which is taken as Na* in this

example



2.4.2 Glass Electrodes

Hydrated zones
Test solution ' | Internal filling solution

Dry glass
o m’ m m" B
/_i z_}\
Equilibrium Diffusion Equilibrium
adsorption potential adsorption

Figure 2.4.3 Model for treating the membrane potential across a glass barrier.

= The whole system therefore comprises five phases
=» the overall difference in potential across the membrane

= the sum of four contributions from the junctions between the various zones:

Epn= (¢ — ¢™) + @™ — ¢™ + (o™ — ¢™) + (™ — ¢%)



2.4.2 Glass Electrodes

Epn= (¢ — &™) + @™ — ¢™ + (o™ — ¢™) + (™ — ¢%)

= The first and last terms
. interfacial potential differences arising from an equilibrium balance of selective charge
exchange across an interface
- occurs near selectively permeable membrane (m)
: cations are only permeable in this example

—> This condition is known as Donnan equilibrium

= The magnitude of the resulting potential difference can be evaluated from
electrochemical potentials.
> Suppose we have Na* and H* as interfacially active ions.
> Then at the a/m' interface,
i = i
MRt = A+



2.4.2 Glass Electrodes

i+ = B+
MH++RTlnaH++Fd>a=,u +RT]naH++F¢'Jm

Oa Om’ a
m _ gay, . PHT ~ MHT | RT, 4+
(¢ o) 7 + F In

mf
aH-{-

= An equivalent treatment of the interface between B and m" gives:

Om” m"
B _ 4m" — MHT — B L RT4H+
¢ = ™) o
HT
M = ;quﬁ because both a and B are aqueous solutions



2.4.2 Glass Electrodes

Epn= (¢ — &™) + @™ — ¢™ + (o™ — ¢™) + (™ — ¢%)

= The second and third components:
: jJunction potentials within the glass membrane.

: use the Henderson equation

|Zi|

2

U:
“[Cy(B) — C; | uiC,;
[Ci(B) — Ci(e)] - EI_ZIZ.IH, ()

i

= 1 In
S lzlulcyB) — Cel ¥ X lzluCiB)

j

= Univalent positive charge carriers in this example
= hence we can specialize the Henderson equation for the interface between m

and m’ as
U+ AH+ T UNa+ ANa+

m m'’ RT
— =2 n

: where the concentrations have been replaced by activities



2.4.2 Glass Electrodes

= Similarly, for the interface between m and m”

UNa+ ANa+

m”_m:}_-\"z
(™~ ¢™ =T In

[

Uyg+ aﬁ"‘ T UNa+ aﬁa*
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JH“-[ _ {ﬂlll)ﬁ o {Ibl'l'l"} + ((f}mﬂ o ‘i’m) 4 {{ﬁ'm - (ﬁm'} + ((bn]' . d)nf)

Hydrated zones
Internal filling solution

Dry glass

Test solution I

o m’ m m” B

/_Fixed \/ \
o>

Equilibrium Diffusion Equilibrium
adsorption potential adsorption

!

Diffusion Diffusion
potential potential

Donnan Donnan
potential potential

" "

B m
a
o R 2l o

. Unig T ANa+ _RT | Mu+ als+ un,+ al+
‘ (¢m _(}Sm)”—"%h} /NA ‘ ((‘bm (bm a a

"

uy+ ap+ + UN,+ aﬁa+ F u Na+t
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= When we add all component potential differences to obtain the whole

potential difference across the membrane,

U

o m
_ RT . dp+ dH+

Foabialls
L RT (UNa+/Up+)aNat+ + af+

F m" m” (Diffusion term)
(UNa+/Ug+)aN,+ T ag+

EITI

(Donnan Term)

= When we combine the two terms and rearrange the parameters,

_RT (upa+/ug+)(af+an,+/af+) + af+

E n "
T F T (uyg iy o afi+lafis) + afi+
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Hydrated zones
Test solution ' Internal filling solution

Dry glass
o m’ m m”’ B
/_i z_}\
Equilibrium Diffusion Equilibrium
adsorption potential adsorption

Figure 2.4.3 Model for treating the membrane potential across a glass barrier.

—a _ ..._..mi'
. + = +
= At the o/m' interface: __F;H EE]
MNat — MHNa+t

= Their sum must also be true: Wt + ﬁﬁ‘+ = wd+ + mNy+

= This equation is a free energy balance for the ion-exchange reaction:

Na®™ (@) + H" () =H" (@) + Na™ (m')



2.4.2 Glass Electrodes

= Since it does not involve net charge transfer,
- it is not sensitive to the interfacial potential difference

- it has an equilibrium constant given by

!

_ aﬁ“‘aﬁaJr
Ky+ Nat+ = m o
Ay+dNa+
B af+aN,+ )
Kyt nat =~
Ay+AaN,+
=
a _m' m’ o
_ RT, (uny+/ug+)af+an,+/ap+) + af+
Em — ?‘ n —

(MN3+/MH+)(6€1+G“N1;+/6I§1) + aE1+

£ _RT, (uNa+/ug+)Ky+ Na+aNa+ T al+

" F (uNa+/uH+)KH+,Na+aﬁa+ + aﬁ+
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£ R (Una+ug+)Ky+ Na+aNa+ T AR+

" F (uNaJr/uH'*‘)KH"‘,Na'Faﬁa"' + HE[‘F

= Since Ky, nas and uy,,/uy, are constants of the experiment,

- it is convenient to define their product as the potentiometric selectivity coefficient, k%0+,Na+

i
RT . 9+ T kit Nat+ONa+
=== 1In
m pot
F afir + M o @Ra+

E

= If the B phase is the internal filling solution (of constant composition) and the o
phase is the test solution,

- the overall potential of the cell is

RT

ot
F In (aﬁ+ + k%+,Na+aﬁa+)

E = constant +




2.4.2 Glass Electrodes

RT

0t
F In (aﬁ"” + klﬂ"‘,NajLaﬁaJr)

FE = constant +

= This expression tells us that
- the cell potential is responsive to the activities of both Na* and H* in the test

solution, and that the degree of selectivity between these species Pt Na+

RT

E= +
constant F

1 Ot 1
In (afj+ -I-i k%+,Na+aﬁa+)i

=> If this value is much less than a,,%

: then the membrane responds essentially exclusively to H*





