Engineering Economic Analysis

2019 SPRING

Prof. D. J. LEE, SNU

Chap. 6 DEMAND

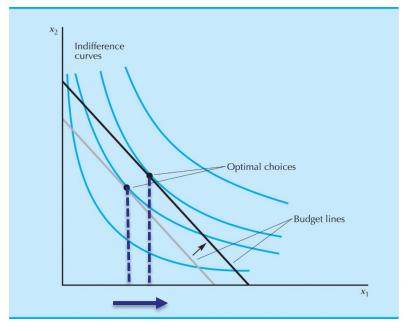
Properties of Demand Functions

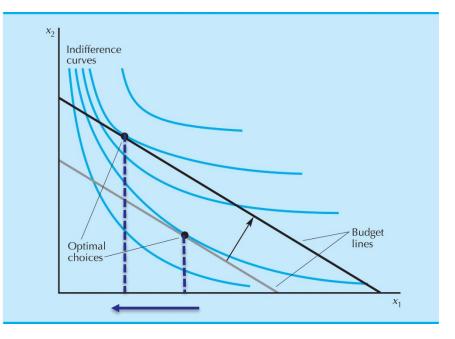
 Comparative statics analysis of ordinary demand functions -- the study of how ordinary demands x₁*(p₁,p₂,m) and x₂*(p₁,p₂,m) change as prices p₁, p₂ and income m change.

- How a consumer's demand for a good changes as his income changes with prices unchanged
- A good is called as normal good if

$$\frac{\partial x_i(\tilde{p},m)}{\partial m} > 0$$

Otherwise, inferior good





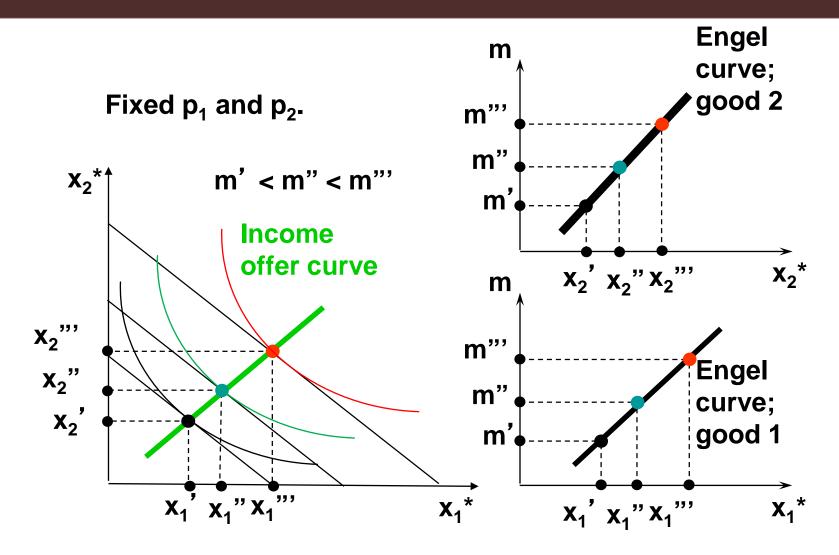
Normal good

Inferior good

- Income offer curves (income expansion path)
 - Illustrates the bundles of goods that are demanded at the different levels of income

Engel curves

• A graph of the demand for one good as a function of income, with all prices being held constant



Examples: Cobb-Douglas

$$u(x_1, x_2) = x_1^a x_2^{1-a}$$

$$x_1^*(p_1, p_2, m) = \frac{am}{p_1}, \ x_2^*(p_1, p_2, m) = \frac{(1-a)m}{p_2}$$

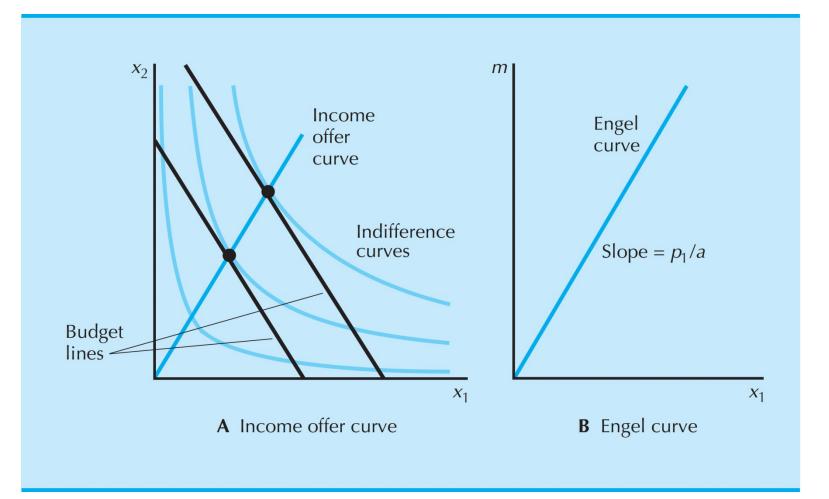
• Since *x_i* is linear function of *m*, doubling *m* will double demand, tripling *m* will triple demand, and so on.

$$x_1^*(p_1, p_2, tm) = \frac{a(tm)}{p_1} = t\frac{am}{p_1} = tx_1^*(p_1, p_2, tm), \quad x_2^*(p_1, p_2, tm) = tx_2^*(p_1, p_2, m)$$

- Thus income expansion curve will be straight line
- Engel curves

$$m = \frac{p_1}{a} x_1, \ m = \frac{p_2}{1-a} x_2$$

Examples: Cobb-Douglas



Homothetic preference

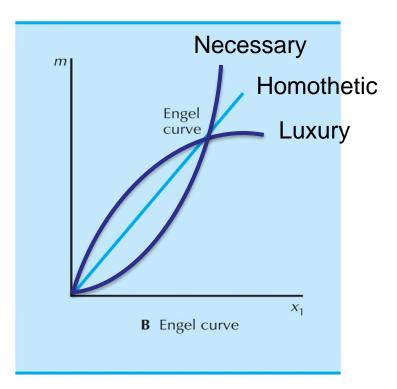
- Homothetic utility function:
 - A function $f: \mathbb{R}^n \to \mathbb{R}$ is **homogeneous of degree 1** (H(1)) if $f(t\tilde{x}) = tf(\tilde{x})$ for all t > 0
 - A **homothetic function** is a (positive) monotonic transformation of a homogeneous function
- If a consumer has a homothetic utility function, the consumer is said to have a homothetic preference

If $(x_1, x_2) \succ (y_1, y_2)$, then $(tx_1, tx_2) \succ (ty_1, ty_2)$

- Consumer's preferences only depend on the ratio of both goods
- If homothetic preference, then the income offer curves and also Engel curves are all straight lines through the origin

Homothetic preference

- Luxury good: demand for a good goes up by a greater proportion than income
- Necessary good: demand for a good increases by a lesser greater proportion than income



Quasilinear utility function

$$u(x_0, x_1, ..., x_k) = x_0 + v(x_1, ..., x_k)$$

x₀ can be interpreted as money for other goods

Quasilinear utility maximization with two goods

$$\begin{array}{ll}
\max & x_0 + v(x_1) \\
s.t. & p_0 x_0 + p_1 x_1 = m \\
\end{array}$$

max $v(x_1) + m / p_0 - p_1 x_1 / p_0$

• F.O.C.

$$v'(x_1) = p_1 / p_0$$

- Demand function of x₁ is independent of income (and only a function of p₁ if p₀ is unity)
- Zero income effect
- Inverse demand function

 $p_1(x_1) = v'(x_1) p_0$

Example

- $u(x_1, x_0) = \ln x_1 + x_0$
- F.O.C.

$$\frac{1}{x_1} = \frac{p_1}{p_0}$$

• Demand function $x_1 =$

$$x_1 = \frac{p_0}{p_1}$$

- Regardless of income amount, the consumer purchase good 1 by the amount of demand function
- Then use all the remaining income to buy good 0

$$x_0 = \frac{m}{p_0} - 1$$

- When income is too small such that m<p₀
 - Impossible to buy good 0
 - Thus use all income to purchase only good 1
 - Demand function

$$x_1 = \frac{m}{p_1} \qquad x_0 = 0$$

• Thus, a better way to write the demand for good 0 is:

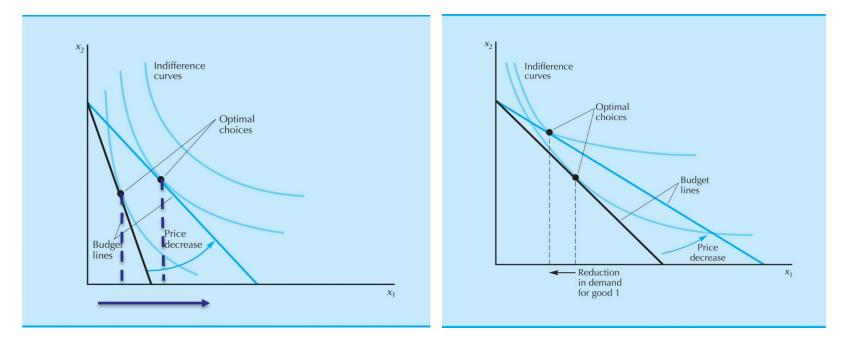
$$x_0 = \begin{cases} 0 & \text{when } m \le p_0 \\ \frac{m}{p_0} - 1 & \text{when } m > p_0 \end{cases} \qquad x_1 = \begin{cases} \frac{m}{p_1} & \text{when } m \le p_0 \\ \frac{p_0}{p_1} & \text{when } m > p_0 \end{cases}$$

1

- How a consumer's demand for a good changes as its own price changes with other prices and income unchanged
- A good is called as ordinary good if

$$\frac{\partial x_i(\tilde{p},m)}{\partial p_i} < 0$$

• Otherwise, Giffen good



Ordinary good

Giffen good

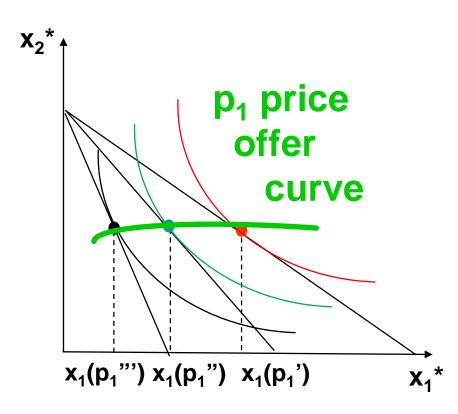
Price offer curves

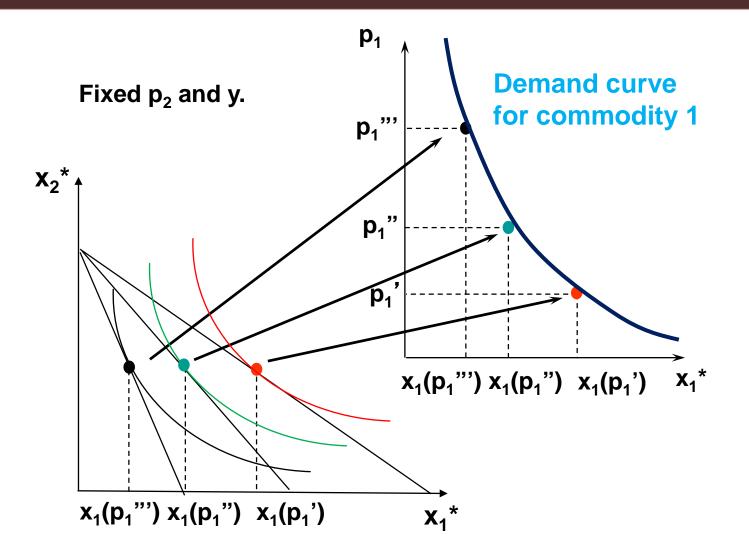
 Represents the bundle that would be demanded at different own prices with the income and other prices being held fixed

Demand curves

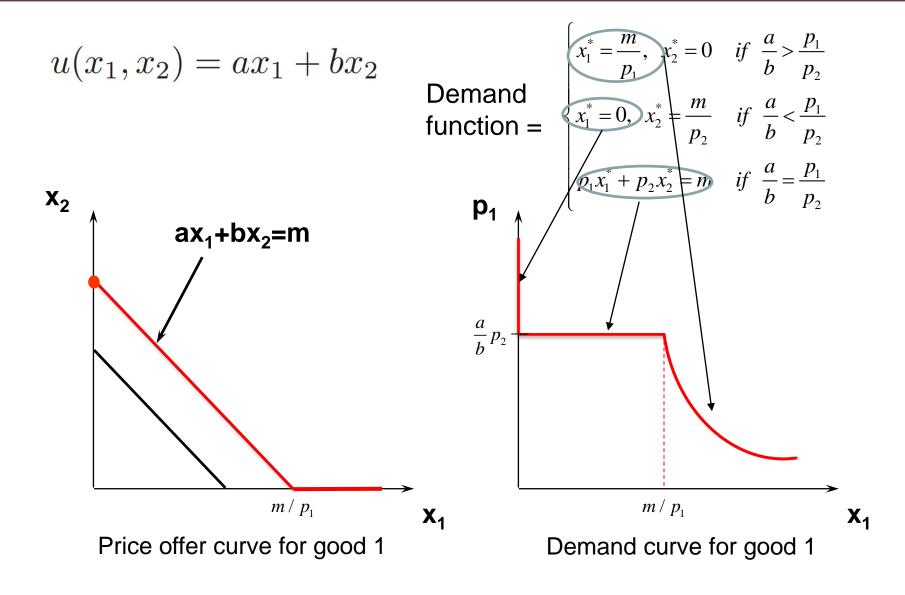
• A graph of the demand function

Fixed p_2 and m.





Examples: Perfect substitutes



Other good's price changes

- How a consumer's demand for a good changes as other good's price changes
- The good i is a substitute for good j if

$$\frac{\partial x_i(\tilde{p},m)}{\partial p_j} > 0$$

The good i is a complement for good j if

$$\frac{\partial x_i(\tilde{p},m)}{\partial p_j} < 0$$

Comparative Statics: Methodology

- In mathematical methods, comparative statics can be done by <u>determining the sign of partial</u> <u>differentials</u>
- Two-good case with equality constraint

```
\max_{x_1, x_2} U(x_1, x_2)
s.t. p_1 x_1 + p_2 x_2 = m
```

• First-order conditions (F.O.C.)

$$-p_{1}x_{1}(p_{1}, p_{2}, m) - p_{2}x_{2}(p_{1}, p_{2}, m) + m = 0$$

$$\frac{\partial u(x_{1}(p_{1}, p_{2}, m), x_{2}(p_{1}, p_{2}, m))}{\partial x_{1}} - \lambda p_{1} = 0$$

$$\frac{\partial u(x_{1}(p_{1}, p_{2}, m), x_{2}(p_{1}, p_{2}, m))}{\partial x_{2}} - \lambda p_{2} = 0$$

Comparative Statics: Methodology

• Differentiating w.r.t. p_i , and arranging in matrix form

$$\begin{bmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{11} & u_{12} \\ -p_2 & u_{21} & u_{22} \end{bmatrix} \begin{bmatrix} \frac{\partial \lambda}{\partial p_1} \\ \frac{\partial x_1}{\partial p_1} \\ \frac{\partial x_2}{\partial p_1} \end{bmatrix} \equiv \begin{bmatrix} x_1 \\ \lambda \\ 0 \end{bmatrix}$$

• Solving for $\partial x_1/\partial p_1$ via Cramer's rule gives,

$$\frac{\partial x_{1}}{\partial p_{1}} = \frac{\begin{vmatrix} 0 & x_{1} & -p_{2} \\ -p_{1} & \lambda & u_{12} \\ -p_{2} & 0 & u_{22} \end{vmatrix}}{\left| \overline{\mathbf{H}} \right|} = \lambda \frac{\begin{vmatrix} 0 & -p_{2} \\ -p_{2} & u_{22} \end{vmatrix}}{\left| \overline{\mathbf{H}} \right|} - x_{1} \frac{\begin{vmatrix} -p_{1} & u_{12} \\ -p_{2} & u_{22} \end{vmatrix}}{\left| \overline{\mathbf{H}} \right|} \leq 0 (?)$$

Comparative Statics: Methodology

• Differentiating w.r.t. m, and arranging in matrix form

$$\begin{bmatrix} 0 & -p_1 & -p_2 \\ -p_1 & u_{11} & u_{12} \\ -p_2 & u_{21} & u_{22} \end{bmatrix} \begin{bmatrix} \frac{\partial \lambda}{\partial m} \\ \frac{\partial x_1}{\partial m} \\ \frac{\partial x_2}{\partial m} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

• Solving for $\partial x_1/\partial m$ via Cramer's rule gives,

$$\frac{\partial x_{1}}{\partial m} = \frac{\begin{vmatrix} 0 & -1 & -p_{2} \\ -p_{1} & 0 & u_{12} \\ -p_{2} & 0 & u_{22} \end{vmatrix}}{\left| \overline{\mathbf{H}} \right|} = \frac{\begin{vmatrix} -p_{1} & u_{12} \\ -p_{2} & u_{22} \end{vmatrix}}{\left| \overline{\mathbf{H}} \right|} \leq 0 (?)$$